用户名: 密码: 验证码:
磷钙酸插层蒙脱土复合材料的制备、表征及催化脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂多酸是由两种或两种以上不同含氧酸经缩合脱水而形成的多聚含氧酸。由于其优异的酸性及氧化还原性而被广泛地应用于各种酸催化及催化氧化反应体系中。但杂多酸存在比表面积小、热稳定性差、重复使用性低等缺点,使得它在工业上的应用受到了一定的限制。因此,将杂多酸组装到合适的载体上,对提高其比表面积、催化活性及重复使用性具有重要的意义。蒙脱土作为一种层间具有可交换阳离子的层状硅酸盐粘土矿物,通过离子交换、插层柱撑等方法,可在其层间引入大量的有机、无机离子,形成多孔复合功能材料。已发表的很多文献都是将杂多酸负载于蒙脱土原土或改性蒙脱土载体上,而杂多酸插层蒙脱土复合催化材料的研究鲜见文献报道。因此,将杂多酸组装到柱撑蒙脱土材料中,使其牢固地附着于蒙脱土的层间骨架结构中,有效避免杂多酸在催化反应过程的流失,可以有效提升催化剂的性能,具有重要的学术价值及实际应用前景。
     本文采用离子交换、溶胶凝胶、原位合成、分子自组装等方法,将磷钨杂多酸有效引入蒙脱土层间,用X射线粉末衍射(XRD)、X射线荧光分析(XRF)、傅利叶变换红外光谱(FT-IR)、热重-差热分析(TG-DTA)、氮气等温吸附-脱附(BET)、扫描电镜(SEM)和透射电镜(TEM)等分析测试手段,对杂多酸插层蒙脱土复合材料的结构、稳定性等进行了表征。研究了不同表面活性剂、不同杂多酸含量以及不同杂原子取代的缺位杂多酸对柱撑蒙脱土复合材料结构的影响,探讨了杂多酸插层蒙脱土复合材料的形成机理,考察了复合材料对模拟油、FCC柴油氧化脱硫的催化性能。取得了以下研究成果。
     1.用十六烷基三甲基溴化铵作为合成柱撑蒙脱土的层间模板剂,制备了不同含量的磷钨酸插层蒙脱土复合材料,并用浸渍法制备了相同磷钨酸含量的负载型磷钨酸/蒙脱土复合材料。结果表明,在磷钨酸插层蒙脱土复合材料中,磷钨酸被引入了柱撑蒙脱土层间骨架结构,并且保留了其原有的Keggin型结构,其氧化脱硫催化活性远远高于负载型磷钨酸/蒙脱土复合材料。当反应温度为60oC,反应时间为120min,H2O2/S摩尔比为3时,0.15g催化剂能将25mL模拟油中的硫含量由500ppm的降低到7.1ppm,硫的脱除率为98.6%。
     2.以不同分子链长和带有不同官能团的表面活性剂作为合成柱撑蒙脱土的层间模板剂,通过离子交换法和溶胶-凝胶法,将磷钨酸成功地引入柱撑蒙脱土的层间骨架结构,制备了一系列磷钨酸插层蒙脱土复合材料。研究发现复合材料的层间距和比表面积都随着模板剂分子链长的增加而增加,模板剂的有机官能团种类对磷钨酸插层蒙脱土杂化材料的比表面积、孔容、孔分布也都有很大的影响。当模板剂中带有苄基时,形成的磷钨酸插层蒙脱土复合材料的孔容高达1.29cm3g-1,孔径为9.0nm,但较大的孔径不利于杂多酸插层蒙脱土复合材料的稳定。催化研究结果表明,虽然用十六烷基三甲基溴化铵作为合成柱撑蒙脱土的层间模板剂时,形成的材料的脱硫催化活性没有用含有苄基的模板剂形成的材料高,但前者具有更好的稳定性,重复使用性好。
     3.在酸性条件下制备了单缺位磷钨酸和过渡金属杂原子修饰的缺位磷钨酸,并通过溶胶-凝胶法将这些缺位磷钨酸插层入了柱撑蒙脱土的层间骨架结构中,形成了介孔缺位磷钨酸插层蒙脱土复合材料。缺位磷钨酸的引入并没有破坏蒙脱土的片层结构,并且这种复合催化材料具有均一的孔径,但杂原子缺位磷钨酸对柱撑蒙脱土材料的形貌影响较大。模拟油的催化氧化脱硫实验结果表明,单缺位磷钨酸插层蒙脱土材料的催化效果比磷钨酸插层蒙脱土材料的好,几乎能够将模拟油中的DBT完全氧化脱除。但杂原子缺位磷钨酸插层蒙脱土材料的催化活性却有所降低,这是由于缺位磷钨酸中杂原子的引入破坏了杂多酸的质子酸结构,从而导致催化效果不理想。
     4.采用原位合成法,在强酸性介质中制备了不同磷钨酸含量的磷钨酸插层蒙脱土复合材料,并用多种分析手段对复合材料进行了表征。结果表明:原位磷钨酸插层蒙脱土复合材料中,磷源和钨源引入了柱撑蒙脱土层间骨架结构中,并原位生成了磷钨酸。在引入高含量磷钨酸的情况下(25wt.%),蒙脱土的片层结构仍能得到了很好的保留。该催化剂对模拟油具有较好的氧化脱硫催化活性,并且其催化活性随着催化剂中原位引入的磷源和钨源含量的增加而提高。但过量磷钨酸在蒙脱土层间的原位生成,对材料的结构和催化活性都有一定的不利影响。当反应温度为60oC,反应时间为120min,H2O2/S摩尔比为3时,0.15g催化剂能将25mL模拟油中的硫含量由500ppm的降低到18.5ppm,脱硫率为96.3%。
     5.探讨了磷钨酸插层蒙脱土复合材料的合成机理。认为此类磷钨酸插层蒙脱土复合材料是通过层间离子交换和分子自组装技术将杂多酸引入柱撑蒙脱土层间骨架结构中的。首先,阳离子模板剂通过离子交换技术与蒙脱土层间的阳离子进行交换,形成有机蒙脱土。然后,通过分子自组装技术将磷钨酸引入蒙脱土层间。最后,在蒙脱土层间分子与引入的硅柱撑剂的相互作用过程中,杂多酸和硅羟基相互键合形成硅柱撑蒙脱土骨架的一部分。
     6.探讨了复合材料的催化氧化脱硫机理。在油品的催化氧化脱硫过程中,磷钨酸插层蒙脱土复合材料骨架结构中的磷钨酸能够接受双氧水中的活性氧,并形成一个中间态的杂多过氧化物,而硅柱撑蒙脱土材料则能将这种杂多过氧化物转移到油品中的含硫底物上,使氧化反应顺利进行。模拟油催化氧化前后的GC-MS测定结果表明,油品中的含硫化合物被氧化成极性较强的砜类物质,最终通过极性溶剂乙腈萃取,从而达到脱硫的目的。而磷钨酸插层蒙脱土复合材料中的磷钨酸由于已经插层入柱撑蒙脱土的层间骨架结构中,因而具有较高的稳定性。
Heteropoly acid (HPA) is formed by two or more different oxy-acidthrough condensation. Due to its excellent acidity and redox property, it hasbeen widely applied in all sorts of catalytic oxidation and acid catalyzedreaction system. However, HPA suffers from some shortcomings, such as thesmall surface area, low thermal stability and the undesirable reusability.Thesedrawbacks greatly limit their applications in catalytic processes. Thus, it hasgreat significant to load HPA onto appropriate carrier to improve its specificsurface area, catalytic activity and reusability. As a kind of layered silicateclay mineral with interlayer cation exchange property, montmorillonite (MMT)can be introduced large quantities of organic and inorganic ions in theinterlayer, forming porous composite functional materials by ion exchange,intercalation, and pillaring method etc. Former researchers did a lot of workon loading heteropoly acid on MMT or modified MMT, but there are fewreports on heteropoly acid intercalated MMT catalytic composite in the literature. Therefore, assembling the HPA into the silica pillared MMTmaterial can make the HPA firmly stick to the interlayer framework of MMT.It will reduce the loss of HPA in the catalytic reaction and improve thecatalytic performance of the catalyst, which has important academic value andpractical application
     This paper applied ion exchange, sol-gel, in situ synthesis, and molecularself-assembly methods etc, effectively introduced phosphotungstic acid (HPW)into the interlayer of MMT. Using X-ray powder diffraction (XRD), X-rayfluorescence analysis (XRF), fourier transform infrared spectroscopy (FT-IR),thermogravimetry-differential thermal analysis (TG-DTA), nitrogenisothermal adsorption-desorption (BET), scanning electron microscopy (SEM),transmission electron microscope (TEM), and many other kinds of testmethods characterized the structure, stability of the HPW intercalated MMTcomposite. This paper studied the effect of the different surfactant, differentcontent of HPW and different heteroatoms vacancy phosphotungstic acid tothe interlayer structure, discussed the formation mechanism of the compositematerials, examined the catalytic desulfurization performance of the catalyticmaterials to the model oil and the catalytic cracking FCC diesel oil. The mainresearch work and achievements are as follows.
     1. Using hexadecyl three methyl ammonium bromide (CTAB) as theinterlayer templates of the silica pillared MMT, different content ofphosphotungstic heteropoly acid intercalated MMT composites (HPW-SPC) were prepared. HPW/MMT samples with the same phosphotungstic acidcontent were also prepared using the imprepnation method. Results showedthat HPW was intercalated into the interlayer framework of the silica pillaredMMT composites, and its original Keggin structure retained. Oxidationdesulphurization experiment results showed that the HPW-SPC samplesexhibited far higher catalytic oxidative activity than the impregnation samples.When the reaction temperature is60oC, H2O2/S=3:1,0.15g catalyst canreduce the sulfur content in25mL of model oil from500ppm to7.1ppm in120min, with sulfur removal of98.6%.
     2. A series of phosphotungstic acid intercalated MMT desulfurizationcomposites were prepared using surfactants with different molecular lengthand different functional groups as silica pillared MMT interlayer template.HPW was successfully introduced into the interlayer framework of silicapillared MMT composites by ion exchange and sol-gel method. The interlayerspacing and specific surface area of the composite catalytic materials enlargedwith the increase of the carbon length of the templates. The organic functionalgroup has a great influence on the specific surface area, pore distribution andpore volume of the phosphotungstic acid intercalated MMT composite. Whena template with benzyl was introduced into the interlayer of the MMT clay, theformed MMT hybrid material has a large pore volume of1.29cm3.g-1andlager pore size (9.0nm). However, the large pore size affected the stability ofHPW-SPC composite. Catalytic experimental results showed that, although the resulting material prepared using CTAB as the silica pillared MMTtemplate did not exhibit excellent catalytic desulphurization performance asthe materials formed by the template with benzene ring, it possesses a highstability and good reusability.
     3. The mono-lacunary phosphotungstic acid and transiton metal modifiedlacunary phosphotungstic acid were synthesized under acidic condition. Theselacunary phosphotungstic heteropoly acids were intercalated into the interlayerframework of the silica pillared MMT by sol-gel method and formedmesoporous lacunary phosphotungstic acid intercalated MMT composites(MPW11-SPC). The introduction of the lacunary phosphotungstic acid did notdestroy the lamellar structure of MMT and these composite materials possessuniform pore size. However, the transiton metal modified lacunaryphosphotungstic acid has a strong influence to the morphology of silicapillared MMT composite. The results of the catalytic oxidation desulfurizationshowed that, the mono-lacunary intercalated MMT composites showed bettercatalytic performance than the phosphotungstic acid intercalated MMTcomposites, which can nearly completely catalytic oxidize DBT into thecorresponding sulfone. But, the catalytic performance of the transiton metalmodified lacunary phosphotungstic acid intercalated MMT compositesreduced. This is because the Br nsted acid structure of the heteropoly acidstructure was damaged with the introduction of the impurity atoms, thus thecatalytic performance is not so ideal.
     4. In strong acidic medium, different content of phosphotungstic acidintercalated mesoporous MMT composites were prepared using in situsynthesis method. The composites were characterized by various analysismethods. The results showed that tungsten source and phosphorus source weresuccessfully intercalated into the interlayer framework of the silica pillaredMMT, and in-situ synthesized phosphotungstic acid. When high content(25wt.%) of HPW was introduced into the framework of the MMT compositeby in situ synthesis method, the MMT lamellar structure was also wellpreserved. The catalyst showed a good catalytic performance in oxidizationdesulfurization of DBT in the model oil, and its catalytic performanceimproved with the increase of the content of tungsten source and phosphorussource. But the formation of excessive amounts of HPW has an adverse effectto the structure and catalytic activity of the material. When the reactiontemperature is60oC, H2O2/S=3,0.15g catalyst can reduce the sulfur contentin25ml model oil from500ppm to18.5ppm in120min, with thedesulphurization removal of96.3%.
     5. Discussed the synthesis mechanism of the HPW-SPC materials. TheHPW-SPC materials were synthesized through the interlayer ion exchange andmolecular self-assembly technology with HPW anion introduced into theframework of the pillared MMT clay. Firstly, the cationic template wasintroduced into the interlayer of the MMT through the ion exchangetechnology, forming the organic MMT. Then, through molecular self-assembly technology the HPW anion was attracted into the interlayer of the MMT.Finally, during the interaction process of the introduced silicon source and themolecules in the interlayers of MMT, phosphotungstic acid will bond with thesilicon hydroxyl forming a part of the framework of the silica pillared MMTcomposite.
     6. Explored the catalytic oxidation desulfurization mechanism. During theoxidation desulfurizaion process, HPW in the interlayer framework of thepillared MMT composite can accept the activce oxygen free radicals from thehydrogen peroxide and form a middle state oxoperoxo species, while the silicapillared MMT materials will transfer the oxoperoxo species to thesulfur-containing substrates, make the oxoperoxo species contact with thesulfur-containing compound, leading the oxidation reactions proceed smoothly.The GC-MS results of the model oil before and after catalytic oxidationreaction showed that the sulfur-containing compounds were oxidized intosulfone with relatively strong polarity, which can be extracted by theacetonitrile solvent, so as to achieve the purpose of desulfurization. And,because the HPW in the HPW-SPC materials was intercalated into theinterlayer framework of the silica pillared MMT, it can be constantly reuse andshow good reusability.
引文
[1] Ivan.K. Catalysis by polyoxometalates[M]. London: John Wiley&Sons, LTD,2002
    [2]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社出版,1984
    [3] Mizuno M, Misono M. Heterogeneous Catalysis[J]. Chem. Rev,1998,98(1):199-217
    [4] Besecker C J, Klemperer W G. Synthesis and structure of the{[(C7H8)Rh]5(cis-Nb2W4O19)2}3-anion[J]. J. Am. Chem. Soc.1982,104,6158–6159
    [5]伊万.科热夫尼科夫,唐培堃(译),李祥高(译).多酸化合物及其催化[M].北京.化学工业出版社,2005
    [6] Pope M T; Muller A. Polyoxometalate Chemistry: An old field with new dimensions inseveral disciplines[J]. Angew. Chem., Int. Ed. Engl.,1991,30:34-48
    [7] Keggin J F, The Structure and Formula of12-Phosphotungstic Acid[J]. Proc. Roy. Soc. Lond.1934,144:75-100
    [8] Cavani F. Heteropoly compound-based catalysts: A blend of acid and oxidizing Properties[J].Catal. Today.,1998,41:73-86
    [9] Izumi Y, Matsuo K, Urabe K. Efficient homogeneous acid catalysis and its charaeterizationthrough ether cleavage reaections[J] J. Mol. Catal.,1983,18(3):299-314
    [10] Misono M. Heterogenous catalysis by heteropolycompounds of molybdenum and tungsten[J].Catal. Rev.,1987,29:269-321
    [11] Chimienti M E, Pizzio L R, Caeeres C V, et al. Tungstophosphoric and tungstosilicic acid oncarbon as acidic catalysts[J]. Appl. Catal. A: Gen.,2001,208:7-19
    [12]胡长文,高丽绢,王恩波.杂多化合物的酸催化特性及其在有机合成反应中的应用[J].化学研究与应用,1995,7:341-350
    [13] Aura L, Luis M, Fe′lix A, et al. Synthesis and characterization of HPW/MCM-41(Si) andHPW/MCM-41(Si/Al) catalysts: Activity for toluene alkylation with1-dodecene[J]. Catal.Today,2008,133-135:20-27
    [14] Toshio O. Water-Tolerant solid acid catalysts[J]. Chem. Rev.,2002,102:3641-3666
    [15] Frank J B, Glyn R. D, José F M, Silica-supported silicotungstic acid: A study by X-rayphotoelectron spectroscopy[J]. Mater. Chem. Phy.,2009,114:1000-1003
    [16] Mahesh H B, Indresh K, Arun D. N, et al. Phosphotungstic acid on silica with modified acidsites as a solid catalyst for selective cleavage of tert-butyldimethylsilyl ethers[J]. Catal.Comm.,2008,9:1863-1868
    [17] Aura L, Luis M, Fe′lix A, et al. Synthesis and characterization of HPW/MCM-41(Si) andHPW/MCM-41(Si/Al) catalysts: Activity for toluene alkylation with1-dodecene[J]. Catal.Today,2008,133-135:20-27
    [18] Lina Y, Qi Y T, Yuan X D, et al. Direct synthesis, characterization and catalytic applicationof SBA-15containing heteropolyacid H3PW12O40[J]. J. Mol. Catal. A: Chem.,2005,229:199-205
    [19] Nowiska K, Formaniak R, Kaleta W, et al. Heteropoly compounds incorporated intomesoporous material structure[J]. Appl. Catal. A: Gen.,2003,256:115-123
    [20] Sadhana S R, Nidhi D, Ravikrishna V C, et al. Effect of heteropolyacid and its route ofincorporation on the photocatalytic properties of zeolite-based materials[J]. Current. Sci.,2007,93:1376-1382
    [21] Pascal Y V, Asmae M, Ana S, et al. Heteropolyacid/saponite-like clay complexes and theirblends in amphiphilic SEBS[J]. Eur. Polym. J.,2009,45:1641-1651
    [22] Mai H T, Hironobu O, Takanori M, et al. Hydrothermal synthesis of molybdenum oxidecatalyst: Heteropoly acids encaged in US-Y[J]. Appl. Catal. A: Gen.,2005,287129-134
    [23]于荟.负载型杂多酸催化剂的研究进展[J].广州化工,2010,10(38):52-54
    [24] Alexei L, Bengü B, Tim M, et al. Preparation and characterisation of chemisorbents based onheteropolyacids supported on synthetic mesoporous carbons and silica[J]. Catal. Today,2003,81(4):611-621
    [25] Bokade V V, Yadav G D. Synthesis of Pharmaceutical Intermediates by Toluene Benzylationover Heteropoly Acids on Different Support[J]. J. Natural Gas Chem.,2007,16:186-192
    [26] Bokade V V, Deshpande S S, Pati R, et al. Toluene Alkylation with Methanol to p-Xyleneover Heteropoly Acids Supported by Clay[J]. J. Natural Gas Chem.,2007,16:42-45
    [27] Ganapati D Y, Ginish G. Monoalkylation of biphenyl over modified heteropoly acids:Novelty of cesium substituted dodecatungstophosphoric acid supported on hexagonalmesoporous silica[J]. Catal. Today,2009,141:130-137
    [28] Kim H J, Shu Y G, Haksoo. H. Synthesis of heteropoly acid nanopartics and their catalyticproperties[J]. Appl. catal. A: Gen.,2006,299:46-51
    [29] Lzumi Y, Urabe K. Catalysts of heteropolyacids entrapped in activated carbon[J]. Chem.Lett.,1981,5:663-666
    [30] Marcelo E. C, Luis R. P, Carmen V. C, et al. Tungstophosphoric and tungstosilicic acids oncarbon as acidic catalysts[J]. Appl. Catal. A: Gen.,2001,208:7-19
    [31] Atsuyuki M, Tsuneo E, Kohichi N, et al. Selective hydroisomerization of n-pentane toisopentane over highly dispersed Pd-H4SiW12O40/SiO2[J]. J. Mol. Catal. A: Chem.,2003,201,145–153
    [32] Yan X M, SU G S, Xiong L. Oxidative desulfurization of diesel oil over Ag-modifiedmesoporous HPW/SiO2catalyst[J]. J Fuel Chem. Technol.,2009,37(3):318-323
    [33] Zhao X Q, Han Y T, Sun X L, et al. Structure and catalytic performance of H3PW12O40/SiO2prepared by several methods[J]. Chin. J. Catal.,2007,28(1):91-96
    [34] Zaki E A A, Li B S, Asma T, Direct synthesis of mesoporous (C19H42N)4H3(PW11O39)/SiO2and its catalytic performance in oxidative desulfurization[J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2009,341:86-92
    [35] Xue M Y, Ping M, Jia H, et al. Synthesis and characterization of mesoporous phosphotungsticacid/TiO2nanocomposite as a novel oxidative desulfurization catalyst[J] J. Mol. Catal. A:Chem.,2009,304:52-57
    [36]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化(Ⅰ)表面酸性和吸附机理的研究离子交换与吸附,1995,1l(1):55-67
    [37]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化(Ⅱ)-液固相中催化合成乙酸丁醋的研究[J].河北轻化工学院学报,1996,17(3):55-61
    [38]葛旭升,李海花,涂华民.活性白土负载型固体酸催化剂催化酯化性能研究[J].保定师范专科学校学报,2006,19(4):26-28
    [39] Gunda K, Kenichi K, Yoshihiro K, et al. Friedel–Crafts benzylation of aromatics with benzylalcohols catalyzed by heteropoly acids supported on mesoporous silica[J] J Chem TechnolBiotechnol,2006,81:981-988
    [40] Dharmesh K, Christopher C, Landry. Immobilization of a Mo, V-polyoxometalate oncationically modified mesoporous silica: Synthesis and characterization studies [J]Microporous and Mesoporous Mater.2007,98:309-316
    [41] Rabindran B, Jermy A, Pandurangan A. Synthesis of geminal diacetates (acylals) usingheterogeneous H3PW12O40supported MCM-41molecular sieves[J]. Catal. Commun.,2008,9:577-583
    [42] Kozhevnikov, Matveev K I. Homogenous catalysts based on heteropoly acids[J]. Appl. Catal.,2000,5:135-150
    [43]张雪峥,乐英红,高滋. PW-SBA-15负载型催化剂的性能研究[J]高等学校化学学报,2001,22(7):1169-1172
    [44] Haber J, Pamin K, Matachowshi L, et al. Catalytic performance of thedodeca-tungstophosphoric acid on different supports[J]. Appl. Catal, A: Gen.,2003,256:141-152
    [45] Chen L D, Wang X S, Guo H C, et al. Hydroconversion of n-octane over nanoseale HZSM-5zeolites Promoted by12-molybdophosphoric acid and Ni[J]. Catal. Commun.,2007,8(3):416-423
    [46] Nowinska K, Fórmaniak R, Kaleta W, et al. Heteropoly compounds incorporated intomesoporous material structure[J]. Appl. Catal. A: Gen.,2003,256:115-123
    [47] Hussein H, Michel S, B′en′edicte L, et al. A new way for NOx catalyst preparation: Directincorporation of12-tungstophosphoric acid H3PW12O40and platinum into mesoporousmolecular sieves material[J]. J. Mol. Catal A: Chem.,2007,278:53-63
    [48] Gagea B, Lorgouilloux Y, Altintas Y, et al. Bifunctional conversion of n-decane over HPWheteropoly acid incorporated into SBA-15during synthesis[J]. J. Catal.,2009,265:99-108
    [49] Li B S, Ma W, Liu J J, et al. Synthesis of the well-ordered hexagonal mesoporous silicateincorporated with phosphotungstic acid through a novel method and its catalytic performanceon the oxidative desulfurization reaction[J]. Catal. Commun.,2011,13:101-105
    [50] Li B S, Ma W, Liu J J, et al. Preparation of MCM-41incorporated with lacunary Kegginpolyoxometalate and its catalytic performance in esterification[J]. J. Collid. Interface. Sci.2011,362:46-49
    [51] Sulikowski B, Haber J, Kubaeka A.“Ship in the Bottle”type catalyst: evidence forencapsulation of12-tungstophosphoric acid in the supercage of synthetic faujasite[J]. Catal.Lett.,1996,39(1-2):27-31
    [52] Chen L D, Wang X S, Guo X W, et al. In situ nanocrystalline HZSM-5zeolites encagedheteropoly acid H3PMo12O40and Ni catalyst for hydroconversion of n-octane[J]. Chem. Eng.Sci,2007,62:4469-4478
    [53] Jin D F, Gao J, Hou Z Y, et al. Microwave assisted in situ synthesis of USY-encapsulatedheteropoly acid (HPW-USY) catalysts[J]. Appl. Catal. A: Gen.,2009,352:259-264
    [54] Shi C, Wang R, Zhu G, et al. In situ synthesis, characterization of SiPMo-X, and differentcatalytic properties of SiPMo-X and SiPW-X[J]. Eur. J. Inorg. Chem.,2006,3054-3060
    [55] Shi C, Wang R, Zhu G, et al. Synthesis, characterization, and catalytic properties of SiPW-Xmesoporous silica with heteropolyacid encapsulated into their framework[J]. Eur. J. Inorg.Chem.,2005,4801-4807
    [56]柯扬船,皮特·斯壮.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003.427-430
    [57] Pluta M, Galeski A, Alexandre M, et al. Polylactide/Montmorillonite nanocomposites andmicrocomposites prepared by melt blending: structure and some physical properties[J]. J.Appl. Polym. Sci.,2002,86:1497-1506
    [58] Cool P, Vansant E F. Pillared Clays: Preparation, Characterization and Applications[M].Heidelberg: Springer-Verlag,1998
    [59] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures formed bygallery-templated synthesis[J]. Nature,1995,374:529-531
    [60] Ishida H, Campbell S, Blackwell J. Microstructure of cesium hydrogen salts of12-tungstophosphoric acid relevant to novel acid catalysis[J]. Chem. Mater.,2000,12:1260-1267
    [61] Horch R A, Golden T D, D’Souza N A, et al. General approach to nanocompositepreparation[J]. Chem. Mater.,2002,14:3531-3538
    [62] Zhu H Y, Lu G Q. Engineering the structures of nanoporous clays with micelles of alkylpolyether surfactants[J]. Langmuir,2001,17:588-594
    [63] Zhu H Y, Zhao J C, Liu J W, et al. General synthesis of a mesoporous composite of metaloxide and silicate nanoparticles from a metal salt and laponite suspension for catalysis[J].Chem. Mater.,2006,18:3993-4001
    [64] Ahenach J, Cool P, Vansant E F. Enhanced acidity created upon Al-grafting Br nsted ofporous clay heterostructures via aluminum acetylacetonate adsorption[J]. Phys. Chem. Chem.Phys.,2000,2(24):5750-5755
    [65] Pinnavaia T J, Landau S D, Tzou M S. Layer cross-linking in pillared clays[J]. J. Am. Chem.Soc.1985,107:7222-7224
    [66] Ho J C, In-Sik N, Sung W H, et al. Physicochemical characteristics of pillared interlayeredclays[J]. Catal. Today,2001,68:31-40
    [67]周春晖,童东绅,等.介孔铁铝/蒙脱土复合材料:解离柱撑制备、结构及催化羟基化性能[J].无机化学学报,2006,22(4):617-624
    [68]丁述理,彭苏萍,刘钦甫. La-Al柱撑蒙脱石的超声制备及热稳定性研究[J].中国矿业大学学报,2003,32(5):496-499
    [69] Martinez-Ortiz M J, Fetter C, Dominguez J M, et al. Catalytic hydrotreating of heavy vacuumgas oil on Al-and Ti-pillared clays prepared by conventional and microwave rrradiationmethods[J]. Micropor. Mesopor. Mater.,2003,58:73-80
    [70] Yuan P, Yin X L, He H P, et al. Investigation on the delaminated-pillared structure ofTiO2-PILC synthesized by TiCl4hydrolysis method[J]. Micropor. Mesopor. Mater.,2006,93:240-247
    [71] Houria R, Hussein K, Jose L V. et al. Photocatalysis with Ti-pillared clays for theoxofunctionalization of alkylaromatics by O2[J]. Appl. Catal. A: Gen.,2009,352:234-242
    [72] Neelam J, Veda R. Oxidation of aniline over titania pillared montmorillonite clays[J]. Appl.Clay Sci.,2006,33:89-98
    [73] Song L, Jae H Y, Jin C. Microporous SiO2-TiO2nanosols pillared montmorillonite forphotocatalytic decomposition of methyl orange[J]. J. Photochem. Photobiol. A: Chem.,2006,179:75-80
    [74] Yoshikazu K, Yoshihiro T, Akira N, et al. Preparation and properties of TiO2/montmorillonitecomposites[J]. Appl. Clay Sci.,2009,45:20-23
    [75] Lucjan C, Barbara G, Piotr K, et al. Montmorillonite-based porous clay heterostructures(PCHs) intercalated with silica-titania pillars-synthesis and characterization[J]. J. Solid StateChem.,2009,182:1094-1104
    [76] Zhang Y, Hu Y, Song L, et al. Influence of Fe-MMT on the fire retarding behavior andmechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite.Polym[J]. Adv. Technol.,2008,19:960-966
    [77] Kalpesh B, Sidhpuria, Hasmukh A, et al. Rhodium nanoparticles intercalated intomontmorillonite for hydrogenation of aromatic compounds in the presence of thiophene[J].Appl. Clay Sci.,2009,42:386-390
    [78] Kooli F, Khimyak Y Z, Alshahateet S F, et al. Effect of the acid activation levels ofmontmorillonite clay on the cetyltrimethylammonium cations adsorption[J]. Langmuir,2005,21:8717-8723
    [79] Liang Z M, Yin J, Xu H J. Polyimide/montmorillonite nanocomposites based on thermallystable, rigid-rod aromatic amine modifiers[J]. Polym.,2003,44:1391-1399
    [80] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures formed bygallery-templated synthesis[J].Nature,1995,374:529-531
    [81] Pires J, Francisco J, Carvalho A, et al. Development of novel pillared clays for theencapsulation of inorganic complexes[J]. Langmuir,2004,20:2861-2866
    [82] Mao H H, Li B S, Li X, et al. Synthesis of silica-pillared clay (SPC) with ordered mesoporousstructure by one-step method without preswelling process[J]. Appl. Surf. Sci.,2009,255:4787-4791
    [83] Li B S, Mao H H, Li X, at al. Synthesis of mesoporous silica-pillared clay by intragalleryammonia-catalyzed hydrolysis of tetraethoxysilane using quaternary ammonium surfactantsas gallery templates[J]. J. Collid. Interface. Sci.,2009,336:244-249
    [84] Mao H H, Li B S, Li X, et al. Mesoporous nickel (or cobolt) doped silica-pillared clay:synthesis and characterization studies[J]. Mater. Res. Bull.,2009,44:1569-1575
    [85] Mao H H, Li B S, Li X, et al. Mesoporous nickel containing silica-pillared clays (Ni-SPC):Synthesis, characterization and catalytic behavior for cracking of plant asphalt[J]. Catal.Commun.,2009,10:975-980
    [86] Mao H H, Li B S, Li X, et al. Novel one-step synthesis route to ordered mesoporoussilica-pillared clay using cationic-anionic mixed-gallery templates[J]. Ind. Eng. Chem. Res.,2010,49:583-591
    [87] Mao H H, Li B S, Li X, et al. Facile synthesis and catalytic properties of titanium containingsilica-pillared clay derivatives with ordered mesoporous structure through a novelintra-gallery templating method[J]. Micropor. Mesopor. Mater.,2010,130:314-321
    [88] Jeevanandam P, K1abunde K J, Tetzler S H. Adsorption of thiophenes out of hydrocarbonsusing metal impregnated nanocrystalline aluminum oxide[J] Micropor. Mesopor. Mater.,2005,79:101-110
    [89] Al-Dalama K, Stanislaus A. Comparative study of the influence of chelating agents on thehydrodesulfurization (HDS) activity of alumina and silica-alumina-supported CoMocatalysts[J]. Energy Fuels,2006,20:1777-1783
    [90] Zhu W S, Li H M, Jiang X, et al. Commercially available molybdic compound-catalyzedultra-deep desulfurization of fuels in ionic liquids[J]. Green Chem.,2008,10:641-646
    [91] Mbaraka I K, McGuire K J, Shanks H B. Acidic mesoporous silica for the catalyticconversion of fatty acids in beef tallow[J]. Ind. Eng. Chem. Res.,2006,45:3022-3028
    [92] Xue M, Chitrakar R, Sakane K, et al. Preparation of cerium-loaded Y-zeolites for removal oforganic sulfur compounds from hydrodesulfurizated gasoline and diesel oil[J]. J. Colloid.Interface Sci.,2006,298:535-542
    [93] Dhar G M, Srinivas B N, Rana M S, et al. Mixed oxide supported hydrodesulfurizationcatalysts[J]. Catal. Today,2003,86:45-60
    [94] Sylvette B, Damien M, Guy P, et al. On the hydrodesulfurization of FCC gasoline [J]. Appl.Catal. A: Gen.,2005,278:143-172
    [95] Yang R T, Hernández-Maldonado A J, Yang F H. Desulfurization of Transportation Fuels withZeolites Under Ambient Conditions[J]. Science,2003,301:79-81
    [96] Tao H, Nakazato T, Sato S. Energy-efficient ultra-deep desulfurization of kerosene based onselective photooxidation and adsorption[J]. Fuel,2009,88:1961-1969
    [97] Shiraishi Y, Tachibana K, Hirai T, et al. Desulfurization and Denitrogenation Process for LightOils Based on Chemical Oxidation followed by Liquid-Liquid Extraction[J]. Ind. Eng. Chem.Res.,2002,41:4362-4375
    [98] Murata S, Murata K, Kidena K, et al. A Novel Oxidative Desulfurization System for DieselFuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes[J]. EnergyFuels,2004,18:116-121
    [99] Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurizationof oil refinery streams: a review[J]. Fuel,2003,82:607-631
    [100] Ito E, Rob van Veen J A, On novel processes for removing sulphur from refinery streams[J].Catal. Today,2006,116:446-460
    [101] Song C, Ma X, New design approaches to ultra-clean diesel fuels by deep desulfurization anddeep dearomatization[J]. Appl. Catal. B: Environ.,2003,41:207-238
    [102] Shah A T, Li B S, Zaki E A A. Direct synthesis of Cu-SBA-16by internal pH modificationmethod and its performance for adsorption of dibenzothiophene[J]. Micropor. Mesopor.Mater.,2010,130:248-254
    [103] Scott G M, Robert J A. Deep desulfurization by selective adsorption of dibenzothiophenes onAg+/SBA-15and Ag+/SiO2[J]. Chem. Commun.,2003,2620-2621
    [104] Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils via hydrogen peroxideand heteropolyanion catalysis[J]. J. Mol. Catal. A: Chem.,1997,117:397-403
    [105] Te M, Fairbridge C, Ring Z, Oxidation reactivities of dibenzothiophenes inpolyoxometalate/H2O2and formic acid/H2O2systems[J]. Appl Catal A: Gen.,2001,219:267-280
    [106] Tam P S, Kittrell J R, Eldridge J W, Desulfurization of fuel oil by oxidation and extraction.1.Enhancement of extraction oil yield[J]. Ind. Eng. Chem. Res.,1990,29:321-324
    [107] Yu G X, Lu S X, Chen H, et al. Diesel fuel desulfurization with hydrogen peroxide promotedby formic acid and catalyzed by activated carbon[J]. Carbon,2005,43:2285-2294
    [108] Al-Shahrani F, Xiao T C, Llewellyn S A, et al. Desulfurization of diesel via the H2O2oxidation of aromatic sulfides to sulfones using a tungstate catalyst[J]. Appl. Catal. B:Environ.,2007,73:311-316
    [109] Shiraishi Y, Tachibana K, Hirai T, et al. Desulfurization and denitrogenation process for lightoils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind. Eng. Chem.Res.,2002,41:4362-4375
    [110] Kozhevnikova E F, Kozhevnikov I V. A calorimetric study of the acidity of bulk andsilica-supported heteropoly acid H3PW12O40[J]. J. Catal.,2004,224:164-169
    [111] Toufaily J, Soulard M, Guth J L, et al. Synthesis and characterization of new catalysts formedby direct incorporation of heteropolyacids into organized mesoporous silica [J]. Colloids Surf.A: Physicochem. Eng. Aspects,2008,316:285-291
    [112] Ajaikumar S, Pandurangan A. HPW and supported HPW catalyzed condensation of aromaticaldehydes with aniline: Synthesis of DATPM derivatives[J]. J. Mol. Catal. A: Chem.,2008,286:21-30
    [113] Kong L Y, Li G, Wang X S, et al. Oxidative Desulfurization of Organic Sulfur in Gasolineover Ag/TS-1[J]. Energy Fuels,2006,20:896-902
    [114] Shiraishi Y, Tachibana K, Hirai T, et al. Desulfurization and denitrogenation processfor lightoils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind. Eng. Chem.Res.2002,41:4362-4375
    [115] Campos-Martin J M, Capel-Sanchez M C, Perez-Presas P, et al. Oxidative processes ofdesulfurization of liquid fuels.[J]. J. Chem. Technol Biotechnol.,2010,85:879-890
    [116] Jiang X, Li H M, Zhu W S, et al. Deep desulfurization of fuels catalyzed by surfactant-typedecatungstates using H2O2as oxidant[J]. Fuel,2009,88:431-436
    [117] Trakarnpruk W, Rujiraworawut K. Oxidative desulfurization of Gas oil by polyoxometalatescatalysts[J]. Fuel Processing Technol.,2009,90:411-414
    [118] Asma T S, Li B S,Zaki E A A. Direct synthesis of Ti containing SBA-16type mesoporousmaterial by evaporation-induced self-assembly method and its catalytic performance foroxidative desulfurization[J]. J. Colloid Interface Sci.,2009,336:707-711
    [119] Campos-Martin, J M.; Capel-Sanchez, M C.; Fierro, J L G. Highly efficient deepdesulfurization of fuels by chemical oxidation[J]. Green Chem.,2004,6:557-562
    [120] Li C, Jiang Z X, Gao J B. Ultra-deep desulfurization of diesel: Oxidation with a recoverablecatalyst assembled in emulsion[J]. Chem. Euro. J.2004,10:2277-2280
    [121] Li C, Gao J B, Jiang Z X, et al. Selective oxidations on recoverable catalysts assembled inemulsions[J]. Top. Catal.,2005,35:169-175
    [122] Lü H Y, Gao J, Jiang Z X,et al. Ultra-deep desulfurization of diesel by selective oxidationwith [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets[J]. J. Catal.,2006,239:369-375
    [123] Gao J B, Wang S G, Jiang Z X, et al. Deep desulfurization from fuel oil via selectiveoxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets[J]. J.Mol. Catal. A: Chem.,2006,258:261-266
    [124] Huang D, Zhai Z, Lu Y C,et al. Optimization of composition of a directly combined catalystin dibenzothiophene oxidation for deep desulfurization[J]. Ind. Eng. Chem. Res.,2007,46:1447-1451
    [125]方新湘,张有林,秦本记,等.汽油微生物固定化细胞脱硫技术[J].化工进展,2007,26(1):51-55
    [126] Villasenor F, Loera O, Campero A, et al. Oxidation of dibenzothiophene by laccase orhydrogen peroxide and deep desulfurization of diesel fuel by the later[J]. Fuel ProcessingTechnol.,2004,86:49-59
    [127]杨金荣,侯影飞,孔瑛,等.柴油臭氧氧化脱硫研究[J].石油大学学报,2002,26(4):84-89
    [128] Mei H. The feasibility study of desulfurization of diesel fuels by ultrasound assisted oxidativedesulfurization (UAOD)[D]. California/Los Angeles: University of Southern California,2003
    [129]商丽艳,李萍,赵杉林,等.微波辐射柴油氧化脱硫实验研究[J].科学技术与工程,2006,6(13):1901-1903
    [130]税蕾蕾,唐晓东,刘亮,等.柴油空气催化氧化脱硫的探索研究[J]工业催化,2003,11(9):1-4
    [131] Lu H., Gao J, Jiang Z, et al. Oxidation desulfurization of dibenzothiophene with molecularoxygen using emulsion catalysis[J]. Chem. Commun.,2007,150-152
    [132]孙兰兰,刘淑芝,王宝辉.轻质燃料油脱硫技术研究进展[J].化工时代,2006,20(4):60-64
    [133]李发堂,赵地顺,张丽英,等.亲油性纳米TiO2的合成及其光催化氧化催化裂化汽油脱硫的研究[J].现代化工增刊,2006,26(2):157-15
    [134] Hiroaki T, Tetsuya No, Shinya S. Energy-efficient ultra-deep desulfurization of kerosenebased on selective photooxidation and adsorption[J]. Fuel,2009,88:1961-1969
    [1] Ishida H, Campbell S, Blackwell J, Microstructure of cesium hydrogen salts of12-tungstophosphoric acid relevant to novel acid catalysis[J]. Chem. Mater.,2000,12,1260-1267
    [2] Horch R A, Golden T D, D’Souza N A, et al. General Approach to NanocompositePreparation[J]. Chem. Mater.,2002,14,3531-3538
    [3] Zhu H Y, Lu G Q, Engineering the Structures of Nanoporous Clays with Micelles of AlkylPolyether Surfactants[J]. Langmuir,2001,17,588-594
    [4] Zhu H Y, Zhao J C, Liu J W, et al. General Synthesis of a Mesoporous Composite of MetalOxide and Silicate Nanoparticles from a Metal Salt and Laponite Suspension for Catalysis [J].Chem. Mater.,2006,18,3993-4001
    [5] Ahenach J, Cool P, Vansant E F, Enhanced acidity created upon Al-grafting Br nsted ofporous clay heterostructures via aluminium acetylacetonate adsorption[J]. Phys. Chem. Chem.Phys.,2000,2(24):5750-5755
    [6] Pinnavaia T J, Landau S D, Tzou M S, Layer Cross-linking in pillared clays[J]. J. Am. Chem.Soc.,1985,107,7222-7224
    [7] Ganapati D Y, Ginish G. Single step synthesis of4-hydroxybenzophenone via esterificationand Fries rearrangement: Novelty of cesium substituted heteropoly acid supported on clay[J]. J.Mol. Catal. A: Chem.,2008,292:54-61
    [8] Ganapati D Y, Omprakash V B. Selective acylation of1,3-dibenzyloxybenzene to3,5-dibenzyloxyacetophenone over cesium modified dodecatungstophosphoric acid (DTP) onclay[J]. Appl. Catal. A: Gen.,2008,348:16-25
    [9] Bokade V V, Deshpande S S, Patil R, S. et al. Toluene Alkylation with Methanol to p-Xyleneover Heteropoly Acids Supported by Clay [J]. J. Natural Gas Chem.,2007,16:42-45
    [10] Ganapati D Y, Sanket S S, Navinchandra S A. Selectivity engineering in isopropylation ofbenzene to cumene over cesium substituted dodecatungstophoshoric acid on K-10clay[J].Appl. Catal. A: Gen.,2004,265:153-159
    [11] Vijay V B, Ganapati D Y. Heteropolyacid supported on acidic clay: A novel efficient catalystfor alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8aromatics[J]. J. Mol. Catal. A: Chem.,2008,285:155-161
    [12] Miyaji A, Echizen T, Nagata K, et al. Selective hydroisomerization of n-pentane to isopentane overhighly dispersed Pd-H4SiW12O40/SiO2[J]. J. Mol. Catal. A: Chem.,2003,201:145-153
    [13] Sugii T, Ohnishi R, Zhang J, et al. Acidity-attenuated heteropolyacid catalysts: Aciditymeasurement using benzonitrile-TPD and catalytic performance in the skeletal isomerization ofn-heptane[J]. Catal. Today,2006,116:179-183
    [14] Xia Q H, Hidajat K, Kawi S. Structure, Acidity, and Catalytic Activity of Mesoporous AcidCatalysts for the Gas-Phase Synthesis of MTBE from MeOH and ButOH[J]. J. Catal.,2002,209:433-444
    [15] Pluta M, Galeski A, Alexandre M, et al. Polylactide/Montmorillonite nanocomposites andmicrocomposites prepared by melt blending: structure and some physical properties[J]. J. Appl.Polym. Sci.,2002,86:1497-1506
    [16] Occelli M L. Catalytic Cracking with an Interlayered Clay. A Two-Dimensional MolecularSieve[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22:553-559
    [17] Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. J. Mol.Catal. A: Chem.,2007,262:86-92
    [18] Ajaikumar S, Pandurangan A. HPW and supported HPW catalyzed condensation of aromaticaldehydes with aniline: Synthesis of DATPM derivatives[J]. J. Mol. Catal. A: Chem.,2008,286:21-30
    [19] Hu L H. Ji S F, Jiang Z, et al. Direct Synthesis and Structural Characteristics of OrderedSBA-15Mesoporous Silica Containing Tungsten Oxides and Tungsten Carbides[J]. J. Phys.Chem. C.,2007,111:15173-15184
    [20] Rocchiccioli-Deltcheff C, Foumier M, Frank R, Vibrational Investigations ofPolyoxometalates.2. Evidence for Anion-Anion Interactions in Molybdenum(VI) andTungsten(VI) Compounds Related to the Keggin Structure[J]. Inorg. Chem.,1983,22:207-216
    [21] Bordoloi A, Lefebvre F, Halligudi S B. Selective oxidation of anthracene usinginorganic-organic hybrid materials based on molybdovanadophosphoric acids[J]. J. Catal.,2007,247:166-175
    [22] Rojas F, Kornhauser I, Felipe C. Capillary condensation in heterogeneous mesoporousnetworks consisting of variable connectivity and pore-size correlation[J]. Phys. Chem.Chem.Phys.,2002,4:2346-2355
    [23] Gagea B, Lorgouilloux Y, Altintas Y, et al. Bifunctional conversion of n-decane over HPWheteropoly acid incorporated into SBA-15during synthesis[J]. J. Catal.2009,265:99-108
    [24] Mao H H, Li B S, Li X, et al. Mesoporous nickel containing silica-pillared clays (Ni-SPC):Synthesis, characterization and catalytic behavior for cracking of plant asphalt[J]. Catal.Commun.,2009,10:975-980
    [25] Lopez-Salinas E, Hernandez-Cortez J G, Schifter I, et al. Thermal stability of12-tungstophosphoric acid supported on zirconia[J]. Appl. Catal. A: Gen.,2000,193:215-225
    [26] Damyanova S, Dimitrov L, Mariscal R, et al. Immobilization of12-molybdophosphoric and12-tungstophosphoric acids on metal-substituted hexagonal mesoporous silica[J]. Appl. Catal.A: Gen.,2003,256:183-197
    [27] Hamad H, Soulard M, Lebeau B, et al. A new way for deNOxcatalyst preparation: Directincorporation of12-tungstophosphoric acid H3PW12O40and platinum into mesoporousmolecular sieves material[J]. J. Mol. Catal. A: Chem.,2007,278:53-63
    [28] Zaki E A A, Li B S, Asma T. Direct synthesis of mesoporous (C19H42N)4H3(PW11O39)/SiO2andits catalytic performance in oxidative desulfurization[J]. Colloids Surfaces A: Physicochem.Eng. Aspects,2009,341:86-92
    [29] Juan J C, Zhang J C, Yarmo M A.12-Tungstophosphoric acid supported on MCM-41foresterification of fatty acid under solvent-free condition[J]. J. Mol. Catal. A: Chem.2007,267:265-271
    [30] Ali M F, Al-Malki A, El-Ali B, et al. Deep desulphurization of gasoline and diesel fuels usingnon-hydrogen consuming techniques[J]. Fuel2006,85:1354-1363
    [1] Mao H H, Li B S, Li X, et al. Novel one-step synthesis route to ordered mesoporoussilica-pillared clay using cationic-anionic mixed-gallery templates[J]. Ind. Eng. Chem. Res.,2010,49:583-591
    [2] Pluta M, Galeski A, Alexandre M, et al. Polylactide/Montmorillonite nanocomposites andmicrocomposites prepared by melt blending: structure and some physical properties[J]. J.Appl. Polym. Sci.2002,86:1497-1506
    [3] Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. J. Mol.Catal. A: Chem.,2007,262:86-92
    [4] Ajaikumar S, Pandurangan A. HPW and supported HPW catalyzed condensation of aromaticaldehydes with aniline: Synthesis of DATPM derivatives[J]. J. Mol. Catal. A: Chem.,2008,286:21-30
    [5] Hu L H. Ji S F, Jiang Z, et al. Direct Synthesis and Structural Characteristics of OrderedSBA-15Mesoporous Silica Containing Tungsten Oxides and Tungsten Carbides[J]. J. Phys.Chem. C.,2007,111:15173-15184
    [6] Rocchiccioli-Deltcheff C, Foumier M, Frank R, Vibrational Investigations ofPolyoxometalates.2. Evidence for Anion-Anion Interactions in Molybdenum(VI) andTungsten(VI) Compounds Related to the Keggin Structure[J]. Inorg. Chem.,1983,22:207-216
    [7] Bordoloi A, Lefebvre F, Halligudi S B. Selective oxidation of anthracene usinginorganic-organic hybrid materials based on molybdovanadophosphoric acids[J]. J. Catal.,2007,247:166-175
    [8] Rojas F, Kornhauser I, Felipe C. Capillary condensation in heterogeneous mesoporousnetworks consisting of variable connectivity and pore-size correlation[J]. Phys. Chem. Chem.Phys.,2002,4:2346-2355
    [9] Gagea B, Lorgouilloux Y, Altintas Y, et al. Bifunctional conversion of n-decane over HPWheteropoly acid incorporated into SBA-15during synthesis[J]. J. Catal.,2009,265:99-108
    [10] Mao H H, Li B S, Li X, et al. Mesoporous nickel containing silica-pillared clays (Ni-SPC):Synthesis, characterization and catalytic behavior for cracking of plant asphalt[J]. Catal.Commun.,2009,10:975-980
    [1] F. Zonnevijlle, C. M. Tourné, G. F. Tourné, Preparation and characterization of iron(III)-andrhodium(III)-containing heteropolytungstates. Identification of novel oxo-bridged iron(III)dimmers[J]. Inorg. Chem.,1982,21:2751-2757
    [2] L. R. Pizzio, M. N. Blanco, Preparation and characterization of transition metal-modifiedlacunary Keggin11-tungstophosphates supported on carbon[J]. Mater. Letters,2007,61:719-724
    [3] Pluta M, Galeski A, Alexandre M, et al. Polylactide/Montmorillonite nanocomposites andmicrocomposites prepared by melt blending: structure and some physical properties[J]. J. Appl.Polym. Sci.,2002,86:1497-1506
    [4] Occelli M L. Catalytic Cracking with an Interlayered Clay. A Two-Dimensional MolecularSieve[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22:553-559
    [5] Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. J. Mol.Catal. A: Chem.,2007,262:86-92
    [6] Ajaikumar S, Pandurangan A. HPW and supported HPW catalyzed condensation of aromaticaldehydes with aniline: Synthesis of DATPM derivatives[J]. J. Mol. Catal. A: Chem.,2008,286:21-30
    [7] Pizzio L R, Blanco M N. Preparation and characterization of transition metal-modified lacunaryKeggin11-tungstophosphates supported on carbon[J]. Mater. Letters,2007,61:719-724
    [8] Zhang Y N, Lü H Y, Wang L, et al. The oxidation of benzothiophene using the Keggin-typelacunary polytungstophosphate as catalysts in emulsion[J]. J. Mol. Catal. A: Chem.,2010,332:59-64
    [9] Ahenach J, Cool P, Vansant E F. Enhanced acidity created upon Al-grafting Br nsted of porousclay heterostructures via aluminium acetylacetonate adsorption[J]. Phys. Chem. Chem. Phys.,2000,2(24):5750-5755
    [10] Rocchiccioli D C, Foumier M, Frank R, Vibrational Investigations of Polyoxometalates.2.Evidence for Anion-Anion Interactions in Molybdenum(VI) and Tungsten(VI) CompoundsRelated to the Keggin Structure[J]. Inorg. Chem.,1983,22:207-216
    [11] Hu L H. Ji S F, Jiang Z, et al. Direct Synthesis and Structural Characteristics of OrderedSBA-15Mesoporous Silica Containing Tungsten Oxides and Tungsten Carbides[J]. J. Phys.Chem. C.,2007,111:15173-15184
    [12] Rojas F, Kornhauser I, Felipe C. Capillary condensation in heterogeneous mesoporousnetworks consisting of variable connectivity and pore-size correlation[J]. Phys. Chem. Chem.Phys.,2002,4:2346-2355
    [13] Gagea B, Lorgouilloux Y, Altintas Y, et al. Bifunctional conversion of n-decane over HPWheteropoly acid incorporated into SBA-15during synthesis[J]. J. Catal.,2009,265:99-108
    [14] Mao H H, Li B S, Li X, et al. Synthesis of silica-pillared clay (SPC) with ordered mesoporousstructure by one-step method without preswelling process[J]. Appl. Surf. Sci.,2009,255:4787-4791
    [1] Sulikowski B, HaberJ, Kubaeka A,“Ship in the Bottle”type catalyst:evidence for encapsulationof12-tungstophosphoric acid in the supercage of synthetic faujasite[J]. Catal. Lett.,1996,39(1-2):27-31
    [2] Xia Q H, Hidajat K, Kawi S. Structure, Acidity, and Catalytic Activity of Mesoporous AcidCatalysts for the Gas-Phase Synthesis of MTBE from MeOH and ButOH[J]. J. Catal.,2002,209:433-444
    [3] Miyaji A, Echizen T, Nagata K, et al. Selective hydroisomerization of n-pentane to isopentane overhighly dispersed Pd-H4SiW12O40/SiO2[J]. J. Mol. Catal. A: Chem.,2003,201:145-153
    [4] Sugii T, Ohnishi R, Zhang J, et al. Acidity-attenuated heteropolyacid catalysts: Aciditymeasurement using benzonitrile-TPD and catalytic performance in the skeletal isomerization ofn-heptane[J]. Catal. Today,2006,116:179-183
    [5] Pluta M, Galeski A, Alexandre M, et al. Polylactide/Montmorillonite nanocomposites andmicrocomposites prepared by melt blending: structure and some physical properties[J]. J. Appl.Polym. Sci.,2002,86:1497-1506
    [6] Occelli M L. Catalytic Cracking with an Interlayered Clay. A Two-Dimensional MolecularSieve[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22:553-559
    [7] Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. J. Mol.Catal. A: Chem.,2007,262:86-92
    [8] Ajaikumar S, Pandurangan A. HPW and supported HPW catalyzed condensation of aromaticaldehydes with aniline: Synthesis of DATPM derivatives[J]. J. Mol. Catal. A: Chem.,2008,286:21-30
    [9] Hu L H. Ji S F, Jiang Z, et al. Direct Synthesis and Structural Characteristics of OrderedSBA-15Mesoporous Silica Containing Tungsten Oxides and Tungsten Carbides[J]. J. Phys.Chem. C.,2007,111:15173-15184
    [10] Rocchiccioli-Deltcheff C, Foumier M, Frank R, Vibrational Investigations ofPolyoxometalates.2. Evidence for Anion-Anion Interactions in Molybdenum(VI) andTungsten(VI) Compounds Related to the Keggin Structure[J]. Inorg. Chem.,1983,22:207-216
    [11] Bordoloi A, Lefebvre F, Halligudi S B. Selective oxidation of anthracene usinginorganic-organic hybrid materials based on molybdovanadophosphoric acids[J]. J. Catal.,2007,247:166-175
    [12] Rojas F, Kornhauser I, Felipe C. Capillary condensation in heterogeneous mesoporousnetworks consisting of variable connectivity and pore-size correlation[J]. Phys. Chem. Chem.Phys.,2002,4:2346-2355
    [13] Gagea B, Lorgouilloux Y, Altintas Y, et al. Bifunctional conversion of n-decane over HPWheteropoly acid incorporated into SBA-15during synthesis[J]. J. Catal.,2009,265:99-108
    [14] Mao H H, Li B S, Li X, et al. Synthesis of silica-pillared clay (SPC) with ordered mesoporousstructure by one-step method without preswelling process[J]. Appl. Surf. Sci.2009,255:4787-4791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700