用户名: 密码: 验证码:
考虑颗粒破碎的粗粒土本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗粒土具有压实性能好、填筑密度大、沉陷变形小、透水性强以及抗剪强度高等工程特性,广泛应用于土石坝、公路、铁路、机场、堤坝、房屋地基等建筑工程中。粗粒土在高应力水平下容易发生颗粒破碎,颗粒破碎直接改变土体结构,对土体的峰值强度、内摩擦角、剪胀性、渗透系数等工程特性均产生影响。随着高土石坝坝高的不断增加,作为主要筑坝材料的粗粒土承受的应力也越来越大,粗粒土的颗粒破碎现象则愈加显著。而传统的粗粒土本构模型并不考虑土体的颗粒破碎,已经不适合描述高应力水平下粗粒土的应力应变关系。本文在土体的能量平衡方程中引入颗粒破碎耗能,进而根据能量方程建立了考虑颗粒破碎的粗粒土本构模型。
     论文根据堆石料的三轴试验成果,研究了粗粒土三轴剪切过程中的颗粒破碎规律和破碎耗能,提出了相关计算公式。并结合三轴试验,根据剪切过程中的能量平衡关系,建立了考虑颗粒破碎影响的摩擦系数公式,确定了模型参数,验证了模型的有效性。
     论文研究了破碎参量的合理表达方式,并拟合试验数据,计算得到了破碎耗能与破碎参量的关系式。将破碎耗能引入剪切过程中的能量平衡方程,采用关联流动法则,推导得到了考虑颗粒破碎的屈服函数。研究确定了硬化规律,建立了本构模型。采用变异粒子群优化算法拟合试验数据,确定了模型参数。通过与试验曲线比较,认为提出的模型能够很好地反映粗粒土的应力-应变-体变关系。
     粗粒土剪切特性不仅受颗粒破碎的影响,而且受其内部状态的影响。针对粗粒土的这一特点,论文建立了非相关联流动法则本构模型。采用Pender建立的等应力比屈服函数描述粗粒土的剪切屈服特性,并根据考虑颗粒破碎耗能的能量平衡方程推导流动法则。采用Chavez提出的v-p平面的临界状态线,定义当前孔隙比与当前应力对应的临界孔隙比之差作为状态参量。在Wood建立的硬化规律中引入破碎耗能参量和状态参量,描述土体的应变软化现象,建立同时考虑颗粒破碎和内部状态影响的粗粒土本构关系。
     为了弥补相关联流动法则本构模型无法描述粗粒土状态依赖特性的不足,通过建立模型参数与初始状态参量之间的联系,将内部状态对剪切特性的影响引入所建立的相关联流动法则本构模型。采用Ishihara提出的临界状态线,计算初始状态参量。建立初始状态参量与破碎参量的参数关系式,以及初始状态参量与硬化规律参数的关系式,并拟合三轴试验曲线确定关系式参数。计算不同初始状态下的三轴曲线,验证模型的有效性。计算结果表明,修正后的本构模型,可以描述粗粒土在不同初始条件下的剪切特性。
The coarse granular soil is applied widely in rockfill dam, high way, railway, aerodrome and dyke, because of the engineering properties such as suitable compactibility, high hydraulic permeability, high density, high shearing strength, and small settlement. The coarse granular soil is susceptible to particle breakage in high compressive strength, which modifies its structure directly, influencing its dilatancy, friction angle, strength and permeability. With the height of the rockfill dam increasing, the coarse granular soil, which is the main material in dam engineering, suffer higher stress. Therefore the particle breakage of the coarse granular soil gets increasingly notable. The traditional constitutive model, incorporating no influences of particle breakage, is not appropriate to describe the stress and strain of the coarse granular soil under the high stress. In this paper, the particle breakage energy is incorporated in the energy formulation, on which the constitutive model for the coarse granular soil incorporating particle breakage is developed according to the energy fomulation.
     In this paper, the particle breakage rule and breakage energy are studied during triaxial shearing, on which the associated equation is established. Combined with the triaxial test, the friction coefficient formulation incorporating particle breakage is developed according to the energy balance during shearing, which determines the model parameters and verifies the correction of the model.
     The breakage parameters are studied and the test data are simulated in this paper, on which the relationship of breakage energy and breakage parameters is established. The breakage energy is introduced in the energy balance formulation during shearing. And the yield function is deduced with the application of associated flow rule. The hardening rule is developed according to triaxial test result, on which the constitutive model is developed. The parameters of the model are determined by the mutation particle swarm optimization algorithm according the triaxial test results. The model developed is proved to reflect the stress-strain-volume strain relationship comparing with the test curve.
     The shearing features of coarse granular soil are influenced not only by particle breakage but the inner states, on which the unassociated flow rules constitutive model is developed in this paper. With the adoption of the equal stress ratio yield function developed by Pender, the shearing yield features are described. And the flow rules are deduced according to the energy balance equation incorporating particle breakage energy. With the critical state line in v-p plane developed by Chavez, the difference between the current void ratio and the critical state void ratio corresponding to the current stress is determined to be the state parameter. The breakage energy and state parameters are introduced in the hardening rules developed by Wood, on which the strain-softening behavior of the soil can be described, and the coarse granular soil constitutive relationship incorporating the influence of the particle breakage and the inner state is established.
     In order to make up the associated flow rules constitutive model lacking in describing the state-dependent features, the relationship between model parameters and initial state parameters is developed, and the influence of the inner state on the shear features is introduced in the associated flow rules constitutive model developed. The initial state parameters are calculated with the critical state line established by Ishihara. Therefore, the relationship between initial state parameters and breakage parameters, and the relationship between initial parameters and hardening parameters are developed, which are determined by the triaxial test curve simulation. The triaxial curves in different initial states are calculated, verifying the validation of the model. The calculation results indicate that, the constitutive model developed can describe the shearing features of coarse granular soil in different initial conditions.
引文
[1][日]日本土质学会.粗粒料的现场压实[M].中国水利水电出版社,1999.
    [2]Lee K L,Farhoomand I.Compressibility and crushing of granular soil in anisotropic triaxial compression[J].Canadian Geotechnical Journal.1967,04:69-86.
    [3]Lee K L,Seed H B.Drained Strength Characteristics of Sands[J].J.Soil Mech.Fdns.Div.,ASCE.1967,93(6):117-141.
    [4]Miura N,O-hara.Particle crushing of decomposed granite soil under shear stresses[J].Soils and Foundations.1979,19(3):1-14.
    [5]Hardin B O.Crushing of soil particles[J].Journal of Geotechnical Engineering.1985,111(10):1177-1192.
    [6]Ueng T S,Lee C J.Deformation behavior of sand under shear.Particulate approach[J].Journal of Geotechnical Engineering.1990,116(11):1625-1640.
    [7]Coop M R,Lee I K.The behaviour of granular soils at elevated stress[C].London:Thomas Telford,1993.
    [8]Lee I K,Coop M R.Intrinsic behaviour of a decomposed granite soil[J].Geotechnique.1995,45(1):117-130.
    [9]Lade P V,Yamamuro J A,Bopp P A.Significance of particle crushing in granular materials[J].Journal of Geotechnical Engineering.1996,122(4):309-316.
    [10]郭庆国.粗粒土的工程特性及应用[M].黄河水利出版社,1998.
    [11]程展林,丁红顺,吴良平.粗粒土试验研究[J].岩土工程学报.2007,29(8):1151-1158.
    [12]郭熙灵,胡辉,包承纲.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报.1997,19(3):83-88.
    [13]屈智炯.土的细观结构与力学性关系的研究进展[J].水电站设计.1993,9(3):77-81.
    [14]张家铭,汪稔,张阳明,等.土体颗粒破碎研究进展[J].岩土力学.2003,24(S2):661-665.
    [15]Nakata Y,Hyde A F,Hyodo M,et al.A probabilistic approach to sand particle crushing in the triaxial test[J].Geotechnique.1999,49(5):567-583.
    [16]Mcdowell G R,Bolton M D.On the micromechanics of crushable aggregates[J].Geotechnique.1998,48(5):667-679.
    [17]Schofield A N,Worth C P.Critical state soil mechanics[M].London:UK,1968.
    [18]米占宽,李国英,陈铁林.考虑颗粒破碎的堆石体本构模型[J].岩土工程学报.2007,29(12):1865-1869.
    [19]范天佑.断裂理论基础[M].科学出版社,2003.
    [20]Rowe P W.The stress-dilatancy relation for the static equilibrium of an assembly of particles in contact[J].Proc.R.Soc.1962,A269:500-527.
    [21]贾革续.粗粒土工程特性的试验研究[D].大连:大连理工大学,2003.
    [22]郭庆国.关于粗粒土应力应变特性及非线性参数的试验研究[J].水利学报.1983(11):44-50.
    [23]屈智炯.粗粒土在高土石坝的应用研究[J].水电站设计.1998,14(1):83-88.
    [24]刘萌成,高玉峰,刘汉龙,等.堆石料变形与强度特性的大型三轴试验研究[J].岩石力学与工程学报.2003,22(7):1104-1111.
    [25]Griffith A A.The phenomena of rupture and flow in solids[J].Philosophical Transactions of the Royal Society of London.1921,A221(1921):163-198.
    [26]Jaeger J C.Failure of rocks under tensile conditions[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1967,4(2):219-227.
    [27]Nakata,Hyodo,F A D,et al.Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J].Soils and Foundations.2001,41(1):69-82.
    [28]Leslie D D.Large Scale Triaxial Tests on Gravelly Soils[C].Brazil:1963.
    [29]Marsal R J.Large scale testing of rockfill materials[J].Journal of the Soil Mechanics and Foundations Division,ASCE.t967,93(02):27-43.
    [30]Leslie D D.Shear Strength of Rockfill[C].California:1975.
    [31]Miura N,Yamamoto T.Particle-Crushing Properties of Sands under High Stresses[J].Technology reports of the Yamaguchi University.1976,01(04):439-447.
    [32]Yamamuro J A,Lade P V.Drained Sand Behavior in Axisymmetric Tests at High Pressures[J].J.Geotech.Engrg,ASCE.1996,122(02):109-119.
    [33]Yamamuro J A,Lade P V.Undrained Sand Behavior in Axisymmetric Tests at High Pressures[J].J.Geotech.Engrg,ASCE.1996,122(02):120-129.
    [34]傅志安,凤家骥.混凝土面板堆石坝[M].华中理工大学出版社,1993:20-21.
    [35]孙吉主,汪稔.围压对钙质砂变形特征和声发射模式的影响[J].岩石力学与工程学报.2001,20(A01):1173-1176.
    [36]Lee K L,Seed H B.Drained strength characteristics of sands[J].ASCE J.Soil Mech.Found.Engng.1967,93(SM6):117-141.
    [37]Rowe P W.The Stress Dilatancy Relations for Static Equilibrium of an Assembly of Particles in Contact[C].London:1962.
    [38]Bishop A W.correspondence on "Shear Characteristics of a Saturated Silt,Measured in Triaxial Compression"[J].Geotechnique.1954,04:43-45.
    [39]Vesic A S,Clough G W.Behaviour of granular material under high stresses[J].ASCE J.Soil Mech.Found.Engng.1968,94(SM3):661-688.
    [40]Miura N,Yamamoto T.Effect of particle-crushing on the shear characteristics of a sand[C].Japanese: 1977.
    [41]Fragaszy R J,Voss M E.UNDRAINED COMPRESSION BEHAVIOR OF SAND.[J].Journal of Geotechnical Engineering.1986,112(03):334-347.
    [42]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报.1987(05):59-65.
    [43]蒙进,屈智炯.高压下冰碛土的颗粒破碎及应力应变关系[J].四川大学学报(工程科学版).1989(01).
    [44]梁军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特性研究[J].岩土力学.2003,24(3):480-483.
    [45]刘汉龙,秦红玉,高玉峰,等.堆石粗粒料颗粒破碎试验研究[J].岩土力学.2005,26(4):562-566.
    [46]吕海波,汪稔,等.钙质土破碎原因的细观分析初探[J].岩石力学与工程学报.2001,20(A01):890-892
    [47]Potapov A V,Campbell C S.Parametric dependence of particle breakage mechanisms[J].Powder Technology.2001,120(3):164-174.
    [48]史旦达,周健,贾敏才,等.考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J].岩土工程学报.2007,29(5):736-742.
    [49]Coop M R,Sorensen K K,Freitas T B,et al.Particle breakage during shearing of a carbonate sand[J].Geotechnique.2004,54(3):157-163.
    [50]温彦锋,蔡红,边京红.强风化岩防渗土料的压实及渗透特性[J].水力发电学报.2000(02).
    [51]刘松玉,童立元,邱钰,等.煤矸石颗粒破碎及其对工程力学特性影响研究[J].岩土工程学报.2005,27(5):505-510.
    [52]刘松玉,邱钰,童立元,等.煤矸石的强度特征试验研究[J].岩石力学与工程学报.2006,25(1):199-205.
    [53]张振南,缪协兴,葛修润.松散岩块压实破碎规律的试验研究[J].岩石力学与工程学报.2005,24(3):451-455.
    [54]魏松,朱俊高.粗粒料三轴湿化颗粒破碎试验研究[J].岩石力学与工程学报.2006,25(6):1252-1258.
    [55]刘崇权,汪稔.钙质砂在三轴剪切中颗粒破碎评价及其能量公式[J].工程地质学报.1999(04).
    [56]孙吉主,汪稔.三轴压缩条件下钙质砂的颗粒破裂过程研究[J].岩土力学.2003,24(5):823-825.
    [57]Ueng T S,Chen T J.Energy aspects of particle breakage in drained shear of sands[J].Geotechnique.2000,50(1):65-72.
    [58]Indraratna B,Salim W.Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy[C].Thomas Telford Services Ltd,2002.
    [59]Daouadji A,Hicher P Y,Rahma A.Elastoplastie model for granular materials taking into account grain breakage[J].European Journal of Mechanics,A/Solids.2001,20(1):113-137.
    [60]汪稔,孙吉主.钙质砂不排水性状的损伤—滑移耦合作用分析[J].水利学报.2002(7):75-78.
    [61]Chavez C,Alonso E E.A constitutive model for crushed granular aggregates which includes suction effects[J].Soils and Foundations.2003,43(4):215-227.
    [62]Salim W,Indraratna B.A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J].Canadian Geotechnical Journal.2004,41(4):657-671.
    [63]Pender M J.MODEL FOR THE BEHAVIOUR OF ONVERCONSOLIDATED SOIL.[J].Geotechnique.1978,28(1):1-25.
    [64]Varadarajan A,Sharma K G,Abbas S M,et al.Constitutive model for rockfill materials and determination of material constants[J].International Journal of Geomechanics.2006,6(4):226-237.
    [65]孙吉主,罗新文.考虑剪胀性与状态相关的钙质砂双屈服面模型研究[J].岩石力学与工程学报.2006,25(10):2145-2149.
    [66]李兆明.考虑颗粒破碎的粗粒土本构模型[D].大连:大连理工大学,2007.
    [67]迟世春,贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正[J].岩土工程学报.2005,27(11):1266-1269.
    [68]Einav I.Soil mechanics:breaking ground[J].The Royal Society.2007,365(15):2985-3002.
    [69]Orr C J.Particulate Technology[M].New York:The Macmillan Company,1966:56.
    [70]Fukumoto T.Particle breakage characteristics of granular soils[J].Soils and Foundations.1992,32(1):26-40.
    [71]Fukumoto T.Grading equation for decomposed granite soil[J].Soils and Foundations.1990,30(1):27-34.
    [72]李启衡.粉碎理论概要[M].冶金工业出版社,1993.
    [73]Ueng T S,Chen T J.Energy aspects of particle breakage in drained shear of sands[J].Geotechnique.2000,50(1):65-72.
    [74]南京水利科学研究院.土工试验规程[M].北京:中国水利水电出版社,1999.
    [75]张家铭,汪稔,石祥锋,等.侧限条件下钙质砂压缩和破碎特性试验研究[J].岩石力学与工程学报.2005,24(18):3327-3331.
    [76]Indraratna B S.Shear strength and degradation characteristics of railway ballast[C].2001.
    [77]Tarantino A,Hyde A F.An experimental investigation of work dissipation in crushable materials[J].Geotechnique.2005,55(8):575-584.
    [78]Coop M R.Mechanics of uncemented carbonate sands[J].Geotechnique.1990,40(4):607-626.
    [79]Luzzani L,Coop M R.On the relationship between particle breakage and the critical state of sands[J].Soils and Foundations.2002,42(2):71-82.
    [80]Finno R J,Harris W W,Mooney M A,et al.Shear bands in plane strain compression of loose sand[J].Geotechnique.1997,47(1):149-165.
    [81]Muehlhaus H-,Vardoulakis I.THICKNESS OF SHEAR BANDS IN GRANULAR MATERIALS.[J].Geotechnique.1987,37(3):271-283.
    [82]孙吉主,汪稔.钙质砂的颗粒破碎和剪胀特性的围压效应[J].岩石力学与工程学报.2004,23(4):641-644.
    [83]Roscoe K H,Schofield A N,Thurairajah A.Yielding of clays in states wetter than critical[J].geotechnique.1963,13(3):211-240.
    [84]El S M.Elastic Behavior of Sand[J].The Journal of Soil Mechanics and Foundation Division,ASCE.1969,95(SM6):1393-1409.
    [85]Thurairajah A,Pillai V S.drained deformation characteristics of sand[J].Geotechnical Engineering.1972,3:91-104.
    [86]Jefferies M,Been K.Implications for critical state theory from isotropic compression of sand[J].Geotechnique.2000,50(4):419-429.
    [87]Wilson G,Sutton J L E.A Comtribution to the Study of the Elastic Properties of Sand[J].Proceedings,2nd International Conference of Soil Mechanics and Foundation Engineering.1948,1:197-202.
    [88]四川大学,屈智炯,何昌荣,等.新型石渣坝—粗粒土筑坝的理论与实践[M].中国水利水电出版社,2002.
    [89]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运工程学报.1986(04).
    [90]张斌,屈智炯.考虑剪胀和软化特性的粗粒土应力-应变模型[J].岩土工程学报.1991,13(6):64-69.
    [91]刘开明,屈智炯.粗粒土的工程特性及本构模型研究[J].成都科技大学学报.1993(6):93-102.
    [92]保华富,屈智炯.粗粒土的本构模型研究[J].成都科技大学学报.1990(4):63-70.
    [93]张家铭.钙质砂基本力学性质及颗粒破碎影响研究[D].中国科学院研究生院(武汉岩土力学研究所),2004.
    [94]魏松.粗粒料浸水湿化变形特性试验及其数值模型研究[D].河海大学,2006.
    [95]Deluzarche R,Cambou B.Discrete numerical modelling of rockfill dams[J].International Journal for Numerical and Analytical Methods in Geomechanics.2006,30(11):1075-1096.
    [96]李亮,迟世春,林皋.粒子群优化复合形法求解复杂土坡最小安全系数[J].岩土力学.2005,26(9):1393-1398.
    [97]李亮,迟世春,郑榕明,等.改进的粒子群算法及其在土坡临界滑动面搜索中的应用[J].防灾减灾工程学报.2007,27(2):153-158.
    [98]李亮,迟世春,郑榕明,等.混合粒子群算法搜索土坡危险滑动面[J].工业建筑.2007,37(2):55-73.
    [99]李亮,迟世春,郑榕明,等.一种新型遗传算法及其在土坡任意滑动面确定中的应用[J].水利学报.2007(02).
    [100]李亮,迟世春,林皋,等.禁忌遗传算法在边坡稳定分析中的应用[J].水电能源科学.2007(01).
    [101]Eberhart R,Kennedy J.New optimizer using particle swarm theory[C].Nagoya,Jpn:IEEE,Piscataway,NJ,USA,1995.
    [102]Kennedy J,Eberhart R.Particle swarm optimization[C].Perth,Aust:IEEE,Piscataway,NJ,USA,1995.
    [103]李亮.智能优化算法在土坡稳定分析中的应用[D].大连:大连理工大学,.
    [104]Zhao X,Rong G.Blending scheduling based on particle swarm optimization algorithm[C].Las Vegas,NV,United States:Institute of Electrical and Electronics Engineers Inc.,New York,NY 10016-5997,United States,2004.
    [105]Eberhart R,Shi Y.Particle swarm optimization and its applications to VLSI design and video technology[C].Suzhou,China:Institute of Electrical and Electronics Engineers Inc.,New York,NY 10016-5997,United States,2005.
    [106]den Van B,Engelbrecht A P.A study of particle swarm optimization particle trajectories[J].Information Sciences.2006,176(8):937-971.
    [107]何伟,王德利,杨开云,等.融合粒子群算法的混凝土裂缝预测模型研究[J].水力发电.2006,32(5):21-23.
    [108]陈敏,汤文成,王楠,等.基于有限元反算和粒子群优化算法杨氏模量重构[J].东南大学学报:自然科学版.2006,36(3):402-406.
    [109]Yan D,Chi Z,Siliang S,et al.Adaptive bandwidth allocation based on particle Swarm optimization for multimedia LEO satellite systems[C].Beijing,China:Institute of Electrical and Electronics Engineers Computer Society,Piscataway,NJ 08855-1331,United States,2007.
    [110]Yu K W,Hu S C.An application of AC servo motor by using particle swarm optimization based sliding mode controller[C].Taipei,Taiwan:Institute of Electrical and Electronics Engineers Inc.,New York,NY 10016-5997,United States,2007.
    [111]Perez R E,Behdinan K.Particle swarm approach for structural design optimization[J].Computers and Structures.2007,85(19-20):1579-1588.
    [112]李宁,孙德宝,岑翼刚,等.带变异算子的粒子群优化算法[J].计算机工程与应用.2004,40(17):12-14.
    [113]Yasuda K,Iwasaki N.Adaptive Particle Swarm Optimization using velocity information of Swarm[C].The Hague,Netherlands:Institute of Electrical and Electronics Engineers Inc.,New York,NY 10016-5997,United States,2004.
    [114]Tayal M,Wang B P.Particle swarm optimization for mixed discrete,integer and continuous variables[C].Albany,NY,United States:American Institute of Aeronautics and Astronautics Inc.,Reston,VA 20191,United States,2004.
    [115]Kuo H C,Chang J R,Liu C H.Particle swarm optimization for global optimization problems[J].Journal of Marine Science and Technology.2006,14(3):170-181.
    [116]邹毅,朱晓萍,霍龙,等.一种改进的粒子群优化算法及其应用[J].沈阳工程学院学报:自然科学版.2006,2(3):283-286.
    [117]熊伟丽,徐保国,吴晓鹏,等.带变异算子的改进粒子群算法研究[J].计算机工程与应用.2006,42(26):1-3.
    [118]孙小强,张求明.一种基于粒子群优化的多目标优化算法[J].计算机工程与应用.2006,42(18):40-42.
    [119]高岳林,任子晖.带有变异算子的自适应粒子群优化算法[J].计算机工程与应用.2007,43(25):43-47.
    [120]罗刚,张建民.考虑物理状态变化的砂土本构模型[J].水利学报.2004(7):26-31.
    [121]罗刚,张建民.考虑物态变化的六参数砂土本构模型[J].清华大学学报:自然科学版.2004,44(3):402-405.
    [122]蔡正银,李相菘.砂土的变形特性与临界状态[J].岩土工程学报.2004,26(5):697-701.
    [123]蔡正银,李相菘.取决于材料状态的变形局部化现象[J].岩石力学与工程学报.2004,23(4):533-538.
    [124]蔡正银,李相菘.砂土的剪胀理论及其本构模型的发展[J].岩土工程学报.2007,29(8):1122-1128.
    [125]H R K,A S,P W C.On the yielding of soils[J].Geotehnique.1958(8).
    [126]Been K,Jefferies M G.STATE PARAMETER FOR SANDS.[J].Geotechnique.1985,35(2):99-112.
    [127]Bolton M D.The strength and dilatancy of sands[J].Geotechnique.1986,36(1):65-78.
    [128]K I.Liquefaction and flow failure during earthquake[J].Geotechnique.1993,43(3).
    [129]Castro G.LIQUEFACTION AND CYCLIC MOBILITY OF SATURATED SANDS[J].American Society of Civil Engineers,Journal of the Geotechnical Engineering Division.1975,101(6):551-569.
    [130]Hanzawa H.UNDRAINED STRENGTH AND STABILITY ANALYSIS FOR A QUICK SAND.[J].Soils and Foundations.1980,20(2):17-29.
    [131]Konrad J-.Minimum undrained strength versus steady-state strength of sands[J].Journal of Geotechnical Engineering. 1990, 116(6): 948-963.
    [132] Konrad J -. Minimum undrained strength versus steady-state strength of sands[J]. Journal of Geotechnical Engineering. 1990, 116(6): 948-963.
    [133] Vaid Y P, Chung E K, Kuerbis R H. Stress path and steady state[J]. Canadian Geotechnical Journal. 1990,27(1): 1-7.
    [134] Georgiannou V N, Hight D W, Burland J B. Behaviour of clayey sands under undrained cyclic triaxial loading[J]. Geotechnique. 1991,41(3): 383-393.
    [135] Mohamad R, Dobry R. UNDRAINED MONOTONIC AND CYCLIC TRIAXIAL STRENGTH OF SAND.[J]. Journal of Geotechnical Engineering. 1986, 112(10): 941-958.
    [136] Wan R G, Guo P J. Simple constitutive model for granular soils: Modified stress-dilatancy approach[J]. Computers and Geotechnics. 1998, 22(2): 109-133.
    [137] Li X S, Wang Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering. 1998, 124(12): 1215-1217.
    [138] Wood D M, Belkheir K, Liu D F. Strain softening and state parameter for sand modelling[J]. Geotechnique. 1994,44(2): 335-339.
    [139] Verdugo R, Ishihara K. The steady state of sandy soils[J]. Soils and Foundations. 1996,36(2): 81-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700