用户名: 密码: 验证码:
九龙江口的浮游植物群落以及主要产毒素赤潮种的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口生态系统位于河流生态系统与海洋生态系统的交汇处,海陆间的交互作用使得河口生态系统具有独特的环境特征和重要的生态服务功能。河口生态系统的主要特征包括:1)河口区是限于海洋潮汐涨落区内的水域;2)随着沿海工农业和城市人口的增加,河口区成为人类活动十分频繁的区域;3)河口是陆源污染物质主要集散地带;4)河口环境变化剧烈,特别是盐度和化学要素对环境影响较大;5)河口拥有丰富的生物资源,有来自上游淡水河川的生物群落,有河口特有生物群落和进入河口区的海洋生物资源;6)河口是上溯和下降鱼类及其他经济动物的主要通道或短暂停留地;7)河口是重要经济生物的重要繁育和保护区。因此,河口生态系统是相对脆弱的生态系统,同时对于海洋经济、生态、社会、人文的长期发展至关重要,所以有必要了解河口生态系统的状况与变化,从而为有效保护河口生态系统、保障其可持续利用提供科学支撑。
     在当前情况下,随着流域与河口区域的经济与开发的迅猛发展,大量过剩的营养被流入了河口水域,造成了全球大多数河口区域的富营养化现象。富营养化的后果包括:1)形成赤潮,特别是产毒素的赤潮,危害食物链上层生物的健康,影响人的健康与资源安全;2)造成某些局部区域的缺氧,造成鱼类的直接死亡,影响人的资源安全;3)引起河口浮游植物群落的变化,从而引起上层食物链生物的营养结构变化,造成人的营养不良,影响人的健康安全。与此同时,国内外大量的研究表明,浮游植物是有机物的生产者,在营养盐收支动态平衡过程中起着重要的调节作用,其群落组成及现存量的任何变化都能敏感地反映复杂的环境要素的变动,因此,浮游植物的丰度与群落组成变化是非常有效的水质评估参数,这些参数能够非常有效地指示河口区的营养变化状况。
     基于此,有必要对河口水域的浮游植物群落以及主要产毒素赤潮种的变化展开较为详细的研究,探讨与评估环境因子要素变化对河口生态系统的影响,并提出相应的应对措施与调控机制,以确保河口的生态安全以及人类的安全。
     本论文应用高效液相色谱法(HPLC)对2009年8月(丰水期)与11月(枯水期)两个航次九龙江口18个站位的海水样品中浮游植物色素进行了测定,以此探究该海域浮游植物群落的组成;并应用实时荧光定量PCR技术(RFQ-PCR)对2009年5月(丰水期),8月(平水期)与11月(枯水期)三个航次主要产毒素赤潮种的变化展开了较为详细的研究。通过这两种技术对九龙江口浮游植物群落以及主要产毒素赤潮种的变化研究,来探讨与评估流域营养对河口生态系统的影响,并提出相应的应对措施与调控机制。主要结果如下:
     1.高效液相色谱(HPLC)实验结果:
     (1)色素的分布:九龙江口的主要特征色素有多甲藻素(PERI)、岩藻黄素(FUCO)、别藻黄素(ALLO)、玉米黄素(ZEA)。FUCO含量较高,且分布较均匀。PERI的分布不连续,在多数站位的含量低于检出限,但是一经检出,浓度一般都很高(最高值达0.43μg/L)。站位间的色素的空间分布在不同季节有明显的不同,色素的浓度差异明显,色素的浓度与组成反映出不同季节不同浮游植物的波动或不均匀分布。
     (2)九龙江口的浮游植物群落结构:九龙江流域的浮游植物主体是硅藻类,隐藻次之,甲藻和蓝藻较少。九龙江流域浮游植物种类不多,站间差异大,上游水域的种类组成显著有别于下游河口区及厦门西港海域。
     2.实时定量PCR(RFQ-PCR)实验结果:
     九龙江入海口水域应作为米氏凯伦藻赤潮监测的重点区域,该藻检出的最高值达到了23845 cell/L。红色裸甲藻和球形棕囊藻在九龙江口海域还不足以构成赤潮威胁。
     综合以上实验结果,分析了流域营养对河口区浮游植物生态环境的影响,针对影响浮游植物群落结构的主要因素,提出了改善九龙江口生态状况的应对措施与调控机制,以期为流域管理提供理论依据,促进九龙江口生态系统的可持续发展。
Estuarine ecosystems are attacting more and more concerns in recent years. An estuary is a partially enclosed body of water along the coast where freshwater from rivers and streams meet and mix with salt water from the ocean, and this water provides diverse and valuable services to human beings. The major characteristics of estuarine ecosystem include: 1) estuarine waters lies within tidal area; 2) more and more human disturbances occur in this area; 3) the filtration process in this area creates cleaner and clearer water, which benefits both people and marine life; 4) this area is easily and strongly affected by changes in salinity and chemical parameters etc.; 5) estuarine environment is among the most productive on earth, and the productivity and variety of estuarine habitats foster a wonderful abundance and diversity of wildlife; 6) this area provides ideal areas for migratory animals to rest and refuel during their long journeys; and 7) estuary provides shelter waters as protected places for many species of fish and wildlife to spawn. So, estuarine ecosystem is vital to human beings but vulnerable, and it is necessary to understand this ecosystem’s structure and function, which will help to support our decision in protection measures.
     Nowadays, more and more human activities occurred along the river and around the estuary, and nutrients were overloaded in estuarine area, resulting severe eutrophication. The consequrences of eutrophication include: 1) red tide, especially harmful algal blooming (HAB), causing food safety and human health problems; 2) hypoxia, resulting losses in fishery and mariculture; 3) changes in phytoplankton community, leading to changes in the whole ecosystem through food web. At the same time, as the primary producers, phytoplankton plays vital roles in the balance of ecosystem’s nutrients, and community composition and biomass respond sensitively to complex environmental parameter changes. Now, it is widely acceptable that phytoplankton abundance and diversity can be used as the indicators for water quality and eutrophication.
     Therefore, this research aimed to study the phytoplankton community and harmful agal species in estuarine area, and assess the effects from environmental parameter changes. Based on these, protection and management measures were proposed.
     Seawater samples were collected from 18 sites in Jiulongjiang Estuary, Xiamen, Fujian Province, China in May, August and Novebmer, 2009. Phytoplankton pigment analyses were conducted for samples collected in August and November, 2009 by high-performance liquid chromatography (HPLC), in order to explore the phytoplankton community composition. We have also launched a more detailed study about changes of HAB species in May, August and November of 2009 by real-time fluorescent quantitatie polymerase chain reaction technology (RFQ-PCR). Results were as follows:
     1. Results of high performance liquid chromatography (HPLC):
     (1) Pigment analyses: the main featured pigments of Jiulongjiang estuary were peridinin (PERI), fucoxanthin (FUCO), alloxanthin (ALLO) and zeaxanthin (ZEA). The content of FUCO was the highest but distributed unevenly. The distribution of PERI is discontinuous. The content of PERI was below detection limit in most sites, but concentration was generally high when above detection limit(the maximum of detected was 0.43μg/L). The spatial distribution patterns of the pigment varied distinctively with different seasons, and seasonal pigment concentration changes were also found in each sampling site.
     (2) Phytoplankton community structure of Jiulongjiang Estuary: the predominant
     phytoplankton in Jiulongjiang Estuary was bacillariophyceae, then chryptophyceae. Dinophyceae and cyanophyceae were very few. Phytoplankton species diversity of Jiulongjiang Estuary was low and varied in different stites. The phytoplankton species composition in near-river waters was different from that in away-from-river waters and Xiamen west water.
     2. Results of real-time fluorescent quantitatie polymerase chain reaction (RFQ-PCR):
     HAB species with toxin production, Gymnodinium mikimotoi was detected with the maximum density of 23845 cell/l in Jiulongjiang estuary waters, and therefore more attention should be paid to this species including monitoring efforts. Cymnodinium sanguineum and Phaeocystis globosa were not enough to form a red tide event in Jiulongjiang estuary as found in this study.
     Conclusively, the phytoplankton and red tide algae results indicated that Jiulongjiang Estuarine ecosystem was under healthy state, and more attention should paid to nutrient loading either from river or the area around the estuary.
引文
Albay M & R Akcaalan. Factors influeneing the Phytoplankton steady state assemblages in a drinking-wate reservoir. Hydrobiologia, 2003, 502:85-95.
    Andersen, RA, Saunders GW, Paskind MP et al.Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. Journal of Phycology, 1993, 29: 701-715.
    Andersen, RA, Bidigare, RR, Keller, MD et al. A comparison of HPLC pigment signatures and electron microscopic observations for Oligotrophic waters of the North Atlantic and Pacific Oceans. Deep Sea Research II: Topical Studies in Oceanography, 1996, 43(2-3): 517-537.
    Bowers HA, Tengs T, Glasgow HB et al. Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related Dinoflagellates. Applied and Environmental Microbiology, 2000, 66(11):4641-4648.
    Brown, LM, Hargrave, BT and MacKinnon, MD, Analysis of chlorophyll a in sediments by high-pressure liquid chromatography. Can. J. fish.Aquat.Sci., 1981,38: 205-214.
    Chavez FP, Buck KR, Barber RT. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep-Sea Research II, 1990, 37:1733-1752.
    Darley WM, Algal biology: a physiological approach. Blackwel Scientific Publications, 1982, 45.
    Furuya K,Hayashi M,Yabushita Y.HPLC Determination of Phytoplankton Pigments Using N,N-Dimethyl-formamide.Journal of Oceanography, 1998, 54:199-203.
    Fukuyo Y, Takano H, Chihara M et al. Red Tide Organisms in Japan-An Illustrated Taxonomic Guide. Vchida Rokakuho, 1990, 52-53.
    Gieskes WW, Kraay GW. Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Marine Biology, 1983, 75(2-3):179-185.
    He SY, Yu ZG.. A real time PCR method for rapid detection of Gymnodinium sanguineum. Journal of Zhe jiang University ( Agric & Life Sci ), 2009, 35( 2) :119-126.
    Hobbie John E. Estuary science: A synthetic approach to research and practice. Washington D C: Island Press, 2000.
    Hsiu-Ping Li,Gwo-Ching Gong,Tung-Ming Hsiung.Phytoplankton pigment analysis by HPLC and its application in algal community investigations.Botanical Bulletia of Academy Sinica, 2002, 43:283-290.
    Iturriaga R, Mitchell BG. Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Marine Ecology Progress Series, 1986, 28:291-297.
    Jacobsen, TR. A quantitative method for the separation of chlorophylls a and b from phytoplankton pigments by high pressure liquid chromatography. Mar.Sci.Commun, 1978, 4: 33-47.
    Jeffrey, SW and G.F. Humphrey. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 1975, 167:191-194.
    Jeffery, SW. algal pigment system.In P.G. Falkowski eds. Primary productivity in the sea. Plenum Press, New York, 1980, 33-58.
    Jeffrey, SW and M. Vest.. Introduction to marine phytoplankton and their pigment signatures. In S.W. Jeffrey, R.F.C. Mantoura, and S.W. Wright (eds.) , Phytoplankton Pigments in Oceanography, UNESCO, Paris, 1997, 37-84.
    Jeffrey, S.W., S.W. Wright, and M. Zapata. Recent advances in HPLC pigment analysis of phytoplankton. Mar. Freshwater Res, 1999, 50: 879-896.
    Joanna S. Qualitative and quantitative analysis of Baltic phytoplankton pigments. Oceanologia, 2000, 42(4): 449-471.
    Kraay, G.W, Zapata, M and MJW Veldhuis. Separation of chlorophylls c1,c2 and c3 of marine phytoplankton by reversed-phase-C18-high-performance liquid chromatography. Journal of Phycology, 1992, 28:708-712.
    Kamikawa R, Asai J, Miyahara T et al. Application of Real-time PCR Assay to a Comprehensive Method of Monitoring Harmful Algae. Microbes Environ, 2006, 21(3):163-173.
    Kim HG, Park JS,Lee SG et al. Illustration of planktons responsible for the blooms in Korean coastal water. National Fisheries Research & Development Agency, Republic of Korean, 1993, 40.
    Langdon PE, Ruiz ZO & Brodersen KL et al. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology,2006, 51(3):562-577.
    Laurie VH, Crypstal ST. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography, 2001, 910:31-49.
    Letelier R M,Bidigare R R,Hebel D V et a1.Temporal variability of phytoplankton community structure based on pigment analysis. Limnology and Oceanography,1993,38:1420-1437.
    Li WKW, Subba-Rao DV, Harrison WG et al. Autotrophic picoplankton in the tropical ocean. Science, 1983,219:292-295.
    Luca Galluzzi, Antonella Penna, Elena Bertozzini et al. Development of a Real-Time PCR Assay for Rapid Detection and Quantification of Alexandrium minutum (a Dinoflagellate). Applied and Environmental Microbiology, 2004, 70(2): 1199–1206.
    Mackey DJ,Blanchot J, Higgins HW et a1. Phytoplankton abundances and community structure in the equatorial Pacific. Deep-Sea Research II.2002, 49:2561-2582.
    Mackey MD,Mackey DJ,Higgins HW et a1.CHEMTAX-A program for estimating class abundances from chemical markers:Application to HPLC measurements of phytoplankton.Marine Ecology Progress Series,1996, l44:265-283.
    Mantoura, RFC and Llewellyn CA. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high-performance liquid chromatography. Analytica Chimica Acta, 1983, 151: 297-314.
    Millie, DF, HW Paerl, JP Hurley and GJ Kirkpatrick. Algal pigment determinations in aquatic ecosystems: analytical evaluations, applications and recommendations. Current Topics Bot. Res, 1993, 1: 1-13.
    Nathalie D, Axelle D, Véronique S et al. Quantification of Human immunodeficiency virus type I proviral load by a TaqMan real-time PCR assay. Journal of Clinical Microbiol, 2001, 39(4):1303-1310.
    NegroAL, Hoyos CD, Vega JC. Phytoplankton strueture and dynamics in Lake Sanabria and ValParaiso reservoir. Hydrobiologia, 2000, 424:25-37.
    Platt T, Subba Rao DV, Irwin B. Photosynthesis of picoplankton in the oligotrophic ocean. Nature, 1983, 301:702-704.
    Qi YZ, Zhang JP, Hong Y et al. Occurrence of red tides on the coasts of China. In: Smayda TJ,Shimizu Y(eds). Toxic Phytoplankton bloom in the sea. Amsterdam:Elsevier Science Publishers, 1993, 43-46.
    Rajeshwar PS, Margit D, Donat PH. A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae. Acta Protozoologica, 2001, 40:187-195.
    Reynolds CS, Phytoplankton periodicity:the interactions of form, function and environmental variability. Freshwater Biology, 1984, 14:111-142.
    ROY, S, Gosselin, F-P.M. & Sime-Ngando,T. Characteizaion of phytoplankton communities in the lower ST. Laxrence Estrary using HPLC-detected pigments and cell microscopy. Marine Ecology Progress Series, 1996, 142(1-3):55-73.
    Schluter L, Mohlenberg F, Havskum H, et al. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: Testing the influence of light and nutrients on pigment/ chlorophyll a ratios. Marine Ecology Progress Series, 2000, 192: 49-63.
    Shen ZL. Historical Changes in Nutrient Structure and its Influences on phytoplankton composition in Jiaozhou Bay. Estuarine Coastal and Shelf Science, 2001, 52: 211-224.
    Sieburth JM, Smetacek V& Lenz J. Pelagic ecosystem structure:Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanography, 1978, 23:1256-1263.
    Simon N, Barlow RG, Marie D et al. Characterization of oceanic photosynthetic picoeukaryotes by flow cytometry. Journal of Phycology, 1994, 30: 922-935.
    Sournia A. Red tide and marine phytoplankton of the world ocean: an inquiry into biodiversity. In: Lassus P, Arzul G, Denn E et al. Harmful Marine Algal Blooms. London, New York, Paris: Technique& Documentation-Lavoisier/Andover, England UK: Intercept Ltd, 1995, 103-112.
    Stauber, JL and Jeffrey SW. Photosynthetic pigments in fifty-one species of marine diatoms. Journal of Phycology, 1988, 24:158-172.
    Steidinger KA, Tangen K. Identifying marine diatoms and dinoflagellates. San Diego: Academic Press Inc, 1996, 387-584.
    Suzuki, R, Takahashi M, Furuya K and Ishimaru T. Simplified Technique for the RapidDetermination of Phytoplankton Pigments by Reverse-Phase High-Performance Liquid Chromatography. Journal of Oceanography, 1993, 49:571-580.
    Tomasky G, Barak J, Valiela J et al. Nutrient limitation of phytoplankton growth in Waquoit Bay, Massachusetts, USA; a nutrient enrichment study. Aquatic Ecology, 1999, 33: 147-155.
    Wright, SW and Sherarer, JD. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J.Chrmatogr, 1984, 294:281-295.
    Wright, SW and Jeffery, SW, Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Marine Ecology Progress Series, 1987, 38: 259-266.
    Zhou ZH, Miwa M And Hogetsu T. Analysis of genetic structure of a Suillus grevillei population in a Larix kaempferi stand by polymorphism of inter-simple sequence repeat (ISSR). New Phytol, 1999, 144:55-63.
    鲍磊.厦门西海域超微型真核浮游生物遗传多样性研究.厦门大学硕士学位论文,2006.
    蔡励勋.厦门海域赤潮发生规律初探.福建水产, 2008,(02):75-79.
    陈纪新.中国亚热带海域超微型浮游生物多样性研究.厦门大学博士学位论文, 2006 .
    陈纪新,黄邦钦,贾锡伟等.利用光合色素研究厦门海域超微型浮游植物群落结构.海洋环境科学,2003, 22(3):16-21.
    陈纪新,黄邦钦,刘媛等.应用特征光合色素研究东海和南海北部浮游植物的群落结构.地球科学进展,2006, 21(7):738-746.
    陈尚,朱明远,马艳等.富营养化对海洋生态系统的影响及其围格实验研究.地球科学进展,1999,14(6):571-576.
    戴荣继,佟斌,黄春,王蕾. HPLC测定饮用水中藻类叶绿素含量.北京理工大学学报, 2006,(01) .
    杜琦,张友权,高磊等.近年福建海域赤潮的特点及防治对策.福建水产, 2002(04):32-37.
    高洪峰,焦念志.通过藻类色素分析估测海洋浮游植物生物量和群落组成的研究进展. 中国科学院海洋研究所调查研究报告第2860号,1997.(3):51-54.
    高亚辉.海洋微藻分类生态及生物活性物质研究.厦门大学学报(自然科学版),2001,40(2):565-573.
    高亚辉,金德祥,程兆第.厦门港微型浮游生物叶绿素的分布和作用.海洋与湖沼, 1994,25(01):87-93.
    苟万里. rDNA序列在几种浮游植物的分类和中肋骨条藻定量检测中的应用.中国海洋大学博士学位论文, 2003 .
    国家海洋局.GB 17378.4-2007海洋监测规范第4部分:海水分析.北京:中国标准出版社,2008.
    国家海洋局.GB 17378.7-2007海洋监测规范第7部分:近海污染生态调查和生物监测..北京:中国标准出版社,2008.
    何闪英,程刚,苟万里等.运用荧光定量PCR技术检测中肋骨条藻的研究.高技术通讯. 2006,16(3):313-318.
    何闪英,于志刚.红色裸甲藻实时定量PCR快速检测方法的建立(英文).浙江大学学报(农业与生命科学版),2009, 35( 2) : 119-126.
    何闪英,吴小刚.赤潮研究中圆海链藻实时荧光定量PCR检测方法的建立.水产学报,2007,31(2):193-198.
    何学佳.厦门西海域浮游植物色素研究.厦门大学硕士学位论文,2003.
    何学佳,高亚辉,彭兴跃.应用光合色素标记物研究2001年2- 6月厦门西海域浮游植物群落结构.台湾海峡,2010, 29(2):228-233.
    胡晗华.测定浮游植物中色素的高效液相色谱与二极管阵列分光光度计联用的方法.植物生理学通讯,2003,39(6):658-660.
    侯建军.赤潮生物的分子探针检测方法及其应用研究.厦门大学博士学位论文, 2006.
    侯建军,黄辉,雷红灵等.厦门西海域裸甲藻和原甲藻赤潮的观察.中国水产科学, 2007,14( 6): 950-960.
    洪华生,林杰.厦门港、九龙江口海洋微表层营养盐、有机物、微量金属分布特征初探.海洋学报,1988,10(6):695-703.
    黄邦钦,洪华生.海洋微藻作为海洋生态环境的指示初探.海洋环境科学,1998,17(3):24-28.
    黄邦钦,林学举,洪华生.厦门西侧海域微微型浮游植物的时空分布及其调控机制.台湾海峡, 2000,19(03):329-336.
    黄长江,董巧,郑磊. 1997年底中国东南沿海大规模赤潮原因生物的形态分类与生态学特征. 海洋与湖沼, 1999,30(6):581-590.
    暨卫东,黄自强,黄尚高.厦门西海域水体富营养化与赤潮关系的研究.海洋学报,1996,18(1):51-59.
    姜海萍.河口富营养化及其与赤潮生态关系的研究.河海大学博士学位论文,2002.
    蓝虹,许昆灿,张世民,刘志勇,苏荣.厦门西海域一次中肋骨条藻赤潮与水文气象的关系. 海洋预报,2004,21(04):93-99.
    李佳霖.典型河口区沉积物的硝化和反硝化过程.中国海洋大学博士学位论文,2009.
    李刚.中国南海浮游植物光合固碳与阳光紫外辐射关系的研究.汕头大学博士学位论文, 2009 .
    李林川,林奇力.赤潮生物检测技术研究进展及应用前景.中国检验检疫.2008,(7):25-26.
    林金美.厦门西海域浮游植物的生态.台湾海峡, 1991,10(04):345-350.
    林更铭,杨清良,林金美.厦门岛周围海域浮游植物与环境因子的关系.海洋通报, 1993,12(06):40-45.
    林更铭,杨清良,林金美.厦门岛周围海域浮游植物的种类组成及丰度.台湾海峡, 1994,13(04):353-358.
    林辉,张元标.厦门西海域水质状况及其环境容量评估.台湾海峡,2008,27(02):214-220.
    刘春涛,刘秀洋,王璐.辽河河口生态系统健康评价初步研究.海洋开发与管理,2009, 26(3):43-48.
    刘佳.九龙江河口生态系统健康评价研究.厦门大学硕士学位论文,2008.
    刘广平,胡建宇,陈照章等.九龙江口-厦门湾表层盐度分布特征及其与潮汐的关系.厦门大学学报(自然科学版),2008,47(05):710-713.
    龙华,杜琦.福建沿海米氏凯伦藻赤潮的初步研究.福建水产,2005(04):22-26.
    罗慧.九龙江流域—河口—近海系统有机氯农药的来源、时空分布与入海通量.厦门大学硕士学位论,2009.
    马奇菊,胡敏,刘玲莉等.九龙江河口湾区冬季海水二甲基硫浓度的分布特征.环境科学, 2004,25(05):47-51.
    孟伟,王丽婧,郑丙辉等.河口区营养物基准制定方法.生态学报,2008,28(10):5133-5140.
    欧文霞.闽东沿岸海洋生态监控区生态系统健康评价与管理研究.厦门大学硕士学位论文,2006.
    彭涛,陈晓宏.海河流域典型河口生态系统健康评价.武汉大学学报(工学版),2009,42(5):631-635.
    彭喜春.球形棕囊藻溶血毒素及其生物合成机制的研究.华南理工大学博士学位论文, 2005.
    彭兴跃,洪海征,黄明等.厦门港海水光合色素特征.台湾海,2001,21(1):78-85. 齐雨藻等.中国沿海赤潮.北京:科学出版社,2003.
    秦昌波.天津海岸带生态系统健康评价研究.中国环境科学研究院硕士学位论文,2006.
    钦佩,左平,何祯祥.滨海系统生态学.北京:化学工业出版社,2004.170-193. 任广睦,刘季,王英元.实时荧光定量PCR技术应用于核酸定量检测的研究进展及展望. 山西医科大学学报, 2006,37(9):973-976.
    沈国英,施并章.海洋生态学(第二版).北京:科学出版社,2002.
    沈蕴芬,章宗涉等.微型生物监测新技术.北京:中国建设出版社,1990.
    孙炯辉.厦门九龙江河口及西港表层沉积物中PCDD/Fs、DL-PCBs的含量分布、组成及来源. 厦门大学硕士学位论文,2008.
    孙宁波.利用免疫学技术对三种赤潮藻的定性和定量研究.中国海洋大学硕士学位论文,2008.
    王海黎,洪华生,徐立.反相高效液相色谱法分离、测定海洋浮游植物的叶绿素和类胡萝卜素.海洋科学,1999,(4):6-9. 厦门市海洋环境质量公报(2003-2008年).
    肖笃宁,陈文波,郭福良.论生态安全的基本概念和研究内容.应用生态学报,2002,13(3):354-358.
    徐松立,黄邦钦.光合色素标记法测定不同类群浮游植物的光合速率和生长速率.台湾海峡,2010,29(4):478-487.
    徐智广.红藻龙须菜对太阳UV辐射的响应及其与氮、磷和碳浓度变化的关系.汕头大学博士学位论文,2010.
    许珠华,侯建军.福建沿岸海域赤潮发生特点及防治措施.台湾海峡,2006,25(1):143-149.
    宴荣军,尹平和.应用原子力显微镜研究盐度对棕囊藻生长的影响.海洋环境科学,2006, 25(1): 45-48.
    杨位迪.厦门港浮游动物对浮游植物的摄食压力研究.厦门大学硕士学位论文,2007.
    姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学,2003,22(1):75-80.
    姚炜民,潘晓东,华丹丹.浙江海域米氏凯伦藻赤潮成因的初步研究.水利渔业,2007, 27( 6): 57-76.
    姚云,沈志良.水域富营养化研究进展.海洋科学,2005,29(02):53-57.
    袁建平,张义明,史贤明等.高效液相色谱法测定藻类中的类胡萝卜素和叶绿素.色谱,1997,15(2):133-135.
    曾祥波.厦门西海域浮游植物不同色素类群的生长率和摄食死亡率的初步研究.长江大学学报(自科版)农学卷, 2007,4(04):35-39.
    赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进.中国组织化学与细胞化学杂志,2007,16(4):492-497.
    张福星,林建伟,崔培等.九龙江河口区三维盐度数值计算及分析.台湾海峡,2008,27(04):521-525.
    张贺,李波,周虚等.实时荧光定量PCR技术研究进展及应用.动物医学进展,2006, 27(157):5-12.
    张前前,王修林,祝陈坚.赤潮浮游植物种类和数量分析的研究进展.海洋环境科学,2004, 23(1):73-76.
    张祖麟.河口流域有机农药污染物的环境行为及其风险影响评价.厦门大学博士学位论文. 2001.
    郑重,陈柏云.九龙江口生态系统调查研究——绪论.厦门大学学报(自然科学版), 1982,(03). 中国海洋环境质量公报(2001 -2009年).
    周成江,周立社,吴刚等.实时荧光定量PCR的研究进展及其应用.包头医学院学报,2007,23(2):204-207.
    周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-60.
    周名江,朱明远.我国近海有害赤潮发生的生态学、海洋学机制及预防预测研究进展.地球科学进展,2006,21(7):673-679.
    朱晶晶.我国近海浮游植物色素的荧光光谱特征分析.中国海洋大学硕士学位论文,2006.
    邹景忠.赤潮生物与赤潮灾害.见:曾呈奎(主编).中国海洋科学研究及开发.青岛:青岛出版社,1992:284-287.
    朱晶晶,朱明远,杨桂朋.浮游植物光合色素的提取方法.山东科学,2006,19(4):1-5.
    周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700