用户名: 密码: 验证码:
新型固态化锂二次电池及相关材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点综述了固态化锂电池及相关电极与电解质材料的研究进展。固态化锂二次电池具有比常规液态锂离子电池更高的比能量,且由于电池中几乎不含有液态电解质,对解决液态锂离子电池在非常规环境下可能产生的漏液、易燃、易爆等安全性问题,具有重要意义。固态化电解质的应用能简化电池结构,使电池的形状尺寸具有更灵活的可设计性。随着便携式电子设备和电动汽车日益增长的对高能量、高功率和高安全性需求的发展,固态化锂二次电池已成为国际研发的热点之一。开发新型薄膜电极和固态化电解质材料,优化电池结构设计是发展高性能固态化锂二次电池的基础。本文从开发制备新型电极和电解质材料入手,结合它们的物化特性,优化设计出新型固态化电池构造,首次制备出高安全性的固态化锂离子电池,继而研制出高比能和高安全性的固态化金属锂电池,实现了从固态化锂离子电池到固态化金属锂二次电池的技术转化;研究新材料,探索新概念,开发新体系,发展新技术,推动固态化锂二次电池的发展,实现规模化生产与应用,从而为进一步发展全固态锂二次电池奠定技术基础。本文围绕开发新型高性能固态化锂二次电池进行了系统的研究工作,主要取得了以下阶段性成果和进展。
     (1)采用磁控溅射技术制备出新型三元电极薄膜,用作固态化锂电池正极。通过射频磁控溅射在高纯氩气或氧-氩混合气中制备了三元正极薄膜,通过控制退火温度和时间,生成了一系列具有不同结晶度和欠锂化学组分的薄膜。预沉积薄膜为无定型态,具有高的化学扩散系数,表现出较好的电化学性能,这种薄膜电极适应于小电流微型电子设备,可应用于薄膜锂电池;高温退火薄膜具有稳定的晶体结构、欠锂化学组成、纳米粒子生长及微米厚度设计,表现出独特且良好的电化学性能,这种薄膜电极具有高的能量密度,适用于高比能锂电池正极材料,可应用到固态化锂电池。
     (2)采用磁控溅射技术制备出新型玻璃态磷酸锂包覆磷酸铁锂电极,可作为固态化锂电池正极。以磷酸锂为靶,磷酸铁锂电极为基片,通过射频磁控溅射制备了磷酸锂包覆磷酸铁锂复合电极,通过调节溅射功率和沉积时间,制备了一组具有不同包覆形貌的复合电极。包覆的磷酸锂薄膜是一种良好的锂离子导体,具有玻璃态结构本质,与磷酸铁锂电极形成珊瑚状多孔交联网络结构,促进了电极的离子和电子的传输,提高了界面电荷传质效率,改善了电极的结构稳定性。这类电极具有高的比容量和良好的功率特性,可应用于锂动力电池。
     (3)采用反应磁控溅射法制备出Li-Al-Ti-P-O-N薄膜电解质,用于全固态薄膜锂电池。以NASICON结构的Li Al Ti P O化合物为靶材,通过射频磁控溅射法在高纯氮气中制备了新型的Li-Al-Ti-P-O-N薄膜,通过改变沉积温度制得了一系列的薄膜。研究发现氮参杂取代了部分氧原子,降低了反应活化能,形成了更丰富的交联网络结构,促进了锂离子的传导;高温沉积提高了薄膜的结晶度,形成晶态-非晶态混合结构,同样有利于锂离子的传导。这类薄膜电解质具有较高的离子电导率和良好的电化学稳定性,可作为全固态薄膜锂电池用新一代电解质材料,未见文献报道。
     (4)采用溶胶-凝胶法合成出新型固态化介孔二氧化硅/离子液体复合电解质,并首次组装成固态化锂离子电池。复合电解质由多孔二氧化硅骨架原位吸附离子液体电解质组成,其中二氧化硅起支撑作用并吸附大量离子液体,离子液体被分散在孔道网络中,具有流体特征,作为锂离子的传导介质。复合电解质表现出接近液态电解质的高离子传导率和良好的电化学稳定性,它们还具有良好的热稳定性、化学稳定性和机械强度,成为一种新型高性能固态化电解质材料。利用复合电解质组装形成的新型固态化锂离子电池能正常工作,表现出良好的电池性能。
     (5)采用原位组装技术设计制备出新型固态化金属锂二次电池,完成了从固态化锂离子电池到固态化金属锂二次电池的技术转化,实现了金属锂电极的安全利用。这种固态化锂电池具有全新电池结构设计,表现出良好的电池综合性能,在实际应用中具有诸多优点:相比传统固态化电池体系,表现出更高的比能量和比功率;具有不漏液、耐高温、抗冲击和防止锂枝晶生长等的高安全性;原料丰富,制备简单,成本低廉,具有灵活的可设计性,易实现规模化生产;高效节能,绿色环保。这种新型固态化电池构造,为固态化锂电池技术的发展提供了新的科学思路,并对固态化锂电池的发展应用具有一定的促进作用。
This paper reviewed the research progress in solid-state lithium batteries and relatedelectrode and electrolyte materials. Solid-state rechargeable lithium batteries provide asignificantly higher energy than that offered by conventional lithium ion batteries whichcontain organic electrolytes. They scarcely contain any liquid electrolytes, so they can offera fundamental solution for the safety of conventional lithium ion batteries. The applicationof solid-state electrolytes simplifies the battery structure, and makes the battery shape andsize have more flexible design. With the development of portable electronic devices andelectrical vehicles, the growing demand for renewable energy technologies with higherenergy, higher power and better safety are required, the solid-state rechargeable lithiumbatteries are believed to be novel green renewable power sources, and have become a hottopic in the international development. Developing novel thin film electrode and solid-stateelectrolyte materials, and optimizing battery structural design are the basis for thedevelopment of high-performance solid-state rechargeable lithium batteries. In this study,we started from the preparation of new electrode and electrolyte materials, combined theirphysical and chemical properties, and designed novel solid-state battery configurations. Wefirstly prepared a new solid-state lithium ion battery with high safety, then developed a newsolid-state lithium metal battery with high energy density and high safety, realized thetechnical transformation from the solid-state lithium ion battery to solid-state rechargeablelithium metal battery. We researched new materials, explored new concepts, exploited newsystems and developed new technologies, attempted to promote the development ofsolid-state rechargeable lithium batteries, realize their production and application of scale,and lay a technical foundation for the further development of all-solid-state rechargeablelithium batteries. In this paper, we carried out systematic research work based on thedevelopment of new high-performance solid-state rechargeable lithium batteries, andobtained main achievements and progress as follows:
     (1) Li Co Ni Mn O thin film electrode was prepared by magnetron sputtering forthe first time and would be used as the cathode for solid-state lithium batteries. TheLi Co Ni Mn O thin films were prepared by radio-frequency magnetron sputtering usinga LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2target in the high-purity Ar or Ar-O_2atmosphere. Thin films wereannealed at different temperatures for different times to generate various crystalline and chemical compositions. The as-deposited thin film had an amorphous structure with highchemical diffusion coefficient, and exhibited good electrochemical performance. It wassuitable for the micro-electronic devices with small current, and would be applied to thinfilm lithium battery. The annealed thin film possessed stable crystal structure, delithiatedchemical composition, nanosized particle growth and micron thickness design. It exhibitedunique and excellent electrochemical performance, and had high energy density, wassuitable as the cathode material for high energy lithium batteries, and would be applied tosolid-state lithium batteries.
     (2) Novel coralline glassy lithium phosphate-coated LiFePO_4electrode was preparedby magnetron sputtering, and would be used as the cathode for solid-state lithium batteries.The composite electrodes were prepared via radio-frequency magnetron sputtering a Li3PO_4target onto the LiFePO_4electrodes in a high-purity Ar. A series of composite electrodes withdifferent coating morphologies were obtained by adjusting the sputtering power anddeposition time. The lithium phosphate coating was a good Li+conductor, it had glassystructure and stacked well on the electrode to form a coralline surface with mass porouscrosslinked networks, which promoted the ionic and electronic transport on the electrode,improve the electrode-electrolyte interfacial charge transfer efficiency, and improve theelectrode structural stability. This kind of electrode possessed high capacity and powercapability would be used as the cathode for lithium ion power batteries.
     (3) Li-Al-Ti-P-O-N thin film electrolyte was prepared using a reactive magnetronsputtering technology for the first time, and would be applied to all-solid-state thin-filmlithium batteries. The Li-Al-Ti-P-O-N electrolytes were prepared by radio-frequencymagnetron sputtering deposition using a NASICON structural Li Al Ti P O target in ahigh-purity N2at various deposition temperatures. The study found that the substitution ofnitrogen for oxygen in the thin film created abundant crosslinking structures and decreasedthe activation energy, which favored the higher mobility of lithium ions. High temperaturedeposition improved the crystalline of thin films, forming a crystalline-amorphous mixedstructure, which was also beneficial for lithium ionic conduction. This kind of thin filmelectrolyte possessed good electrochemical properties is a promising candidate material forall-solid-state thin-film lithium batteries. It has not been reported in the literature.
     (4) A novel solid-state composite electrolyte based on mesoporous silica matricesin-situ immobilizing ionic liquids was synthesized by a sol-gel method, and was assembledinto solid-state lithium ion batteries for the first time. Composite electrolytes consisted of porous silica matrices and confined ionic liquids, the silica matrices imparted mechanicalstability and provided a porous environment to absorb large amounts of ionic liquids,though the ionic liquid electrolytes were dispersed in porous silica matrices, they exhibitedhigh fluid-like dynamics, and acted as the transmission medium of lithium ions. Therefore,composite electrolytes exhibited high ionic conductivity and good electrochemical stabilityclose to the liquid electrolytes, and also had good thermal stability, chemical stability andmechanical strength, have become a new high-performance solid-state electrolyte material.The novel solid-state lithium ion batteries using composite electrolytes could operatenormally, and showed good battery performance.
     (5) Novel solid-state rechargeable lithium metal battery with solid-state compositeelectrolytes was designed and prepared by using an in-situ self-assembly technology. Itrealized the technical transformation from solid-state lithium ion batteries to solid-staterechargeable lithium metal batteries, and allowed the safe use of a lithium metal electrode.This kind of lithium battery had a new solid-state battery structural design, and exhibitedgood comprehensive properties. It had many advantages in practical applications: i) highenergy density and high power density in a solid-state battery system; ii) good safetyassociated with its no leakage, high temperature resistance, impact resistance, andprevention of lithium dendrite growth; iii) abundant raw materials, low cost, various designpossibilities for configuration, simple manufacture and easy for large-scale production; iv)high efficiency, energy saving, and environmental benignity. This new type of solid-statebattery configuration would provide new ideas for the development of solid-state lithiumbattery technologies, and play a great role in promoting the development and application ofsolid-state lithium batteries.
引文
[1] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J].Chemical Reviews,2011,111(5):35773613.
    [2] Poizot P, Dolhem F. Clean energy new deal for a sustainable world: from non-CO2generating energysources to greener electrochemical storage devices[J]. Energy&Environmental Science,2011,4(6):20032019.
    [3] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy&Environmental Science,2011,4(9):32873295.
    [4] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359367.
    [5] Armand M B. Intercalation electrodes[J]. NATO Conference Series VI: Materials Science,1980,2:145161.
    [6] Mizushima K, Jones P C, Wiseman P J, et al. Lithium cobalt oxide (LixCoO2)(0    [7] Teki R, Datta M K, Krishnan R, et al. Nanostructured silicon anodes for lithium ion rechargeablebatteries[J]. Small,2009,5(20):22362242.
    [8] Tarascon J M, Schmutz C, Gozdz A S, et al. The Li-ion technology: its evolution from liquid toplastic[J]. Materials Research Society Symposium Proceedings,1995,369:595603.
    [9] Kanehori K, Matsumoto K, Miyauchi K, et al. Thin-film solid electrolyte and its application tosecondary lithium cell[J]. Solid State Ionics,1983,9-10:14451448.
    [10] Jones S D, Akridge J R. A thin-film solid-state microbattery[J]. Jounal of Power Sources,1993,44(13):505513.
    [11] Bates J B, Dudney N J, Lubben D C, et al. Thin-film rechargeable lithium batteries[J]. Jounal ofPower Sources,1995,54(1):5862.
    [12] Neudecker B J, Zuhr R A, Bates J B. Lithium silicon tin oxynitride (LiySiTON): high-performanceanode in thin-film lithium-ion batteries for microelectronics[J]. Jounal of Power Sources,1999,81:2732.
    [13] Dudney N J, Bates J B, Zuhr R A, et al. Nanocrystalline LixMn2yO4cathodes for solid-statethin-film rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1999,146(7):24552464.
    [14] Neudecker B J, Dudney N J, Bates J B."Lithium-free" thin-film battery with in situ plated Lianode[J]. Journal of the Electrochemical Society,2000,147(2):517523.
    [15] Bates J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries[J]. SolidState Ionics,2000,135(14):3345.
    [16] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature materials,2011,10(9):682686.
    [17] Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide)[J].Polymer,1973,14:589.
    [18] Murata K, Izuchi S, Yoshihisa Y. An overview of the research and development of solid polymerelectrolyte batteries[J]. Electrochimica Acta,2000,45(89):15011508.
    [19] Lauter U, Meyer W H, Wegner G. Molecular composites from rigid-rod poly(p-phenylene)s witholigo(oxyethylene) side chains as novel polymer electrolytes[J]. Macromolecules,1997,30(7):20922101.
    [20] Wong S, Zax D B. What do NMR linewidths tell us? Dynamics of alkali cations in a PEO-basednanocomposite polymer electrolyte[J]. Electrochimica Acta,1997,42(2324):35133518.
    [21] Gray F M. Polymer electrolytes. RSC materials monographs, The Royal Society of Chemistry,Cambridge[M],1997,175.
    [22] Magistris A, Mustarelli P, Quartarone E, et al. Transport and thermal properties of (PEO)n-LiPF6electrolytes for super-ambient applications[J]. Solid State Ionics,2000,136:12411247.
    [23] Saito D, Ito Y, Hanai K, et al. Carbon anode for dry-polymer electrolyte lithium batteries[J]. Jounalof Power Sources,2010,195(18):61726176.
    [24] Ji J, Li B, Zhong W H. Effects of a block copolymer as multifunctional fillers on ionic conductivity,mechanical properties, and dimensional stability of solid polymer electrolytes[J]. The Journal of PhysicalChemistry B,2010,114(43):1363713643.
    [25] Nakano H, Dokko K, Sugaya J I, et al. All-solid-state micro lithium-ion batteries fabricated by usingdry polymer electrolyte with micro-phase separation structure[J]. Electrochemistry Communications,2007,9(8):20132017.
    [26] Ramesh S, Ng H M. An investigation on PAN-PVC-LiTFSI based polymer electrolytes system[J].Solid State Ionics,2011,192(1):25.
    [27] Rajendran S, Bama V S, Prabhu M R. Preparation and characterization of PVAc-PMMA-based solidpolymer blend electrolytes[J]. Ionics,2010,16(3):283287.
    [28] Angulakshmi N, Thomas S, Nahm K S, et al. Electrochemical and mechanical properties ofnanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries[J]. Ionics,2011,17(5):407414.
    [29] Ulaganathan M, Rajendran S. Preparation and characterizations of PVAc/P(VdF-HFP)-basedpolymer blend electrolytes[J]. Ionics,2010,16(6):515512.
    [30] Wu F, Feng T, Bai Y, et al. Preparation and characterization of solid polymer electrolytes based onPHEMO and PVDF-HFP[J]. Solid State Ionics,2009,180(910):677680.
    [31] Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J].Journal of Applied Electrochemistry,1975,5:6369.
    [32] Bayley P M, Best A S, MacFarlane D R, et al. The effect of coordinating and non-coordinatingadditives on the transport properties in ionic liquid electrolytes for lithium batteries[J]. PhysicalChemistry Chemical Physics,2011,13(10):46324640.
    [33] Tsuzuki S, Hayamizu K, Seki S. Origin of the low viscosity of [emim][(FSO2)2N] ionic liquid andits lithium salt mixture: experimental and theoretical study of self-diffusion coefficients, conductivities,and intermolecular interactions[J]. The Journal of Physical Chemistry B,2010,114(49):1632916336.
    [34] Kang Y, Cheong K, Noh K A, et al. A study of cross-linked PEO gel polymer electrolytes usingbisphenol a ethoxylate diacrylate: ionic conductivity and mechanical properties[J]. Jounal of PowerSources,2003,119121:432437.
    [35] Nicotera I, Coppola L, Oliviero Cesare, et al. Some physicochemical properties of PAN-basedelectrolytes: solution and gel microstructures[J]. Solid State Ionics,2004,167(34):213220.
    [36] Ramesh S, Shanti R, Durairaj R. Effect of ethylene carbonate in poly (methyl methacrylate)-lithiumtetraborate based polymer electrolytes[J]. Journal of Non-Crystalline Solids,2011,357(5):13571363.
    [37] Wu N, Cao Q, Wang X, et al. A novel high-performance gel polymer electrolyte membrane basingon electrospinning technique for lithium rechargeable batteries[J]. Jounal of Power Sources,2011,196(20):86388643.
    [38] Ramesh S, Ling O P. Effect of ethylene carbonate on the ionic conduction inpoly(vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes[J]. Polymer Chemistry,2010,1(5):702707.
    [39] Ferrari S, Quartarone E, Mustarelli P, et al. Lithium ion conducting PVdF-HFP composite gelelectrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionicliquid[J]. Jounal of Power Sources,2010,195(2):559566.
    [40] Carlin R T, Fuller J. Ionic liquid-polymer gel catalytic membrane[J]. Chemical Communications,1997,(15):13451346.
    [41] Fuller J, Breda A C, Carlin R T. Ionic liquid-polymer gel electrolytes[J]. Journal of theElectrochemical Society,1997,144(4): L67L70.
    [42] Boudin F, Andrieu X, Jehoulet C, et al. Microporous PVdF gel for lithium-ion batteries[J]. Jounal ofPower Sources,1999,8182:804807.
    [43] Pu W, He X, Wang L, et al. Preparation of PVDF-HFP microporous membrane for Li-ion batteriesby phase inversion[J]. Jounal of Membrane Science,2006,272(12):1114.
    [44] Susan M A, Kaneko T, Noda A, et al. Ion gels prepared by in situ radical polymerization of vinylmonomers in an ionic liquid and their characterization as polymer electrolytes[J]. Journal of theAmerican Chemical Society,2005,127(13):49764983.
    [45] Klingshirn M A, Spear S K, Subramanian R, et al. Gelation of ionic liquids using a cross-linkedpoly(ethylene glycol) gel matrix[J]. Chemistry of Materials,2004,16(16):30913097.
    [46] Xiao Q, Wang X, Li, W, et al. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMAblock copolymer blends for rechargeable lithium ion battery[J]. Jounal of Membrane Science,2009,334(12):117122.
    [47] Li Z H, Cheng C, Zhan X Y, et al. A foaming process to prepare porous polymer membrane forlithium-ion batteries[J]. Electrochimica Acta,2009,54(18):44034407.
    [48] Li Z H, Zhang P, Zhang H P, et al. A lotus root-like porous nanocomposite polymer electrolyte[J].Electrochemistry Communications,2008,10(5):791794.
    [49] Zhang P, Li G C, Zhang H P, et al. Preparation of porous polymer electrolyte by a microwaveassisted effervescent disintegrable reaction[J]. Electrochemistry Communications,2009,11(1):161164.
    [50] Jeon J D, Kwak S Y. Pore-filling solvent-free polymer electrolytes based on porousP(VdF-HFP)/P(EO-EC) membranes for rechargeable lithium batteries[J]. Jounal of Membrane Science,2006,286(12):1521.
    [51] Skaarup S, West K, Zachau-Christiansen B. Mixed phase solid electrolytes[J]. Solid State Ionics,1988,2830:975978.
    [52] Capuano F, Croce F, Scrosati B. Composite polymer electrolytes[J]. Journal of the ElectrochemicalSociety,1991,138(7):19181922.
    [53] Stevens J R, Mellander B E. Poly(ethylene oxide)-alkali metal-silver halide salt systems with highionic conductivity at room temperature[J]. Solid State Ionics,1986,21(3):203206.
    [54] Wang Y J, Pan Y, Kim D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-basedsolid composite polymer electrolytes[J]. Jounal of Power Sources,2006,159(1):690701.
    [55] Wang Y J, Pan Y, Wang L, et al. Characterization of (PEO)LiClO4Li1.3Al0.3Ti1.7(PO4)3compositepolymer electrolytes with different molecular weights of PEO[J]. Journal of Applied Polymer Science,2006,102(5):42694275.
    [56] Leo C J, Thakur A K, Subba Rao G V, et al. Effect of glass-ceramic filler on properties ofpolyethylene oxide-LiCF3SO3complex[J]. Jounal of Power Sources,2003,115(2):295304.
    [57] Kobayashi Y, Seki S, Tabuchi M, et al. High-performance genuine lithium polymer battery obtainedby fine-ceramic-electrolyte coating of LiCoO2[J]. Journal of the Electrochemical Society,2005,152(10):A1985A1988.
    [58] Wang C, Zhang X W, Appleby A J. Solvent-free composite PEO-ceramic fiber/mat electrolytes forlithium secondary cells[J]. Journal of the Electrochemical Society,2005,152(1): A205A209.
    [59] Kumar B, Scanlon L G. Polymer-ceramic composite electrolytes[J]. Jounal of Power Sources,1994,52(2):261268.
    [60] Kumar B, Rodrigues S J, Spry, R J. Dipoles and their possible effects on conductivity inpolymer-ceramic composite electrolytes[J]. Electrochimica Acta,2002,47(8):12751281.
    [61] Lee B H, Choi N S, Park J K. Effect of silica on the interfacial stability of the PEO-based polymerelectrolytes[J]. Polymer Bulletin,2002,49(1):6368.
    [62] Low S P, Ahmad A, Rahman M Y A. Effect of ethylene carbonate plasticizer and TiO2nanoparticleson49%poly(methyl methacrylate) grafted natural rubber-based polymer electrolyte[J]. Ionics,2010,16(9):821826.
    [63] Bronstein L M, Karlinsey R L, Ritter K J, et al. Design of organic-inorganic solid polymerelectrolytes: synthesis, structure, and properties[J]. Journal of Materials Chemistry,2004,14(12):18121820.
    [64] Sundaram N T K, Vasudevan T, Subramania A. Synthesis of ZrO2nanoparticles in microwavehydrolysis of Zr (IV) salt solutions-ionic conductivity of PVdF-co-HFP-based polymer electrolyte by theinclusion of ZrO2nanoparticles. Journal of Physics and Chemistry of Solids,2007,68(2):264271.
    [65] Xiong H M, Chen J S, Li D M. Controlled growth of Sb2O5nanoparticles and their use as polymerelectrolyte fillers[J]. Journal of Materials Chemistry,2003,13(8):19941998.
    [66] Xiong H M, Zhao X, Chen J S. New polymer-inorganic nanocomposites: PEO ZnO andPEO ZnO LiClO4films[J]. The Journal of Physical Chemistry B,2001,105(42):1016910174.
    [67] Xiong H M, Zhao K K, Zhao X, et al. Elucidating the conductivity enhancement effect ofnano-sized SnO2fillers in the hybrid polymer electrolyte PEO SnO2LiClO4[J]. Solid State Ionics,2003,159(12):8995.
    [68] Xiong H M, Wang Z D, Liu D P, et al. Bonding polyether onto ZnO nanoparticles: an effectivemethod for preparing polymer nanocomposites with tunable luminescence and stable conductivity[J].Advanced Functional Materials,2005,15(11):17511756.
    [69] Reddy M J, Chu P P, Kumar J S, et al. Inhibited crystallization and its effect on conductivity in anano-sized Fe oxide composite PEO solid electrolyte[J]. Jounal of Power Sources,2006,161(1):535540.
    [70] Shanmukaraj D, Wang G X, Liu H K, et al. Synthesis and characterization of SrBi4Ti4O15ferroelectric filler based composite polymer electrolytes for lithium ion batteries[J]. Polymer Bulletin,2008,60(23):351361.
    [71] Wu N, Cao Q, Wang X, et al. In situ ceramic fillers of electrospun thermoplasticpolyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries[J]. Jounal ofPower Sources,2011,196(22):97519756.
    [72] Subba Reddy Ch V, Wu G P, Zhao C X, et al. Characterization of SBA-15doped (PEO+LiClO4)polymer electrolytes for electrochemical applications[J]. Journal of Non-Crystalline Solids,2007,353(4):440445.
    [73] Fan L, Nan C W, Li M. Thermal, electrical and mechanical properties of (PEO)16LiClO4electrolyteswith modified montmorillonites[J]. Chemical Physics Letters,2003,369(56):698702.
    [74] Xi J, Qiu X, Wang J, et al. Effect of molecular sieves ZSM-5on the crystallization behavior ofPEO-based composite polymer electrolyte[J]. Jounal of Power Sources,2006,158(1):627634.
    [75] Xi J, Qiu X, Cui M, et al. Enhanced electrochemical properties of PEO-based composite polymerelectrolyte with shape-selective molecular sieves[J]. Jounal of Power Sources,2006,156(2):581588.
    [76] Cho M S, Shin B, Choi S D, et al. Gel polymer electrolyte nanocomposites PEGDA with Mg-Allayered double hydroxides[J]. Electrochimica Acta,2004,50(23):331334.
    [77]Croce F, Persi L, Scrosati B, et al. Role of the ceramic fillers in enhancing the transport properties ofcomposite polymer electrolytes[J]. Electrochimica Acta,2001,46(16):24572461.
    [78] Osinska M, Walkowiak M, Zalewska A, et al. Study of the role of ceramic filler in composite gelelectrolytes based on microporous polymer membranes[J]. Jounal of Membrane Science,2009,326(2):582588.
    [79] Nagai R, Wada S, Kawakami A. Solid electrolyte batteries using lithium nitride-lithiumiodide(Li3N LiI)[J]. Progress in Batteries&Solar Cells,1984,5:6972.
    [80] Adachi G Y, Imanaka N, Aono H. Fast Li conducting ceramic electrolytes[J]. Advanced Materials,1996,8(2):127135.
    [81] Von Alpen U, Bell M F, Wichelhaus W, et al. Ionic conductivity of Li14Zn(GeO4)4(LISICON)[J].Electrochimica Acta,1978,23:13951397.
    [82] Bruce P G, West A R. Phase diagram of the LISICON, solid electrolyte system, lithium Germinate(IV)-zinc germinate(IV)(Li4GeO4Zn2GeO4)[J]. Materials Research Bulletin,1980,15:379385.
    [83] Rodger A R, Kuwano J, West A R. Li+ion conducting solid solutions in the systemsLi4XO4Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4LiZO2: Z=Al, Ga, Cr and Li4GeO4Li2CaGeO4[J].Solid State Ionics,1985,15:185198.
    [84] Sumathipala H H, Dissanayake M A K L, West A R. Novel Li+ion conductors and mixedconductors, Li3+xSixCr1xO4and a simple method for estimating Li+/e-transport numbers[J]. Journal ofthe Electrochemical Society,1995,142(7):21382143.
    [85] Hong H Y P. Crystal structure and ionic conductivity of LISICON (Li14Zn(GeO4)4) and other newlithium(+) ion superionic conductors[J]. Materials Research Bulletin,1978,13:117124.
    [86] Arbi K, Paris M A, Sanz J. Lithium exchange processes in the conduction network of the NasiconLiTi2xZrx(PO4)3Series (0    [87] Iaguma Y, Matsui Y, Shan Y J, et al. Lithium ion conductivity in the perovskite-type LiTaO3SrTiO3solid solution[J]. Solid State Ionics,1995,79:9197.
    [88] Trong L D, Long P D, Nguyen N D. Effect of annealing temperature on the Li+ionic conductivity ofLa0.67xLi3xTiO3[J]. Communications in Physics,2009,19:235242.
    [89] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J].Angewandte Chemie-International Edition,2007,46(41):7778–7781.
    [90] Barpanda P, Chotard J N, Delacourt C, et al. LiZnSO4F made in an ionic liquid: a ceramicelectrolyte composite for solid-state lithium batteries[J]. Angewandte Chemie-International Edition,2011,50(11):25262531.
    [91] Ohta N, Takada K, Osada M, et al. Solid electrolyte, thio-LISICON, thin film prepared by pulsedlaser deposition[J]. Jounal of Power Sources,2005,146(12):707710.
    [92] Trevey J E, Jung Y S, Lee S H. High lithium ion conducting Li2S GeS2P2S5glass-ceramic solidelectrolyte with sulfur additive for all solid-state lithium secondary batteries[J]. Electrochimica Acta,2011,56(11):42434247.
    [93] Feng J K, Lu L, Lai M O. Lithium storage capability of lithium ion conductorLi1.5Al0.5Ge1.5(PO4)3[J]. Journal of Alloys and Compounds,2010,501(2):255258.
    [94] Wu X M, Liu J L, Chen S, et al. Effect of sintering conditions on the properties of sol-gel-derivedLi1.3Al0.3Ti1.7(PO4)3[J]. Ionics,2010,16(9):827831.
    [95] Okumura T, Yokoo K, Fukutsuka T, et al. Improvement of Li-ion conductivity in A-site disorderinglithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis[J]. Jounal of Power Sources,2009,189(1):536538.
    [96] Kotobuki M, Munakata H, Kanamura K. Fabrication of all-solid-state rechargeable lithium-ionbattery using mille-feuille structure of Li0.35La0.55TiO3[J]. Jounal of Power Sources,2011,196(16):69476950.
    [97] Thangadurai V, Weppner W. Li6ALa2Ta2O12(A=Sr, Ba): novel garnet-like oxides for fast lithium ionconduction[J]. Advanced Functional Materials,2005,15(1):107112.
    [98] Xie H, Alonso J A, Li Y, et al. Lithium distribution in aluminum-free cubic Li7La3Zr2O12[J].Chemistry of Materials,2011,23(16):35873589.
    [99] Deiseroth H J, Kong S T, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with anunusually high Li+mobility[J]. Angewandte Chemie-International Edition,2008,47(4):755758.
    [100] Cho K, Oh J, Lee T, Shin D. Effect of P2O5in Li2O P2O5B2O3electrolyte fabricated by aerosolflame deposition[J]. Jounal of Power Sources,2008,183(1):431435
    [101] Komiya R, Hayashi A, Morimoto H, et al. Solid state lithium secondary batteries using anamorphous solid electrolyte in the system (100x)(0.6Li2S0.4SiS2) xLi4SiO4obtained bymechanochemical synthesis[J]. Solid State Ionics,2001,140(12):8387.
    [102] Abdel-Baki M, Salem A M, Abdel-Wahab F A, et al. Bond character, optical properties and ionicconductivity of Li2O/B2O3/SiO2/Al2O3glass: effect of structural substitution of Li2O for LiCl[J]. Journalof Non-Crystalline Solids,2008,354(4041):45274533.
    [103] Kennedy, Jo H, Zhang Z. Improved stability for the silicon phosphorus lithium sulfide iodide(SiS2P2S5Li2S LiI) glass system[J]. Solid State Ionics,1988,2830:726728.
    [104] Seo I, Martin S W. Structural properties of lithium thio-germanate thin film electrolytes grown byradio frequency sputtering[J]. Inorganic Chemistry,2011,50(6):21432150.
    [105] Mizuno F, Hayashi A, Tadanaga K, et al. New, highly ion-conductive crystals precipitated fromLi2S P2S5glasses[J]. Advanced Materials,2005,17(7):918-921.
    [106] Araki R, Hayashi A, Kowada Y, et al. Electronic states calculated by the DV-Xα cluster method forlithium ion conductive Li2S SiS2Li4SiO4oxysulfide glasses[J]. Journal of Non-Crystalline Solids,2001,288(13):17.
    [107] Hayashi A, Yamashita H, Tatsumisago M, et al. Characterization of Li2S SiS2LixMOy(M=Si, P,Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling[J]. Solid StateIonics,2002,148(34):381389.
    [108] Takada K, Aotani N, Kondo S. Electrochemical behaviors of lithium ion conductor, lithiumphosphate-lithium sulfide-silicon sulfide (Li3PO4Li2S SiS2)[J]. Jounal of Power Sources,1993,43(13):135141.
    [109] Hirai K, Tatsumisago M, Takahashi M, et al.29Si and31P MAS-NMR spectra of Li2S SiS2Li3PO4rapidly quenched glasses[J]. Journal of the American Ceramic Society,1996,79(2):349352
    [110] Bates J B, Dudney N J, Gruzalski G R, et al. Electrical properties of amorphous lithium electrolytethin films[J]. Solid State Ionics,1992,5356:647654.
    [111] Wang B, Kwak B S, Sales B C, et al. Ionic conductivities and structure of lithium phosphorusoxynitride glasses[J]. Journal of Non-Crystalline Solids,1995,183(3):297-306.
    [112] Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithiumbatteries[J]. Materials Research Bulletin,2008,43(8–9):1913–1942.
    [113] Kim J M, Park G B, Lee K C, et al. Li–B–O–N electrolytes for all-solid-state thin film batteries[J].Jounal of Power Sources,2009,189(1):211–216.
    [114] Lee S J, Bae J H, Lee H W, et al. Electrical conductivity in Li Si P O N oxynitride thin-films[J].Jounal of Power Sources,2003,123(1):6164.
    [115] Wu F, Liu Y D, Chen R J, et al. Preparation and performance of novel Li–Ti–Si–P–O–N thin-filmelectrolyte for thin-film lithium batteries[J]. Jounal of Power Sources,2009,189(1):467–470.
    [116] Oudenhoven J F M, Baggetto L, Notten P H L. All-solid-state lithium-ion microbatteries: a reviewof various three-dimensional concepts[J]. Advanced Energy Materials,2011,1(1):1033.
    [117] Lee S J, Baik H K, Lee S M. An all-solid-state thin film battery using LISIPON electrolyte andSi–V negative electrode films[J]. Electrochemistry Communications,2003,5(1):3235.
    [118] Knauth P. Inorganic solid Li ion conductors: an overview[J]. Solid State Ionics,2009,180(1416):911-916.
    [119] Joo K H, Sohn H J. Vinatier P, et al. Lithium ion conducting lithium sulfur oxynitride thin film[J].Electrochemical and Solid-State Letters,2004,7(8): A256A258.
    [120] Wu F, Liu Y D, Chen R J, et al. Preparation and performance of the thin-film LiBPON electrolyte.Dianhuaxue,2009,15:1721.
    [121] Cho K, Lee S H,Cho K H, et al. Li2O B2O3P2O5solid electrolyte for thin film batteries[J]. Jounalof Power Sources,2006,163(1):223–228.
    [122] Wilkening M, Kuhn A, Heitjans P. Atomic-scale measurement of ultraslow Li motions in glassyLiAlSi2O6by two-time6Li spin-alignment echo NMR correlation spectroscopy[J]. Physical Review B,2008,78(5):19.
    [123] Saienga J, Martin S W. The comparative structure, properties, and ionic conductivity ofLiI+Li2S+GeS2glasses doped with Ga2S3and La2S3[J]. Journal of Non-Crystalline Solids,2008,354(14):14751486.
    [124] Joo K H, Vinatier P, Pecquenard B, et al. Thin film lithium ion conducting LiBSO solidelectrolyte[J]. Solid State Ionics,2003,160(12):5159.
    [125] Jones S D, Akridge J R, Shokoohi F K. Thin film rechargeable Li batteries[J]. Solid State Ionics,1994,69(34):357368.
    [126] Fu J. Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5[J]. SolidState Ionics,1997,96(3–4):195–200.
    [127] Wang P, Zakeeruddin S M, Moser J E, et al. A solvent-free, SeCN/(SeCN)3based ionic liquidelectrolyte for high-efficiency dye-sensitized nanocrystalline solar cells[J]. Journal of the AmericanChemical Society,2004,126(23):71647165.
    [128] Neouze M A, Bideau J L, Gaveau P, et al. Ionogels, new materials arising from the confinement ofionic liquids within silica-derived networks[J]. Chemistry of Materials,2006,18(17):39313936.
    [129] Pan H, Yang Y. Effects of radio-frequency sputtering powers on the microstructures andelectrochemical properties of LiCoO2thin film electrodes[J]. Jounal of Power Sources,2009,189(1):633637.
    [130] Dudney N J, Jang Y. Analysis of thin-film lithium batteries with cathodes of50nm to4μm thickLiCoO2[J]. Jounal of Power Sources,2003,119121:300304.
    [131] Chen C C, Chiu K F, Lin K M, et al. Modification of low temperature deposited LiMn2O4thin filmcathodes by oxygen plasma irradiation[J]. Thin Solid Films,2009,517(14):41924195.
    [132] Dudney N J. Solid-state thin-film rechargeable batteries[J]. Materials and Science and EngineeringB,2005,116(3):245249.
    [133] Eftekhari A. LiMn2O4electrode prepared by gold-titanium codeposition with improvedcyclability[J]. Jounal of Power Sources,2004,130(12):260265.
    [134] Eftekhari A. Fabrication of5V lithium rechargeable micro-battery[J]. Jounal of Power Sources,2004,132(12):240243.
    [135] Endo E, Yasuda T, Yamaura K, et al. LiNiO2electrode modified by plasma chemical vapordeposition for higher voltage performance[J]. Jounal of Power Sources,2001,93(12):8792.
    [136] Kim H K, Seong T Y, Cho W, et al. Rapid thermal annealing effect on surface of LiNi1xCoxO2cathode film for thin-film microbattery[J]. Jounal of Power Sources,2002,109(1):178183.
    [137] Lee J M, Hwang H S, Cho W I et al. Effect of silver co-sputtering on amorphous V2O5thin-filmsfor microbatteries[J]. Jounal of Power Sources,2004,136(1):122131.
    [138] Huang F, Fu, Z W, Qin Q Z. A novel Li2Ag0.5V2O5composite film cathode for all-solid-statelithium batteries[J]. Electrochemistry Communications,2003,5(3):262266.
    [139] Jones S D, Akridge J R. Development and performance of a rechargeable thin-film solid-statemicrobattery[J]. Jounal of Power Sources,1995,54(1):637.
    [140] Miki Y, Nakazato D, Ikuta H, et al. Amorphous MoS2as the cathode of lithium secondarybatteries[J]. Jounal of Power Sources,1995,54(2):508510.
    [141] Yufit V, Nathan M, Golodnitsky D, et al. Thin-film lithium and lithium-ion batteries withelectrochemically deposited molybdenum oxysulfide cathodes[J]. Jounal of Power Sources,2003,122(2):169173.
    [142] Martin-Litas I, Vinatier P, Levasseur A, et al. Promising thin films (WO1.05S2and WO1.35S2.2) aspositive electrode materials in microbatteries[J]. Jounal of Power Sources,2001,9798:545547.
    [143] Yufit V, Freedman K, Nathan M, et al. Thin-film iron sulfide cathodes for lithium andLi-ion/polymer electrolyte microbatteries[J]. Electrochimica Acta,2004,50(23):417420.
    [144] Xie J, Imanishi N, Zhang T, et al. Li-ion diffusion kinetics in LiCoPO4thin films deposited onNASICON-type glass ceramic electrolytes by magnetron sputtering[J]. Jounal of Power Sources,2009,192(2):689692.
    [145] Li C L, Fu Z W. Electrochemical characterization of amorphous LiFe(WO4)2thin films as positiveelectrodes for rechargeable lithium batteries[J]. Electrochimica Acta,2008,53(22):64346443.
    [146] Xie J, Imanishi N, Zhang T, et al. An amorphous LiCo1/3Ni1/3Mn1/3O2thin film deposited onNASICON-type electrolyte for all-solid-state Li-ion batteries[J]. Journal of Power Sources,2010,195(17):5780–5783.
    [147] Lee K T, Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries[J].Nano Today,2011,6(1):2841.
    [148] Park C M, Kim J H, Kim H, et al. Li-alloy based anode materials for Li secondary batteries[J].Chemical Society Reviews,2010,39(8):31153141.
    [149] Abe T, Takeda K, Fukutsuka T, et al. Electrochemical Properties of Graphitized CarbonaceousThin Films Prepared by PACVD[J]. Journal of the Electrochemical Society,2004,151(11): C694C697.
    [150] Li Y, Tu J P, Shi D Q, et al. DC magnetron sputtering prepared Ag-C thin film anode for thin filmlithium ion microbatteries[J]. Journal of Alloys and Compounds,2007,436(12):290293.
    [151] Ji L, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials forrechargeable lithium-ion batteries[J]. Energy&Environmental Science,2011,4(8):26822699.
    [152] Zhong Q, Dahn J R, Colbow K. Lithium intercalation into tungsten trioxide and the phase diagramof lithium tungsten oxide (LixWO3)[J]. Physical Review B,1992,46(4):25542560.
    [153] Rosa Palacin M. Recent advances in rechargeable battery materials: a chemist's perspective[J].Chemical Society Reviews,2009,38(9):25652575.
    [154] Rowsell J L C, Pralong V, Nazar L F. Layered lithium iron nitride: a promising anode material forLi-ion batteries[J]. Journal of the American Chemical Society,2001,123(35):85988599.
    [155] Sun Q, Fu Z W. An anode material of CrN for lithium-ion batteries[J]. Electrochemical andSolid-State Letters,2007,10(8): A189A193.
    [156] Sun Q, Fu Z W. Vanadium nitride as a novel thin film anode material for rechargeable lithiumbatteries[J]. Electrochimica Acta,2008,54(2):403409.
    [157] Stoeva Z, Gomez R, Gregory D H, et al. Evolution of structure, transport properties andmagnetism in ternary lithium nitridometalates Li3x yMxN, M=Co, Ni, Cu. Dalton Transactions,2004,(19):30933097.
    [158] Chen Z, Cao Y, Qian J, et al. Antimony-coated SiC nanoparticles as stable and high-capacityanode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C,2010,114(35):1519615201.
    [159] Park C M, Hwa Y, Sung N E, et al. Stibnite (Sb2S3) and its amorphous composite as dualelectrodes for rechargeable lithium batteries[J]. Journal of Materials Chemistry,2010,20(6):10971102.
    [160] Cui Y H, Xue M Z, Wang X L, et al. InP as new anode material for lithium ion batteries[J].Electrochemistry Communications,2009,11(5):10451047.
    [161] Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, BruceP G. Challenges facing lithium batteries and electrical double layer capacitors[J]. AngewandteChemie-International Edition,2012,51(40):999410024.
    [162] Kelly P J, Arnell R D. Magnetron sputtering: a review of recent developments and applications[J].Vacuum,2000,56(3):159-172.
    [1] Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652657.
    [2] Tollefson J. Charging up the future[J]. Nature,2008,456(7221):436440.
    [3] Yamada A, Iwane N, Harada Y, et al. Lithium iron borates as high-capacity battery electrodes[J].Advanced Materials,2010,22(32):35833587.
    [4] Oh S M, Myung S T, Park J B, et al. Double-structured LiMn0.85Fe0.15PO4coordinated with LiFePO4for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition,2012,51(8):18531856.
    [5] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J]. AdvancedMaterials,2009,21(45):45934607.
    [6] Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistryof Materials,2010,22(3):691714.
    [7] Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries[J]. AdvancedMaterials,2011,23(15):16951715.
    [8] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for lithium-ionbatteries[J]. Chemistry Letters,2001(7):642643.
    [9] Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for advancedlithium-ion batteries[J]. Journal of Power Sources,2003,119121:171174.
    [10] Shaju K M, Bruce P G. Macroporous Li(Ni1/3Co1/3Mn1/3)O2: a high-power and high-energy cathodefor rechargeable lithium batteries[J]. Advanced Materials,2006,18(17):23302334.
    [11] Lu C H, Lin Y K. Microemulsion preparation and electrochemical characteristics ofLiNi1/3Co1/3Mn1/3O2powders[J]. Journal of Power Sources,2009,189(1):4044.
    [12] Chen Z, Lee D J, Sun Y K, et al. Advanced cathode materials for lithium-ion batteries[J]. MRSBulletin,2011,36(7):498505.
    [13] Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacity electrode material forrechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society,2011,133(12):44044419.
    [14] Wu F, Li N, Su Y, et al. Can surface modification be more effective to enhance the electrochemicalperformance of lithium rich materials?[J]. Journal of Materials Chemistry,2012,22(4):14891497.
    [15] Sun Y K, Lee M J, Yoon C S, et al. The role of AlF3coatings in improving electrochemical cyclingof Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials,2012,24(9):11921196.
    [16] Lee M H, Kang Y J, Myuang S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2viaco-precipitation[J]. Electrochimica Acta,2004,50(4):939948.
    [17] Wu F, Wang M, Su Y, et al. A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2as cathodematerial for lithium-ion battery[J]. J. Power Sources,2010,195(8):23622367.
    [18] Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2(R3m) for4volt secondary lithium cells[J]. Journal of the Electrochemical Society,1993,140(7):18621870.
    [19] Shaju K M, Rao G V S, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2as cathodefor Li-ion batteries[J]. Electrochimica Acta,2002,48(2):145151.
    [20] Myung S T, Kumagai N, Komaba S, et al. Effects of Al doping on the microstructure of LiCoO2cathode materials[J]. Solid State Ionics,2001,139(12):4756.
    [21] Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical propertiesof Li[Li0.2Ni0.2x/2Mn0.6x/2Crx]O2(x=0,0.02,0.04,0.06,0.08) as cathode materials for lithium secondarybatteries[J]. Journal of Power Sources,2007,167(1):178184.
    [22] Yoon W S, Chung K Y, McBreen J, et al. A comparative study on structural changes ofLiCo1/3Ni1/3Mn1/3O2and LiNi0.8Co0.15Al0.05O2during first charge using in situ XRD[J]. ElectrochemistryCommunications,2006,8(8):12571262.
    [23] Liao P Y, Duh J G, Lee J F, et al. Structural investigation of Li1xNi0.5Co0.25Mn0.25O2by in situ XASand XRD measurements[J]. Electrochimica Acta,2007,53(4):18501857.
    [24] Mahmoud A, Yoshita M, Saadoune I, et al. LixCo0.4Ni0.3Mn0.3O2electrode materials:Electrochemical and structural studies[J]. Materials Research Bulletin,2012,47(8):19361941.
    [25] Guilmard M, Croguennec L, Delmas C. Thermal stability of lithium nickel oxide derivatives. Part II:LixNi0.70Co0.15Al0.15O2and LixNi0.90Mn0.10O2(x=0.50and0.30). Comparison with LixNi1.02O2andLixNi0.89Al0.16O2[J]. Chemistry of Materials,2003,15(23):44844493.
    [26] Fujii Y, Miura H, Suzuki N, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2:calcination temperature dependence[J]. Journal of Power Sources,2007,171(2):894903.
    [27] Yoshizawa H, Ohzuku T. An application of lithium cobalt nickel manganese oxide to high-powerand high-energy density lithium-ion batteries[J]. Journal of Power Sources,2007,174(2):813817.
    [28] Xie J, Imanishi N, Zhang T, et al. An amorphous LiCo1/3Ni1/3Mn1/3O2thin film deposited onNASICON-type electrolyte for all-solid-state Li-ion batteries[J]. Journal of Power Sources,2010,195(17):57805783.
    [29] Zhang X, Mauger A, Lu Q, et al. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2bywet-chemical method[J]. Electrochimica Acta,2010,55(22):64406449.
    [30] Julien C. Local cationic environment in lithium nickel–cobalt oxides used as cathode materials forlithium batteries[J]. Solid State Ionics,2000,136137:887896.
    [31] Julien C, Massot M. Raman scattering of LiNi1-yAlyO2[J]. Solid State Ionics,2002,148(12):5359.
    [32] Hashem A M, El-Taweel R S, Abuzeid H M, et al. Structural and electrochemical properties ofLiNi1/3Co1/3Mn1/3O2material prepared by a two-step synthesis via oxalate precursor[J]. Ionics,2012,18(12):19.
    [33] Kim H U, Mumm D R, Park H R, et al. Synthesis of LiCo1/3Ni1/3Mn1/3O2by a simple combustionmethod and electrochemical properties[J]. Electronic Materials Letters,2010,6(3):9195.
    [34] Tong G D, Lai Q Y, Wei N N, et al. Synthesis of LiCo1/3Ni1/3Mn1/3O2as a cathode material forlithium ion battery by water-in-oil emulsion method[J], Materials Chemistry and Physics,2005,94(23):423428.
    [35] Kim G H, Kim J H, Myung S T, et al. Improvement of high-voltage cycling behavior ofsurface-modified Li[Ni1/3Co1/3Mn1/3]O2cathodes by fluorine substitution for Li-ion batteries[J]. Journalof the Electrochemical Society,2005,152(9): A1707A1713.
    [36] Marinov Y, Numata K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical propertiesof LiMn1/3Co1/3Ni1/3O2cathode material[J]. Electrochimica Acta,2004,50(23):495499.
    [37] Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructuralLi1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J]. Journal of Power Sources,2003,119121:644648.
    [38] Li J, Zhang Z R, Guo X J, et al. The studies on structural and thermal properties of delithiatedLixNi1/3Co1/3Mn1/3O2(0    [39] Koyama Y, Yabuuchi N, Tanaka I, et al. Solid-state chemistry and electrochemistry ofLiCo1/3Ni1/3Mn1/3O2for advanced Lithium-ion batteries. I. First-principles calculation on the crystal andelectronic structures[J]. Journal of the Electrochemical Society,2004,151(10): A1545A1551.
    [40] Yin S C, Rho Y H, Swainson I, et al. X-ray/Neutron diffraction and electrochemical studies oflithium de/re-intercalation in Li1–xCo1/3Ni1/3Mn1/3O2(x=0→1)[J]. Chemistry of Materials,2006,18(7):19011910.
    [41]Wu F, Wang M, Su Y, et al. A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2for advancedlithium-ion batteries[J]. Journal of Power Sources,2010,195(9):29002904.
    [42] Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithiumbattery electrodes: xLi2MnO3·(1–x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7)[J]. Chemistry of Materials,2008,20(19):60956106.
    [43] Koenig G M, Belharouak I, Wu H M, et al. Hollow lithiated metal oxide particles as lithium-ionbattery cathode materials[J]. Electrochimica Acta,2011,56(3):14261431.
    [44] Shaju K M, Rao G V S, Chowdari B V R. Layered manganese oxide with O2structure,Li(2/3)+x(Ni1/3Mn2/3)O2as cathode for Li-ion batteries[J]. Electrochemistry Communications,2002,4(8):633638.
    [45] Julien C. Electrochemical properties of disordered cathode materials[J]. Ionics,1996,2(34):169–178.
    [46] Sakurai Y, Okada S, Ohtsuka H, et al. Electrochemical behaviour of amorphous V2O5(-P2O5)cathodes for lithium secondary batteries[J]. Journal of Power Sources,1987,20(34):173177.
    [47] Yang J, Xu J J. Influence of synthesis conditions on the electrochemical properties of nanostructuredamorphous manganese oxide cryogels[J]. Journal of Power Sources,2003,122(2):181187.
    [48] Chen C H, Liu J, Amine K. Symmetric cell approach and impedance spectroscopy of high powerlithium-ion batteries[J]. Journal of Power Sources,2001,96(2):321328.
    [1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359367.
    [2] Whittingham M S, Lithium batteries and cathode materials[J]. Chemical Reviews,2004,104(10):42714301.
    [3] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2010,22(3):587603.
    [4] Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Jounal of Power Sources,2011,196(16):66886694.
    [5] Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: areview[J]. Energy&Environmental Science,2011,4(9):32433262.
    [6] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy&Environmental Science,2011,4(9):32873295.
    [7] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J]. AdvancedMaterials,2009,21(45):45934607.
    [8] Park O K, Cho Y, Lee S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy&Environmental Science,2011,4(5):16211633.
    [9] Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivinephosphates[J]. Nature Materials,2004,3(3):147152.
    [10] Wu X L, Jiang L Y, Cao F F, et al. LiFePO4nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices[J]. Advanced Materials,2009,21(2526):27102714.
    [11] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storageelectrodes[J]. Nature Materials,2002,1(2)123128.
    [12] Su J, Wu X L, Yang C P, et al. Self-assembled LiFePO4/C nano/microspheres by using phytic acidas phosphorus source[J]. The Journal of Physical Chemistry C,2012,116(8):50195024.
    [13] Huang Y H, Goodenough J B. High-rate LiFePO4lithium rechargeable battery promoted byelectrochemically active polymers[J]. Chemistry of Materials,2008,20(23):72377241.
    [14] Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4usingRuO2as an oxidic nanoscale interconnect[J]. Advanced Materials,2007,19(15):19631966.
    [15] Lim S, Yoon C S, Cho J. Synthesis of nanowire and hollow LiFePO4cathodes for high-performancelithium batteries[J]. Chemistry of Materials,2008,20(14):45604564.
    [16] Lee M H, Kim J Y, Song H K. A hollow sphere secondary structure of LiFePO4nanopatricles[J].Chemical Communications,2010,46(36):67956797.
    [17] Lee M H, Kim T H, Kim Y S, et al. Precipitation revisited: shape control of LiFePO4nanoparticlesby combinatorial precipitation[J]. The Journal of Physical Chemistry C,2011,115(25):1225512259.
    [18] Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature,2009,458(7235):190193.
    [19] Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithiumbatteries[J]. Materials Research Bulletin,2008,43(89):19131942.
    [20] Takada K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia,2013,61(3):750770.
    [21] Martin S W. Ionic conduction in phosphate glasses[J]. Journal of the American Ceramic Society,1991,74(8):17671784.
    [22] Oudenhoven J F M, Baggetto L, Notten P H L. All-solid-state lithium-ion microbatteries: a reviewof various three-dimensional concepts[J]. Advanced Energy Materials,2011,1(1):1033.
    [23] Cho K, Oh J, Lee T, et al. Effect of P2O5in Li2O P2O5B2O3electrolyte fabricated by aerosol flamedeposition[J]. Jounal of Power Sources,2008,183(1):431435.
    [24] Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recentadvances and perspectives[J]. Chemical Society Reviews,2011,40(5):25252540.
    [25] Liu Q B, Liao S J, Song H Y, et al. High-performance LiFePO4/C materials: effect of carbon sourceon microstructure and performance[J]. Jounal of Power Sources,2012,211:5258.
    [26] Salah A A, Jozwiak P, Zaghib K, et al. FTIR features of lithium-iron phosphates as electrodematerials for rechargeable lithium batteries[J]. Spectrochimica Acta Part A,2006,65(5):10071013.
    [27] Salah A A, Mauger A, Julien C M, et al. Nano-sized impurity phases in relation to the mode ofpreparation of LiFePO4[J]. Materials Science and Engineering B,2006,129(13):232244.
    [28] Burba C M, Frech R. Raman and FTIR spectroscopic study of LixFePO4(0≤x≤1)[J]. Journal ofthe Electrochemical Society,2004,151(7): A1032A1038.
    [29] Maccario M, Croguennec L, Desbat B, et al. Raman and FTIR spectroscopy investigations ofcarbon-coated LixFePO4materials[J]. Journal of the Electrochemical Society,2008,155(12):A879A886.
    [30] Tan G, Wu F, Li L, et al. Magnetron sputtering preparation of nitrogen-incorporatedlithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ionbatteries[J]. The Journal of Physical Chemistry C,2012,116(5):38173826.
    [31] Kuwata N, Iwagami N, Tanji Y, et al. Characterization of thin-film lithium batteries with stablethin-film Li3PO4solid electrolytes fabricated by ArF excimer laser deposition[J]. Journal of theElectrochemical Society,2010,157(4): A521A527.
    [32] Doeff M M, Hu Y, McLarnon, F, et al. Effect of surface carbon structure on the electrochemicalperformance of LiFePO4[J]. Electrochemical and Solid-State Letters,2003,6(10): A207A209.
    [33] Smith R J, Shen Y, Bray K L. The effect of pressure on vibrational modes in Li3PO4[J]. Journal ofPhysics: Condensed Matter,2002,14(3):461469.
    [34] Yang S, Song H, Chen X. Electrochemical performance of expanded mesocarbon microbeads asanode material for lithium-ion batteries[J]. Electrochemistry Communications,2006,8(1):137142.
    [35] Shim E G, Nam T H, Kim J G, et al. Diphenyloctyl phosphate as a flame-retardant additive inelectrolyte for Li-ion batteries[J]. Jounal of Power Sources,2008,175(1):533539.
    [36] Miyashiro H, Seki S, Kobayashi Y, et al. All-solid-state lithium polymer secondary battery withLiNi0.5Mn1.5O4by mixing of Li3PO4[J]. Electrochemistry Communications,2005,7(11):10831086.
    [37] Sun K, Dillon S J. A mechanism for the improved rate capability of cathodes by lithium phosphatesurficial films[J]. Electrochemistry Communications,2011,13(2):200202.
    [38] Li X, Yang R, Cheng B, et al. Enhanced electrochemical properties of nano-Li3PO4coated on theLiMn2O4cathode material for lithium ion battery at55°C[J]. Materials Letters,2012,66(1):168171.
    [39] Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO4nanoparticles viaa domino-cascade model[J]. Nature Materials,2008,7(8):665671.
    [40] Sobha K C, Rao K J. Investigation of phosphate glasses with the general formula AxByP3O12whereA=Li, Na or K and B=Fe, Ga, Ti, Ge, V or Nb[J]. Journal of Non-Crystalline Solids,1996,201:5265.
    [1] Lee S J, Baik H K, Lee S M. An all-solid-state thin film battery using LISIPON electrolyte and Si–Vnegative electrode films[J]. Electrochemistry Communications,2003,5(1):3235.
    [2] Albano F, Chung M D, Blaauw D, et al. Design of an implantable power supply for an intraocularsensor, using POWER (power optimization for wireless energy requirements)[J]. Jounal of PowerSources,2007,170(1):216224.
    [3] Notten P H L, Roozeboom F, Niessen R A H, et al.3-D integrated all-solid-state rechargeablebatteries[J]. Advanced Materials,2007,19(24):45644567.
    [4] Liu F C, Liu W M, Zhan M H, et al. An all solid-state rechargeable lithium-iodine thin film batteryusing LiI(3-hydroxypropionitrile)2as an I–ion electrolyte[J]. Energy&Environmental Science,2011,4(4):12611264.
    [5] Yamamoto K, Iriyama Y, Asaka T, et al. Dynamic visualization of the electric potential in anall-solid-state rechargeable lithium battery[J]. Angewandte Chemie-International Edition,2010,49(26):44144417.
    [6] Inada T, Kobayashi T, Sonoyama N, et al. All solid-state sheet battery using lithium inorganic solidelectrolyte, thio-LISICON[J]. Jounal of Power Sources,2009,194(2):10851088.
    [7] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J].Angewandte Chemie-International Edition,2007,46(41):77787781.
    [8] Kaneko F, Wada S, Nakayama M, et al. Capacity fading mechanism in all solid-state lithium polymersecondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolytes[J].Advanced Functional Materials,2009,19(6):918925.
    [9] Nakayama M, Wada S, Kuroki S, et al. Factors affecting cyclic durability of all-solid-state lithiumpolymer batteries using poly(ethylene oxide)-based solid polymer electrolytes[J]. Energy&Environmental Science,2010,3(12):19952002.
    [10] Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithiumbatteries[J]. Materials Research Bulletin,2008,43(89):19131942.
    [11] Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recentadvances and perspectives[J]. Chemical Society Reviews,2011,40(5):25252540.
    [12] Adachi G, Imanaka N, Aono H. Fast Li conducting ceramic electrolytes[J]. Advanced Materials,1996,8(2):127135.
    [13] Adachi G, Imanaka N, Tamuja S. Ionic conducting lanthanide oxides[J]. Chemical Reviews,2002,102(6):24052429.
    [14] Bates J B, Dudney N J, Gruzalski G R, et al. Fabrication and characterization of amorphous lithiumelectrolyte thin films and rechargeable thin-film batteries[J]. Jounal of Power Sources,1993,43(13):1031108.
    [15] Bates J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries[J]. SolidState Ionics,2000,135(14):3345.
    [16] Lee J M, Kim S H, Tak Y, et al. Study on the LLT solid electrolyte thin film with LiPON interlayerintervening between LLT and electrodes[J]. Jounal of Power Sources,2006,163(1):173179.
    [17] Knauth P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics,2009,180(1416):911916.
    [18] Barpanda P, Chotard J N, Delacourt C, et al. LiZnSO4F made in an ionic liquid: a ceramicelectrolyte composite for solid-state lithium batteries[J]. Angewandte Chemie-International Edition,2011,50(11):25262531.
    [19] Fu J. Superionic conductivity of glass-ceramics in the system Li2O Al2O3TiO2P2O5[J]. SolidState Ionics,1997,96(34):195200.
    [20] Fu J. Fast Li+ion conduction in Li2O Al2O3TiO2SiO2P2O5glass-ceramics[J]. Journal of theAmerican Ceramic Society,1997,80(7):19011903.
    [21] Kazakevicius E, Salkus T, Selskis A, et al. Preparation and characterization of Li1+xAlyScx yTi2x(PO4)3(x=0.3, y=0.1,0.15,0.2) ceramics[J]. Solid State Ionics,2011,188(1):7377.
    [22] Salah A A, Jozwiak P, Garbarczyk J, et al. Local structure and redox energies of lithium phosphateswith olivine-and Nasicon-like structures[J]. Jounal of Power Sources,2005,140(2):370375.
    [23] Salah A A, Jozwiak P, Zaghib K, et al. FTIR features of lithium-iron phosphates as electrodematerials for rechargeable lithium batteries[J]. Spectrochimica Acta Part A,2006,65(5):10071013.
    [24] Ilieva D, Kovacheva D, Petkov C, et al. Vibrational spectra of R(PO3)3metaphosphates (R=Ga, In,Y, Sm, Gd, Dy)[J]. Journal of Raman Spectroscopy,2001,32(11):893899.
    [25] Cho K, Oh J, Lee T, et al. Effect of P2O5in Li2O P2O5B2O3electrolyte fabricated by aerosol flamedeposition[J]. Jounal of Power Sources,2008,183(1):431435.
    [26] Wang B, Kwak B S, Sales B C, et al. Ionic conductivities and structure of lithium phosphorusoxynitride glasses[J]. Journal of Non-Crystalline Solids,1995,183(3):297306.
    [27] Munoz F, Duran A, Pascual L, et al. Increased electrical conductivity of LiPON glasses produced byammonolysis[J]. Solid State Ionics,2008,179(1516):574579.
    [28] Yang K Y, Leu I C, Fung K Z, et al. Mechanism of the interfacial reaction between cation-deficientLa0.56Li0.33TiO3and metallic lithium at room temperature[J]. Journal of Materials Research,2008,23(7):18131825.
    [29] Nocun M. Structural studies of phosphate glasses with high ionic conductivity[J]. Journal ofNon-Crystalline Solids,2004,333(1):9094.
    [30] Fleutot B, Pecquenard B, Martinez H, et al. Investigation of the local structure of LiPON thin filmsto better understand the role of nitrogen on their performance[J]. Solid State Ionics,2011,186(1):2936.
    [31] Hu Z, Li D, Xie K. Influence of radio frequency power on structure and ionic conductivity ofLiPON thin films[J]. Bulletin of Materials Science,2008,31(4):681686.
    [32] Wang B, Chakoumakos B C, Sales B C, et al. Systhesis, crystal structure, and ionic conductivity ofa polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4structure[J]. Journal of Solid StateChemistry,1995,115(2):313323.
    [33] Yu X, Bates J B, Jellison G E, et al. A stable thin-film lithium electrolyte: Lithium phosphorusoxynitride[J]. Journal of the Electrochemical Society,1997,144(2):524532.
    [34] Jacke S, Song J, Dimesso L, et al. Temperature dependent phosphorous oxynitride growth forall-solid-state batteries[J]. Jounal of Power Sources,2011,196(16):69116914.
    [35] Kim J M, Park G B, Lee K C, et al. Li B O N electrolytes for all-solid-state thin film batteries[J].Jounal of Power Sources,2009,189(1):211216.
    [36] Buschmann H, Dolle J, Berendts S, et al. Structure and dynamics of the fast lithium ion conductor“Li7La3Zr2O12”[J]. Physical Chemistry Chemical Physics,2011,13(43):19378–19392.
    [37] Liu Y D, Wu F, Chen R J, et al. Research of novel Li Al Ti P O electrolyte prepared bymagnetron sputtering for thin-film lithium battery[J]. Transactions of Beijing Institute of Technology,2007,27:100104.
    [38] Roh N S, Lee S D, Kwon H S. Effects of deposition condition on the ionic conductivity andstructure of amorphous lithium phosphorus oxynitrate thin film[J]. Scripta Materialia,2000,42(1):4349.
    [39] Munoz F, Pascual L, Duran A, et al. Validation of the mechanism of nitrogen/oxygen substitution inLi Na Pb P O N oxynitride phosphate glasses[J]. Journal of Non-Crystalline Solids,2006,352(3637):39473951.
    [40] Cho K I, Lee S H, Cho K H, et al. Li2O B2O3P2O5solid electrolyte for thin film batteries[J].Jounal of Power Sources,2006,163(1):223228.
    [41] Wu F, Liu Y D, Chen R J, et al. Preparation and performance of novel Li Ti Si P O N thin-filmelectrolyte for thin-film lithium batteries[J]. Jounal of Power Sources,2009,189(1):467470.
    [42] Le Sauze A, Marchand R. Chemically durable nitrided phosphate glasses resulting fromnitrogen/oxygen substitution within PO4tetrahedra[J]. Journal of Non-Crystalline Solids,2000,263(14):285292.
    [43] Choi C H, Cho W I, Cho B W, et al. Radio-frequency magnetron sputtering power effect on theionic conductivities of lipon films[J]. Electrochemical and Solid-State Letters,2002,5(1): A14A17.
    [44] Munoz F. Comments on the structure of LiPON thin-film solid electrolytes[J]. Jounal of PowerSources,2012,198:432433.
    [45]Takada K, Tansho M, Yanase I, et al. Lithium ion conduction in LiTi2(PO4)3[J]. Solid State Ionics,2001,139(34):241247.
    [46] Kelly P J, Arnell R D. Magnetron sputtering: a review of recent developments and applications[J].Vacuum,2000,56(3):159172.
    [1] Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithiumbatteries[J]. Materials Research Bulletin,2008,43(89):19131942.
    [2] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J].Angewandte Chemie-International Edition,2008,47(16):2930–2946.
    [3] Cho K, Oh J, Lee T, et al. Effect of P2O5in Li2O P2O5B2O3electrolyte fabricated by aerosol flamedeposition[J]. Journal of Power Sources,2008,183(1):431435.
    [4] Kaneko F, Wada S, Nakayama M, et al. Capacity fading mechanism in all solid-state lithium polymersecondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolytes[J].Advanced Functional Materials,2009,19(6):918925.
    [5] Tang C, Hackenberg K, Fu Q, High ion conducting polymer nanocomposite electrolytes using hybridnanofillers[J]. Nano Letters,2012,12(3):11521156.
    [6] Wu P W, Holm S R, Duong A T, et al. A sol-gel solid electrolyte with high lithium ion conductivity[J].Chemistry of Materials,1997,9(4):10041011.
    [7] Notten P H L, Roozeboom F, Niessen R A H, et al.3-D integrated all-solid-state rechargeablebatteries[J]. Advance Materials,2007,19(24):45644567.
    [8] Stephan A M, Nahm K S. Review on composite polymer electrolytes for lithium batteries[J]. Polymer,2006,47(16):59525964.
    [9] Ji J, Li B, Zhong W H. Effects of a block copolymer as multifunctional fillers on ionic conductivity,mechanical properties, and dimensional stability of solid polymer electrolytes[J]. The Journal of PhysicalChemistry B,2010,114(43):1363713643.
    [10] Inada T, Kobayashi T, Sonoyama N, et al. All solid-state sheet battery using lithium inorganic solidelectrolyte, thio-LISICON[J]. Journal of Power Sources,2009,194(2):10851088.
    [11] Yada C, Iriyama Y, Abe T, et al. A novel all-solid-state thin-film-type lithium-ion battery with in situprepared positive and negative electrode materials[J]. Electrochemistry Communications,2009,11(2):413416.
    [12] Wang P, Zakeeruddin S M, Moser J E, et al. A solvent-free, SeCN/(SeCN)3based ionic liquidelectrolyte for high-efficiency dye-sensitized nanocrystalline solar cells[J]. Journal of the AmericanChemical Society,2004,126(23):71647165.
    [13] Liu Y, Wang M, Li J, et al. Highly active horseradish peroxidase immobilized in1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol gel hostmaterials[J]. Chemical Communications,2005,17781780.
    [14] Neouze M A, Bideau J L, Gaveau P, et al. Ionogels, new materials arising from the confinement ofionic liquids within silica-derived networks[J]. Chemistry of Materials,2006,18(17):39313936.
    [15] Xu W, Angell C A. Solvent-free electrolytes with aqueous solution-like conductivities[J]. Science,2003,302(5644):422425.
    [16] Wang P, Dai Q, Zakeeruddin S M, et al. Ambient temperature plastic crystal electrolyte for efficient,all-solid-state dye-sensitized solar cell[J]. Journal of the American Chemical Society,2004,126(42):1359013591.
    [17] Lunstroot K, Driesen K, Nockemann P, et al. Luminescent ionogels based on europium-doped ionicliquids confined within silica-derived networks[J]. Chemistry of Materials,2006,18(24):57115715.
    [18] Echelmeyer T, Meyer H W, Wullen L V. Novel ternary composite electrolytes: Li ion conductingionic liquids in silica glass[J]. Chemistry of Materials,2009,21(11):22802285.
    [19] Page P M, McCarty T A, Baker G A, et al. Comparison of dansylated aminopropyl controlled poreglass solvated by molecular and ionic liquids[J]. Langmuir,2007,23(2):843849.
    [20] Neouze M A, Bideau J Le, Leroux F, et al. A route to heat resistant solid membranes withperformances of liquid electrolytes[J]. Chemical Communications,2005,10821084.
    [21] Boyd I W, Wilson J I B. A study of thin silicon dioxide films using infrared absorption techniques[J].Journal of Applied Physics,1982,53(6):41664172.
    [22] Kim Y, Zhao F, Mitsuishi M, et al. Photoinduced high-quality ultrathin SiO2film from hybridnanosheet at room temperature[J]. Journal of the American Chemical Society,2008,130(36):1184811849.
    [23] Nagase T, Hamada T, Tomatsu K, et al. Low-temperature processable organic-inorganic hybrid gatedielectrics for solution-based organic field-effect transistors[J]. Advanced Materials,2010,22(42):47064710.
    [24] DiBenedetto S A, Facchetti A, Ratner M A, et al. Molecular self-assembled monolayers andmultilayers for organic and unconventional inorganic thin-film transistor applications[J]. AdvancedMaterials,2009,21(1415):14071433.
    [25] Kao H M, Hung T T, Fey G T K. Multinuclear solid-state NMR characterization, ion dissociation,and dynamic properties of lithium-doped organic-inorganic hybrid electrolytes based on ureasils[J].Macromolecules,2007,40(24):86738683.
    [26] Dautel O J, Wantz G, Almairac R, et al. Nanostructuration of phenylenevinylenediimide-bridgedsilsesquioxane: from electroluminescent molecular J-aggregates to photoresponsive polymericH-aggregates[J]. Journal of the American Chemical Society,2006,128(14):48924901.
    [27] Lowry S R, Mauritz K A. An investigation of ionic hydration effects in perfluorosulfonate ionomersby fourier transform infrared spectroscopy[J]. Journal of the American Chemical Society,1980,102,46654667.
    [28] Bennett M D, Leo D J, Wilkes G L, et al. A model of charge transport and electromechanicaltransduction in ionic liquid-swollen nafion membranes[J]. Polymer,2006,47(19):67826796.
    [29] Dai S, Ju Y H, Gao H J, et al. Preparation of silica aerogel using ionic liquids as solvents[J].Chemical Communications,2000,243244.
    [30] Zhou Y, Schattka J H. Antonietti M. Room-temperature ionic liquids as template to monolithicmesoporous silica with wormlike pores via a sol gel nanocasting technique[J]. Nano Letters,2004,4(3):477481.
    [31] Holbrey J D, Reichert W M, Nieuwenhuyzen M, et al. Liquid clathrate formation in ionicliquid–aromatic mixtures[J]. Chemical Communications,2003,476477.
    [32] Anderson J L, Ding R, Ellern A, et al. Structure and properties of high stability geminal dicationicionic liquids[J]. Journal of the American Chemical Society,2005,127(2):593604.
    [33] Christenson H K. Confinement effects on freezing and melting[J]. Journal of Physics: CondensedMatter,2001,13(11): R95R133.
    [34] MacFarlane D R, Forsyth M. Plastic crystal electrolyte materials: new perspectives on solid stateionics[J]. Advanced Materials,2001,13(1213):1213.
    [35] Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionicliquids[J]. Journal of the American Chemical Society,2004,126(4):994995.
    [36] Xie B, Li L, Li H, et al. A preliminary study on a new LiBOB/acetamide solid phase transitionelectrolyte[J]. Solid State Ionics,2009,180(910):688692.
    [37] Jorne J. Transference number approaching unity in nanocomposite electrolytes[J]. Nano Letters,2006,6(12):23732976.
    [38] Xi J, Qiu X, Cui M, et al. Enhanced electrochemical properties of PEO-based composite polymerelectrolyte with shape-selective molecular sieves[J]. Journal of Power Sources2006,156(2):581588.
    [1] Nishide H, Oyaizu K. Toward flexible batteries[J]. Science,2008,319(5864):737738.
    [2] Hassoun J, Scrosati B. Moving to a solid-state configuration: a valid approach to makinglithium-sulfur batteries viable for practical applications[J]. Advanced Materials,2010,22(45):51985201.
    [3] Ruzmetov D, Oleshko V P, Haney P M, et al. Electrolyte stability determines scaling limits forsolid-state3D Li ion batteries[J]. Nano Letters,2012,12(1):505511.
    [4] Oudenhoven J F M, Baggetto L, Notten P H L. All-solid-state lithium-ion microbatteries: a review ofvarious three-dimensional concepts[J]. Advanced Energy Materials,2011,1(1):1033.
    [5] Gozdz A S, Scumutz C N, Tarascon J M. Rechargeable lithium intercalation battery with hybridpolymeric electrolyte[P]. US Pat: No5296318,19930305.
    [6]胡传跃,李新海,孙铭良, et al.聚合物锂离子电池的研究进展[J].电池工业,2001,6(2):7780.
    [7] Murata K, Izuchi S, Yoshihisa Y. An overview of the research and development of solid polymerelectrolyte batteries[J]. Electrochimica Acta,2000,45(89):15011508.
    [8] Jones S D, Akridge J R. A thin-film solid-state microbattery[J]. Journal of Power Sources,1993,44(13):505513.
    [9] Bates J B, Dudney N J, Gruzalski G R, et al. Fabrication and characterization of amorphous lithiumelectrolyte thin-films and rechargeable thin-film batteries[J]. Journal of Power Sources,1993,43(13):103110.
    [10] Bates J B, Dudney N J, Lubben D C, et al. Thin-film rechargeable lithium batteries[J]. Journal ofPower Sources,1995,54(1):5862.
    [11] Bates J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries[J]. SolidState Ionics,2000,135(14):3345.
    [12] Dudney N J. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film inlithium batteries with a liquid electrolyte[J]. Journal of Power Sources,2000,89(2):176179.
    [13] Wu F, Tan G, Chen R, et al. Novel solid-state Li/LiFePO4battery configuration with a ternarynanocomposite electrolyte for practical applications[J]. Advanced Materials,2011,23(43):50815085.
    [14] Kitaura H, Hayashi A, Ohtomo T, et al. Fabrication of electrode electrolyte interfaces inall-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassyelectrolytes[J]. Jounal of Materials Chemistry,2011,21(1):118124.
    [15] Kim S, Park S J. Preparation and electrochemical properties of composite polymer electrolytescontaining1-ethyl-3-methylimidazolium tetrafluoroborate salts[J]. Electrochimica Acta,2009,54(14):37753780.
    [16] Le Bideau J, Gaveau P, Bellayer S, et al. Effect of confinement on ionic liquids dynamics inmonolithic silica ionogels:1H NMR study[J]. Physical Chemistry Chemical Physics,2007,9(40):54195422.
    [17] Kim Y, Zhao F, Mitsuishi M, et al. Photoinduced high-quality ultrathin SiO2film from hybridnanosheet at room temperature[J]. Journal of the American Chemical Society,2008,130(36):1184811849.
    [18] DiBenedetto S A, Facchetti A, Ratner M A, et al. Molecular self-assembled monolayers andmultilayers for organic and unconventional inorganic thin-film transistor applications[J]. AdvancedMaterials,2009,21(1415):14071433.
    [19] Liu Y, Wang M, Li Z, et al. Preparation of porous aminopropylsilsesquioxane by a nonhydrolyticsol-gel method in ionic liquid solvent[J]. Langmuir,2005,21(4):16181622.
    [20] Jorne J. Transference number approaching unity in nanocomposite electrolytes[J]. Nano Letters,2006,6(12):23732976.
    [21] Perriot A, Vandembroucq D, Barthel E, et al. Raman microspectroscopic characterization ofamorphous silica plastic behavior[J]. Journal of the American Ceramic Society,2006,89(2):596601.
    [22] Tomozawa M, Lee Y K, Peng Y L, Effect of uniaxial stresses on silica glass structure investigatedby IR spectroscopy[J]. Journal of Non-Crystalline Solids,1998,242(23):104109.
    [23] Karout A, Pierre A C. Silica gelation catalysis by ionic liquids[J]. Catalysis Communications,2009,10(4):359361.
    [24] Bottcher H, Kallies K H, Haufe H, et al. Silica sol-gel glasses with embedded organic liquids[J].Advanced Materials,1999,11(2):138141.
    [25] MacFarlane D R, Forsyth M. Plastic crystal electrolyte materials: new perspectives on solid stateionics[J]. Advanced Materials,2001,13(1213):957966.
    [26] Seeber A J, Forsyth M, Forsyth C M, et al. Conductivity, NMR and crystallographic study ofN,N,N,N-tetramethylammonium dicyanamide plastic crystal phases: an archetypal ambient temperatureplastic electrolyte material[J]. Physical Chemistry Chemical Physics,2003,5(12):26922698.
    [27] Echelmeyer T, Meyer H W, Wullen L V. Novel ternary composite electrolytes: Li ion conductingionic liquids in silica glass[J]. Chemistry of Materials,2009,21(11):22802285.
    [28] Monteiro M J, Bazito F F C, Siqueira L J A, et al. Transport coefficients, raman spectroscopy, andcomputer simulation of lithium salt solutions in an ionic liquid[J]. The Journal of Physical Chemistry B,2008,112(7):21022109.
    [29] Cheng F, Wan W, Tan Z, et al. High power performance of nano-LiFePO4/C cathode materialsynthesized via lauric acid-assisted solid-state reaction[J]. Electrochimica Acta,2011,56(8):29993005.
    [30] Croce F, Sacchetti S, Scrosati B. Advanced, high-performance composite polymer electrolytes forlithium batteries[J]. Journal of Power Sources,2006,161(1):560564.
    [31] Saiful Islam M, Driscoll D J, Fisher C A J, et al. Atomic-scale investigation of defects, dopants, andlithium transport in the LiFePO4olivine-type battery material[J]. Chemistry of Materials,2005,17(20):50855092.
    [32] Mestre-Aizpurua F, Hamelet S, Masquelier C, et al. High temperature electrochemical performanceof nanosized LiFePO4[J]. Journal of Power Sources,2010,195(19):68976901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700