用户名: 密码: 验证码:
闭环自适应逆控制及在热力系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于系统逆模型的控制策略主要包括自适应逆控制和逆系统控制两种典型的控制方法。近年来,基于系统逆模型的控制方法及其应用研究受到广泛关注。对系统逆动力学过程建模方法、基于系统逆模型的控制策略与经典反馈控制策略之间内在联系及有效融合等问题进行深入研究,可望为复杂系统提供新的控制思路和技术手段。
     模糊模型是以模糊语言变量、模糊集合及模糊逻辑为数学基础的模糊推理规则,被广泛地应用于复杂非线性系统的辨识及控制中。本文研究了基于T-S模糊模型的闭环自适应逆控制方法及其在热力系统中的应用问题,主要内容包括以下四个方面:
     ①针对现有的T-S模糊模型辨识方法存在的问题,从模糊聚类方案入手,提出了一种基于最差子集分解聚类的T-S模糊模型辨识方法,以及基于最差子集分解聚类的T-S模糊模型分步辨识方法,并将该方法应用于典型热工过程及其逆系统建模。在系统辨识过程中,引入了新的聚类目标函数和辨识目标函数,根据建模精度要求自动产生新的模糊规则,避免了规则数需要人为给定的弊端;当模型精度未达到要求时,只需辨识新增子模型的结构和参数。相对于常规的T-S模糊模型辨识方法,具有辨识精度高,模糊规则数少及计算成本低等优点,提高了模型的实时跟踪能力,为开展热工过程自适应逆控制提供了有效支持。文中通过非线性系统辨识仿真试验对该方法的有效性进行了验证。
     ②针对复杂热工过程通常具有较大的时间迟延和热惯性等特征,建立了一种基于校正基准量的增量式控制算法;论证了被控对象逆模型参数与控制器特征参数之间的对应关系,提出了一种增量式闭环自适应逆控制系统,实现了自适应逆控制与经典反馈控制的有机结合,并能够根据对被控对象逆模型的在线辨识结果直接对控制器的特征参数进行在线调整。文中针对几类典型的热工对象(包括SISO热工对象和MIMO热工对象)采用增量式闭环自适应逆控制方法进行了仿真试验,结果表明,与直接自适应逆控制方法相比,增量式闭环自适应逆控制方法能够有效地降低被控对象逆动力学模型的精度对控制性能的影响,具有良好的自适应能力和良好的鲁棒性。
     ③提出了一种基于对象逆模型的自适应PID(PID-IMO)控制器的设计方法。在所建立的PID-IMO控制系统中,通过对逆模型输入向量的恰当选取,实现了对象逆模型与PID控制器两者结构上的统一;论证了自适应PID控制器特征参数与控制对象逆模型参数之间的内在联系和等价关系,进而根据逆模型的在线辨识结果直接获得PID控制器的参数,形成与对象特性相匹配的自适应PID控制器,并将PID-IMO方法推广到串级PID控制系统。通过对两种典型的热力系统过程控制的仿真试验表明,自适应PID-IMO控制系统具有良好的自适应能力、抗干扰能力和鲁棒性。
     ④逆系统控制是一种具有广泛适用性的非线性控制策略。本文将模糊辨识引入到逆系统控制方法中,采用所提出的基于最差子集分解聚类的分步模糊辨识方法建立被控对象的逆模型,避免了求解被控对象解析逆的困难,考察了基于模糊模型的系统逆模型对多变量非线性系统的线性化及解耦效果;根据被控对象所具有的不同迟延特性,采用PID控制器和Smith预估器作为附加控制器,设计了两种常用的模糊逆控制系统。文中通过仿真试验对设计的控制系统的性能进行了检验。
The control strategies based on system’s inverse model mainly include two control method, those are adaptive inverse control and inverse system control. In recent years, the control methods based on the system’s inverse model and its application researches have aroused widely attention. To research deeply the problems such as the method of modeling the process of system’s inverse dynamic, the relationships and the effective integrations between the control strategies based on system’s inverse model and the classical feedback control strategies, which are expected to provide new control idea and technological means.
     Fuzzy model is a set of fuzzy inference rules based on fuzzy linguistic variables, fuzzy sets and fuzzy logic, which has been used widely to modeling and controlling complex nonlinear systems. In this paper, we have studied the problems of closed-loop adaptive inverse control methods based on T-S fuzzy model and its application in thermal systems, the main work includes the following four aspects:
     ①For the existing problems of T-S fuzzy identification methods, we started from fuzzy clustering schemes and proposed an identification method of T-S fuzzy model and a sub-step identification method of T-S fuzzy based on decomposing cluster of the worst subset, and applied them in modeling typical thermal processes and their inverse systems. In the identification process, new clustering and identifying objective functions were introduced, and new fuzzy rules can be automatically generated according to the required modeling accuracy, which avoided the disadvantages of the number of fuzzy rules should be given in advance. When the identification accuracy does not meet the predetermined target, only the structure and parameters of new sub-model should be identified. Comparing with the traditional identification methods of T-S fuzzy model, the proposed method has the advantages of high precision, less the number of fuzzy rules and less calculation cost and good real-time tracking ability, which provides an effective support for the development of adaptive inverse control method for thermal process. In this paper, the effectivenesses of the proposed methods were verified by simulation experiment of identifying nonlinear systems.
     ②For the features of complex thermal processes with the characteristics of large delay and thermal inertia, an incremental control algorithm was established based on corrected datumquantity; The correspondent relationship between the parameters of the inverse model of controlled object and the characteristic parameters of controller were demonstrated, and an closed-loop adaptive inverse control system based on increment form was proposed, which realized the organic combination of adaptive inverse control with classical feedback control scheme. The characteristic parameters of controller can be adjusted directly according to the online identification results of the inverse model of the controlled object. In this paper, for several typical thermal systems (including SISO and MIMO thermal systems), the incremental closed-loop adaptive inverse control method was utilized to control them by simulation experiments. The results showed that, comparing with conventional adaptive inverse control method, the incremental closed-loop adaptive inverse control method can effectively reduced the influence of the precision of the inverse dynamic model of the controlled object on the control performance, and has good adaptive ability and robustness.
     ③An adaptive PID controller design method based on the inverse model of the object (PID-IMO) was proposed. In the established PID-IMO control system, by choosing the appropriate structure of the inverse model, the accordance of structures of the inverse model and PID controller was realized; The inner and equal relationships between the characteristic parameters of adaptive PID controller and the parameters of the inverse model of controlled object were demonstrated. The parameters of PID controller were obtained directly according to the on-line identification result of the inverse model, and the PID controller which matches with the controlled object’s properties was formed, and this method was extended cascade control system. The simulation result of controlling two typical thermal systems showed that the proposed adaptive PID-IMO control system has good adaptive ability, anti-interference ability and robustness.
     ④Inverse system control is a nonlinear control strategy with widely applicability. In this paper, fuzzy model was introduced to this control scheme. The proposed sub-step identification method of T-S fuzzy based on decomposing cluster of the worst subset was adopted to establish the inverse model of the controlled object, which avoided the difficulty of solving the analytical inverse model of the controlled object, and the linearizing and decoupling effect of the inverse system based on fuzzy model was investigated; According to the different delay characteristic of the controlled object, PID controller and Smith predictor were adopted as the additional controller, and two fuzzy inverse control system were designed. In this paper, the performances of the designed control systems were verified by simulation experiment.
引文
[1]威德罗B.,瓦莱斯E.著.刘树棠,韩崇诏译.自适应逆控制[M].西安:西安交通大学出版社, 2000.
    [2] Widrow B, McCcool J.M., Larmore M. G., et al. Stationary and nonstationary learning characteristics of the LMS adaptive filter[J]. Proceedings of the IEEE, 1976, 64 (8):1947-1951.
    [3] Ang W.P., Farhang-Boroujeny B. A new class of gradient adaptive step-size LMS algorithms[J]. IEEE Transactions on signal proeessing, 2001, 49(4): 805-80.
    [4] Shin H., Sayed A.H. Variable step-size NLMS and affine projection algorithms[J]. IEEE signal proeessing letters, 2004, 11(2): 132-135.
    [5]罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报, 2006, 6(6): 1123-1126.
    [6] Zheng Q.S., Zafiriou E. Local form of small gain theorem and analysis of feedback Volterra systems[J]. IEEE Transactions on automatic control, 1999, 44(3): 635-640.
    [7]党映农,韩崇昭.基于Volterra级函数网络的自适应逆控制方法[J].西安交通大学学报, 2000, 34(9): 8-12.
    [8]党映农,韩崇昭.基于改进型Voltarra基函数网络的直接自适应逆控制方法[J].控制与决策, 2001, 16(5): 633-636.
    [9] Plett G.L., Widrow B. Nonlinear adaptive inverse control[C]. Proeeeding of the 36th conference on decision and control, San Diego, California USA, 1997:1032-1037.
    [10] Abonyi J., Andersen H., Nagy L., et al. Inverse fuzzy-process-model based direct adaptive control[J]. Mathematics and computers in simulation, 1999, 51:119-132.
    [11]柳晓菁,易建强,赵东斌,等.基于最小二乘支持向量机的自适应逆扰动消除控制系统[J].控制与决策, 2005, 20(8): 947-950.
    [12] Plett G.L. Adaptive inverse control of linear and nonlinear systems using dynamic neural networks[J]. IEEE Transactioons on neural network, 2003, 14(2):360-376.
    [13]李明,杨承,杨成梧.基于T-S模糊模型的非线性自适应逆控制系统[J].系统仿真学报, 2007, 19(21): 4973-4980.
    [14] Wang H., Pi D.Y., Sun Y.X. Online SVM regression algorithm-based adaptive inverse control[J]. Neurocomputing, 2007, 70(4): 952-959.
    [15]赵斌,张如辉,齐占庆.基于U-滤波LMS算法的自适应逆控制系统[J].自动化与仪器仪表, 2002, 6: 7-10.
    [16]黎中伟,吕飞跃,吴亚峰,等.自适应陷波器滤波X-LMS算法稳定性分析[J].西北工业大学学报, 1995, 13(2): 270-275.
    [17]刘小勇,杨清宇,施仁.基于X-滤波最小均方算法的冲击振动自适应逆控制[J].西安交通大学学报, 2004, 38(2): 144-148.
    [18]刘小勇,罗中良,易明珠.基于自适应逆控制的冲击振动控制新方法[J].中山大学学报, 2008, 47(5): 49-53.
    [19] Hoyhtya M., Mammela A. Adaptive inverse power control using an FxLMS algorithm[C]. Vehicular technology conference, 2007, 22: 3021-3025.
    [20]谭智勇,吴梅,安锦文.基于改进的ε-滤波LMS算法的一种自适应逆控制系统[J].弹箭与制导学报, 2003, 23(3): 81-83.
    [21]付梦印,刘巧歌.基于ε-滤波和反馈误差学习原理的自适应逆控制[J].控制理论与应用, 2007, 24(4): 613-616.
    [22] Du G., Zhan X.Q., Zhang W.M., Zhong S. Improved filtered-εadaptive inverse control and its application on nonlinear ship maneuvering[J]. Journal of systems engineering and electronics, 2006, 17(4): 788-792.
    [23]于灵慧,房建成. Hénon混沌同步的自适应逆控制[J].控制理论与应用, 2005, 22(4): 624-631.
    [24]胡文霏,黄金泉.航空发动机自适应逆控制研究[J].航空动力学报, 2005, 20(2): 293-297.
    [25]刘亚秋.基于动态神经网络的自适应逆控制及其应用研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2004.
    [26]赵隽,战兴群,张炎华.基于自适应逆控制技术的船舶操纵仿真控制[J].上海交通大学学报, 2003, 37(8): 1168-1171.
    [27]王启志,王晓霞.利用神经网络自适应逆控制消除干扰和噪声[J].江南大学学报, 2005, 4(5): 469-471.
    [28]邢志伟,封锡盛.水下机器人神经网络自适应逆控制[J].控制工程, 2003, 10(3): 235~238.
    [29]吴振顺,付丙勤,冯玉宾,赖海江.自适应逆控制在电液伺服系统中的应用[J].哈尔滨工业大学学报, 2005, 37(3): 385-387.
    [30]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社, 1991.
    [31] Li C.W., Feng Y.K. Functional reproducibility of general multivariable non-linear systems[J]. Internatinal journal of control, 1993, 38(8):1259-1264.
    [32]吴热冰,李春文.一般非线性系统的构造性逆系统方法.控制理论与应用[J]. 2003, 20(3): 345-350.
    [33] Dai X.Z., Liu J., He D. Neural networkα-th order inverse system method for the control of nonlinear continuous system[J]. IEE Processing-Control theory application, 1998, 145(6):519-522.
    [34]戴先中,刘军,冯纯伯.神经网络α阶逆系统在离散非线性系统控制中的应用[J].控制与决策, 1999, 12(3): 217-221.
    [35]戴先中,何丹,张腾,肖仁良.非线性MIMO系统线性化解耦的一种新方法(I)-连续时间系统[J].控制与决策, 1999, 14(5): 403-406.
    [36]何丹,戴先中,张兴华,阮建山.非线性MIMO系统线性化解耦的一种新方法(II)-离散时间系统[J].控制与决策, 1999, 14(6): 631-635.
    [37]何丹,戴先中,王勤.神经网络广义逆系统控制[J].控制理论与应用, 2002, 19(1): 34-40.
    [38]宋夫华,李平.支持向量机α阶逆系统控制-离散非线性系统[J].浙江大学学报, 2006, 40(2): 2098-2102.
    [39]宋夫华,李平.支持向量机α阶逆系统控制-连续非线性系统[J].浙江大学学报, 2007, 41(3): 386-389.
    [40]宋夫华,李平.支持向量机α阶逆系统解耦控制方法[J].浙江大学学报, 2007, 41(2): 226-229.
    [41]刘国海,董蓓蓓,腾成龙,等.基于支持向量机广义逆的永磁同步电机模型参考自适应控制[J].东南大学学报, 2010, 40(1): 13-18.
    [42]孙玉坤,费德成,朱煌秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制[J].中国电机工程学报, 2006, 26(1): 120-126.
    [43]董翠英,陈娟.基于逆系统方法的内模控制在伺服系统低速问题中的研究[J].北京化工大学学报, 2005, 32(2): 98-100.
    [44]梁新荣,吴智铭.基于任务的两协调机械手的关节轨迹优化[J].上海交通大学学报, 1999, 33(4): 473-477.
    [45]陈检根,杨军.逆系统方法在飞行器直接侧力控制中的应用[J].西北工业大学学报, 2000, 18(1): 152-155.
    [46]徐骋,强文义,王长.基于逆动力学的飞行器直接力控制系统及其稳定性分析[J].宇航学报, 2008, 29(4): 1308-1313.
    [47] Gillard D.M., Bollinger, K.E. Neural network identification of power system transfer functions[J]. IEEE Transactions on energy conversion, 1996, 11(1): 107-110.
    [48] Embrechts, M.J., Benedek, S. Hybrid identification of nuclear power plant transients with artificial neural networks[J]. IEEE Transactions on industrial electronics, 2004, 51(3): 686-693.
    [49] Ren X.M, Rad A.B. Identification of nonlinear systems with unknown time delay based on rime-delay neural networks[J]. IEEE Transactions on neural networks, 2007, 18(5): 1536-1541.
    [50]董泽,黄字,韩璞.量子遗传算法优化RBF神经网络及其在热工辨识中的应用[J].中国电机工程学报, 2008, 28(17): 99-104.
    [51] MoCulloch W.S., Pitts W.H. A logical calculus of the ideas immanent in nervous activity[J]. Bull, math, biophysics, 1943, 5(1): 115-123.
    [52] Hebb D.O. The organization of behavior[M]. New York: Wiley, 1949.
    [53] Rosenblatt F. The perceptron a perceiving and recognizing automation[M]. Cornell aeronautical laboratory report, 1957, 85-460-1.
    [54] Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceeding natinal academy of sciences of USA, 1982, 79: 2554-2558.
    [55] Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533-536.
    [56] Narendra K.S., Parthasarathy K. Identification and control of dynamic systems using neural networks[J]. IEEE Transactions on neural networks, 1990, 1(1): 4-27.
    [57] Cochofel H.J., Wooten D., Principe J. A neural network development environment for adaptive inverse control[C]. IEEE Intelligence conference on neural networks, 1998, 963-967.
    [58]潘永湘,吴转峰,李强.一种基于串联BP算法的神经网络自适应逆控制方法[J].控制与决策, 2002, 17(2):70-72.
    [59]柳晓菁,易建强,赵东斌,等.一种基于RBF网络的非线性自适应逆控制系统[J].控制与决策, 2005, 19(10): 1175-1177
    [60]卢志刚,冀而康,吴士昌.基于混合Elman网络的非线性自适应逆控制[J].仪器仪表学报, 2005, 26(8): 349-351.
    [61]于灵慧,房建成.一种非线性自适应逆噪声控制器设计及其仿真[J].系统仿真学报, 2006, 18(1): 165-168.
    [62] Liu X.J., Yi J.Q., Zhao D.B., et al. A kind of nonlinear adaptive inverse control systems based on fuzzy neural networks[J]. Proceedings of the third international conference on machine learning and cybernetics, shanghai, 2004.
    [63] Vapnik V.N. The nature of statistical learning theory[M]. NY: Springer-Verlag, 1995.
    [64] Vapnik V.N., Golowich S., Smola A. Support vector method for function approximation, regression estimation, and signal processing[A]. Mozer M.C., Jordan M.I., Petsche T. Advances in neural information processing systems, MA, MIT Press, Cambridge, 1997, 9: 281-287.
    [65] Osuna E., Freund R., Girosi F. An improved training algorithm for support vector machines[C]. Proceedings of the 1997 IEEE workshop on neural network for signal processing VII, Amelea Island, 1997: 276-285.
    [66] Platt J. Fast training of support vector machines using sequential minimal optimization[A]. Sch
    [67] Keerthis S., Shevade S., Bhattacharyya C., et al. Improvements to Platt’s SMO algorithm for SVM classifier design[J]. Neuroal computation, 2001, 13(3): 637-649.
    [68] Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers[J]. Neural processing letters, 1999, 9(3): 293–300.
    [69]沈曙光,王广军,陈红.最小二乘支持向量机在系统逆动力学辨识与控制中的应用[J].中国电机工程学报, 2008, 28(5): 85-89.
    [70]陈红,王广军,王志杰,沈曙光.基于最小二乘支持向量机的模糊辨识及其在热工对象逆系统建模中的应用[J].中国电机工程学报, 2010, 30(29): 103-106.
    [71]韩璞,于萍,王东风,黄保海.基于支持向量回归的自适应逆控制[J].华北电力大学学报, 2006, 33(3): 31-35.
    [72]欧阳军,闫桂荣,王腾. LS-SVM在随机振动在线自适应逆控制中的应用[J].应用力学学报, 2007, 24(4): 530-534.
    [73] Yuan X.F., Wang Y.N., Wu H.L. Adaptive inverse control of excitation system with actuator uncertainty[J]. Neural processing letters, 2008, 27(2): 125-136.
    [74] Zadeh L.A. Fuzzy set[J]. Information control, 1965, 8:338-353.
    [75] Zadeh L.A. Fuzzy algorithm[J]. Information control, 1968, 12: 94-102.
    [76] Zadeh L.A. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Transanctions on systems, man and cybernetics, 1973, 3(1): 28-44.
    [77] Wang L.X. Fuzzy systems are universal approximators[C]. IEEE International conference on fuzzy systems, San Diego, CA, USA, 1992, 1163-1170.
    [78] Buckley J.J. Universal fuzzy controllers[J]. Automatica, 1992, 28(6): 1245-1248.
    [79] Buckley J.J. Sugeno type controllers are universal controllers[J]. Fuzzy sets and systems, 1993, 53: 299-303.
    [80] Buckley J.J, Hayashi Y. Fuzzy input-output controllers are universal approximators[J]. Fuzzy sets and systems, 1993, 58(3): 273-278.
    [81] Castro J.L. Fuzzy logic controllers are universal approximators[J]. IEEE Transactions on systems, man and cybernetics, 1995, 25(4): 629-635.
    [82] Castro J.L, Delgado M. Fuzzy systems with defuzzification are universal approximators[J]. IEEE Transactions systems, man and cybernetic, 1996, 26(1): 149-152.
    [83] Mamdani E H. Application of fuzzy algorithms for control of simple dynamic plant[J]. Procedings of IEEE, 1974, 121(12): 1585-1588.
    [84] Sanchez E. Resolution of eomposite fuzzy relation equations[J]. Information and control, 1976, 30(1): 38-48.
    [85] Takagi T., Sugeno M. Fuzzy identification of system and its applications to modeling and control[J]. IEEE Transactions on system, man and cybernetics, 1985, 15(1):116-132.
    [86] Cao S.G., Rees N.W. Analysis and design for a class of complex control systems Part 1: Fuzzy modeling and identification[J]. Automatica, 1997, 33: 1017-1028.
    [87]王宏伟,顾宏.基于模糊竞争学习的模糊模型一体化辨识[J].大连理工大学学报, 2007, 47(2): 282-286.
    [88] Gustafson D.E., Kessel W.C. Fuzzy clustering with fuzzy covariance matrix[C]. Proceeding international conference on fuzzy systems, San-Diego, 1979, 761-766.
    [89] Gath I., Gava A.B. Unsupervised optimal fuzzy clustering[J]. IEEE Transactions on pattern analysis and machine intelligence, 1989, 11(7): 773-780.
    [90] Yao J., Dash M., Tan S.T. Entropy-based fuzzy clustering and modeling[J]. Fuzzy sets and systems, 2000, 113(3): 381-388.
    [91]吕剑虹,陈建勤,沈炯,等.基于模糊规则的热工过程非线性模型研究[J].中国电机工程学报, 2002, 22(11): 132-137.
    [92] Kim E., Park M., Ji S., Park M. A new approach to fuzzy modeling[J]. IEEE Transactions on fuzzy system, 1997, 5(3): 328-337.
    [93] Chen Q., Xi Y.G., Zhang Z.J. A clustering algorithm for fuzzy models identification [J]. Fuzzy sets and systems, 1998, 98(2): 319-329.
    [94] Gomez-Skarmeta A.F., Delgado M, Vila M.A. About the use of fuzzy clustering techniques for fuzzy model identification[J]. Fuzzy sets and systems, 1999, 106(2): 179-188.
    [95] Kung C.C., Su J.Y. Affine Takagi–Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion[J]. IET control theory appllication, 2007, 1(5): 1255-1265.
    [96] Krishnapuram R, Chin P.F. Fitting an unknown number of lines and planes to image data through compatible cluster merging[J]. Pattern recognition, 1992, 25(4): 385-400.
    [97] Kaymak U., Babuska R. Compatible cluster merging for fuzzy modeling[C]. Proceeding of IEEE International conference on fuzzy systems, Yokohama, 1995, 897-904.
    [98]李柠,李少远,席裕庚.基于满意聚类的多模型建模方法[J].控制理论与应用, 2003, 20(5): 783-787.
    [99]朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用[J].中国电机工程学报, 2005, 25(7): 34-40.
    [100]林金星,沈炯,李益国.基于递阶G-K聚类的热工过程多模型建模方法[J].中国电机工程学报, 2006, 26(11): 23-28.
    [101] Boukezzoula R., Galichet S., Foulloy L. Nonlinear internal model control: application of inverse model based fuzzy control[J]. IEEE Transactions on fuzzy systems, 2003, 11(6): 462-476.
    [102]丁海山,毛剑琴,林岩.基于模糊树模型的自适应直接逆控制[J].自动化学报, 2008, 34(5): 574-580.
    [103]王广军,邓良才,陈红,沈曙光.锅炉汽温对象逆动力学过程模糊辨识[J].中国电机工程学报, 2007, 27(20): 76-80.
    [104]王广军,邓良才,陈红,李刚.单元机组负荷对象逆动力学模糊规则在线辨识[J].中国电机工程学报, 2006, 26(25): 71-75.
    [105] Wellstead P.E., Edmunds J.M., Prager D., et a1. Self-tuning pole/zero assignment regulators[J]. International journal of control, 1979, 30(1): 1-26.
    [106] Astrom K.J., Wittenmark B. Self-tuning PID controllers based on pole placement[J]. IEE Proceedings D, Control theory and applications, 1980, 127(3): 120-130.
    [107] Ortega R., Kelly R. PID self-tuners: some theoretical and practical aspects[J]. IEEE Transactions on industrial electronics, 1984, 4: 332-338.
    [108] Tjokro S., Shah S.L. Adaptive PID control[C]. American control conference, Boston, MA, USA, 1985, 19-21: 1528-1534.
    [109] Kim J.H., Choi K.K. Self-tuning discrete PID controller[J]. IEEE Transactions on industrial electronics, 1987, 34(2): 298-300.
    [110] Harris T.J., MacGregor J.F., Wright J.D. An overview of discrete stochastic controllers: generalized PID algorithms with dead-time compensation[J]. The Canadian journal of chemical engineering, 1982, 60(3): 425-432.
    [111] Fong-Chwee T., Sirisena H.R. Self-tuning PID controllers for dead time processes[J]. IEEE Transactions on industrial electronics, 1988, 35(1): 119-125.
    [112]章兢.一种简单适用的自校正PID调节器[J].化工自动化及仪表, 1986, 5: 19-24.
    [113]刘宏才,郑福建,吴保亮,等.极点配置PID自校正调节器及其在罩式退火炉群控系统中的应用[J].北京科技大学学报, 1989, 11(3): 245-251.
    [114] Astrom, K.J, Wittenmark, B. Self-tuning controllers based on pole-zero placement[J]. IEE Proceesings control theory and application, 1980, 127(3): 120-130.
    [115] Elliott H., Wolovich W. A parameter adaptive control structure for linear multivariable systems[J]. IEEE Transactions on automatic control, 1982, 27(2): 340-352.
    [116] Hetthessy J. On a class of adaptive PID regulators[C]. Preprints of IFAC workshop onadaptive systems in control and signal processing, San Francisco, USA, 1983.
    [117] Kraus T.W., Myron T.J. Self-tuning PID controllers uses pattern recognition approach[J]. Control engineering, 1984, 106-111.
    [118] Song H.K., Shah S.L., Fisher D.G. A self-tuning feedback controller[C]. American control conference, San Francisco, CA, USA, 1983, 22:832-837.
    [119] Song H.K., Fisher D.G., Shah S.L. Experimental evaluation of a robust self-tuning PID controller[J]. The Canadian journal of chemical engineering, 1984, 62(6): 755-763.
    [120] Radke F., Isermann R. A parameter-adaptive PID controller with stepwise parameter optimization[J]. Automatica, 1987, 23(4): 449-457.
    [121] Holme A., Ahave O. Automatic tuning of PID and other simple regulators in digital process automation system[C]. Proceedings of the American control conference, 1984, 1:74-78.
    [122] Zhang W.C., Ma B.B., Yu P., Pei B.H. Aplication of the single neuron PID controller on the simulated chassis dynamometer[J]. Communications in computer and information science, 2010, 98(2): 129-138.
    [123] Wang W., Gao X.Z. A single neuron PID controller based on immune tuning and it’s application[C]. 2010 sixth international conference on natural computation, 2010, 10: 2831-2836.
    [124] Lee C.H., Teng C.C. Calculation of PID controller parameters by using a fuzzy neural network [J]. ISA Transaction, 2003, 42(3): 391-400.
    [125] Chu S.Y., Teng C.C. Tuning of PID controllers based on gain and phase margin specifications using fuzzy neural network[J]. Fuzzy sets and systems, 1999, 101: 21-30.
    [126] Lee C.H., Teng C.C. Tuning of PID controllers for unstable processes based on gain and phase margin specifications: a fuzzy neural approach[J]. Fuzzy sets and systems, 2002, 128: 95-106.
    [127] Chen J.H., Huang T.C. Applying neural networks to on-line updated PID controllers for nonlinear process control[J]. Journal of process control, 2004, 14: 211-230.
    [128]胡泽新,周金荣,黄道.多变量非线性自整定PID控制器[J].控制理论与应用, 1996, 13(2): 268-272.
    [129] Chang W.D., Hwang R.C., Hsieh J.G. A multivariable on-line adaptive PID controller using auto-tuning neurons[J]. Engineering applications of artificial intelligence, 2003, 16(1): 57-63.
    [130]杨智,高靖.神经元自适应预测PID控制器及实现[J].信息与控制, 1999, 28(5): 345-349.
    [131] Ye J. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot[J]. Neurocomputing, 2008, 71(7): 1561-1565.
    [132] Cong S., Liang Y. PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems[J]. IEEE Transactions on industrial electronics, 2009,56(10): 3872-3879.
    [133] Shu H.L., Pi Y.G. PID neural networks for time-delay systems[J]. Computers and chemical engineering, 2000, 24(2): 859-862.
    [134] Zhao Z.Y., Tomizuka M., Isaka S. Fuzzy gain scheduling of PID controllers[J]. IEEE Transaction on system, man, and cybernetics, 1993, 23(5): 1392-1398.
    [135] Zheng J.M., Zhao S.D., Wei S.G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press[J]. Control engineering practice, 2009, 17(12): 1398-1404.
    [136] Wu Q.Z., Masaharu M. PID type fuzzy controller and parameters adaptive method[J]. Fuzzy sets and systems, 1996, 78: 23-35.
    [137] Woo Z.W., Chung H.Y., Lin J.J. A PID type fuzzy controller with self-tuning scaling factors [J]. Fuzzy sets and systems, 2000, 115(2): 321-326.
    [138] Güzelkaya M., Eksin ?., Yesil E. Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer[J]. Engineering applications of artificial intelligence, 2003, 16(3): 227-236.
    [139] Zuo W. Multivariable adaptive control for a space station using genetic algorithms[J]. IEE Proceeding on control theory application, 1995, 142(2): 81-87.
    [140]杨智,高靖.基于遗传算法的预测自整定PID控制器[J].控制于决策, 2000, 15(1):113-115.
    [141] Soltoggio A. An enhanced GA to improve the search process reliability in tuning of control systems[C]. Proceedings of the 2005 confernce genetic and evolutionary computation, Washington, DC, USA, 2005, 2165-2172.
    [142] Siarry P., Guely F. A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases[J]. Fuzzy sets and systems, 1998, 99(1): 37-47.
    [143] Li T.H., Shieh M.Y. Design of a GA-based fuzzy PID controller for non-minimum phase systems[J]. Fuzzy sets and systems, 2000, 111(2): 183-197.
    [144] Lima M.G., Ruano A. Neuro-genetic PID autotuning: time invariant case[J]. Mathematics and computers in simulation, 2000, 51(3): 287 -300.
    [145]王东风,韩璞.基于免疫遗传算法优化的汽温系统变参数PID控制[J].中国电机工程学报, 2003, 23(9): 212-217.
    [146]张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报, 2005, 35(1): 91-96.
    [147] Chen Q.G., Wang N. The distribution population-based genetic algorithm for parameter optimization PID controller[J]. Acta automatica sinica, 2005, 31(4): 646-650.
    [148]赵永强,李刚.基于加速遗传算法的自适应PID模糊控制器设计[J].弹箭与制导学报, 2006, 26(2): 354-356.
    [149]王爽心,杨辉,张秀霞.基于混沌遗传算法的主汽温系统RBF-PID控制[J].中国电机工程学报, 2008, 28(23): 87-92.
    [150] Zhang J.H., Zhuang J., Du H.F. Self-organizing genetic algorithm based tuning of PID controllers[J]. Information sciences, 2009, 179(7): 1007-1018.
    [151]韩璞,张海琳,张丽静.神经网络自适应逆控制的仿真研究[J].华北电力大学学报, 2001, 28(3): 26-30.
    [152] Harnold C.L.M., Lee K.Y., Lee J.H., et al. Free-model based model reference adaptive inverse controller design for power plants[C]. 1999 IEEE Power engineering society summer meeting, Edmonton, 1999, 1208-1212.
    [153] Ge Y.Q., Ma S.S., Luo X.P. Direct inverse model control based on a new improved CMAC neural network[J]. Advanced intelligent computing theories and application, 2010, 6215:25-32.
    [154]陈红,王广军,邓良才.基于逆动力学模糊规则的单元机组协调控制[J].控制与决策, 2008, 23(6): 705-708.
    [155]王耀南,袁小芳,吴亮红.基于支持向量机的发电机组逆模型控制[J].仪器仪表学报, 2008, 29(2): 256-260.
    [156]李春文,张平,冯元琨.一种基于逆系统方法的化学反应器改进控制方案[J].控制与决策, 1998, 13(5): 577-580.
    [157]黎浩荣,李东海,李立勤,等.中间再热式汽轮发电机组汽门开度全称非线性控制[J].清华大学学报, 2000, 40(10): 84-87.
    [158]王东风,于希宁,宋之平.制粉系统球磨机的动态数学模型及分布式神经网络逆系统控制[J].中国电机工程学报, 2002, 22(1): 97-101.
    [159]于达仁,徐志强,郭洪波.基于神经网络解耦线性化方法的锅炉主汽压力控制[J].中国电机工程学报, 2002, 22(5): 143-147.
    [160]戴先中,张兴华,刘国海,张磊.感应电机的神经网络逆系统线性化解耦控制[J].中国电机工程学报, 2004, 24(1): 112-117.
    [161]刘国海,孙玉坤,全力,等.基于神经网络逆系统的发酵过程多变量解耦控制[J].仪器仪表学报, 2006, 27(3): 245-248.
    [162]栾好利,王庆利.基于模糊神经网络逆方法的单元机组协调控制[J].辽宁大学学报, 2008, 35(3): 239-243.
    [163] Venkat A.N., Vijaysai P., Gudi R.D. Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space[J]. Journal of process control, 2003, 13(6):473-488.
    [164] Wu X.J., Zhu X.J., Cao G.Y., et al. Dynamic modeling of SOFC based on a T–S fuzzy model[J]. Simulation modelling practice and theory, 2008, 16(5): 494-504.
    [165] Du H.P., Zhang N. Application of evolving Takagi-Sugeno fuzzy model to nonlinear system identification[J]. Applied soft computing, 2008, 8(1): 676-686.
    [166]宋清昆,郝敏.一类改进的模糊c-均值聚类算法[J].哈尔滨理工大学学报, 2007, 12(4): 8-10.
    [167]王宏伟,詹容开,贺汉根.基于模糊聚类的改进模糊辨识方法[J].电子学报, 2001, 29(4): 436-438.
    [168] Kim E., Park M., Ji S. A new approach to fuzzy modeling[J]. IEEE Transactions on fuzzy systems, 1997, 5(3): 328-337.
    [169]范永胜,徐治皋,陈来久.基于动态特性基理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报, 1997, 17(1): 23-28.
    [170]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社, 2004.
    [171]梁艳春,王在申.遗忘因子选取对于时变参数识别结果的影响[J].宇航学报, 1996, 17(1): 75-80.
    [172] Tong R.M. Synthesis of fuzzy models for industral processes[J]. International journal of general systems, 1978, 4(1): 143-162.
    [173] Pedrycz W. An identification of fuzzy relational systems[J]. Fuzzy sets and systems, 1984, 13(2): 153-167.
    [174] Xu C.W., Lu Y.Z. Fuzzy modeling identification and self-learning for dynamic systems[J]. IEEE Transactions on systems, man and cybernetics, 1987, 17(4): 683-689.
    [175] Sugeno M., Takahiro Y. A fuzzy-logic-based approach to qualitative modeling[J]. IEEE Transactions on fuzzy systems, 1993, 1(1): 7-31.
    [176] Yoshinari Y., Pedrycz W., Hirota K. Construction of fuzzy models through clustering techniques[J]. Fuzzy sets and systems, 1993, 54(2): 157-165.
    [177] Chen J.Q., Xi Y.G., Zhang Z.J. A clustering algorithm for fuzzy model identification[J]. Fuzzy sets and systems, 1998, 98(3): 319-329.
    [178]李刚.热力系统逆动力学模糊规则模型及其应用[D].重庆:重庆大学硕士学位论文, 2005.
    [179]沈炯,金林,陈来九.火电单元机组负荷最优预见控制系统仿真研究[J].中国电机工程学报, 1999, 19(3): 14-17.
    [180]韩璞,于萍,王国玉,王东风.单元机组负荷系统预测函数控制[J].电工技术学报, 2004, 19(10): 47-52.
    [181] Wang D.H., Bao P. Enhancing the estimation of plant Jacobian for adaptive neural inverse control[J]. Neurocomputing, 2000, 34(1): 99-115.
    [182] Sargolzaei J., Khoshnoodi M., Saghatoleslami N., et al. Fuzzy inference system to modeling of crossflow milk ultrafiltration[J]. Applied soft computing, 2008, 8(1): 456-465.
    [183] Timothy J.R. Fuzzy logic with engineering applications[M]. John Wiley and Sons, 2010.
    [184] Han P., Yu P., Wang G.Y., et al. Predictive functional control in thermal power unit load systems [J]. Transactions of china electrotechnical society, 2004, 19(10): 47-52.
    [185]郑毅,王柏萍,李少远.基于目标规划的约束系统预测控制稳态目标计算[J].上海交通大学学报, 2008, 42(10): 1702-1706.
    [186] Alberto H., Enrique B., JoséR.P. Design of PID-type controllers using multi-objective genetic algorithms[J]. ISA Transactions, 2002, 41(4): 457-472.
    [187]朱建青,汤源.约束最小二乘问题的几个算法[J].测绘学院学报, 2011, 18(2): 90-92.
    [188] Du. J.J., Song. C.Y., Li. P. Modeling and control of a continuous stirred tank reactor based on a mixed logical dynamical mode[J]. Chinese journal of chemical engineering, 2007, 15(4): 533-538.
    [189] Bao. Z.J., Pi. D.Y., Sun. Y.X. Nonlinear model predictive control based on support vector machine with multi-kernel[J]. Chinese journal of chemical engineering, 2007, 15(5): 691-697.
    [190] Lu. M., Jin C.B., Shao H.H. An improved fuzzy predictive control algorithm and its application to an industrial CSTR process[J]. Chinese journal of chemical engineering, 2009, 17(1): 100-107.
    [191] Nikravesh M., Farell A.E., Stanford T.G. Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC)[J]. Chemical engineering journal, 2000, 76(1): 1–16.
    [192]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京,科学出版社, 2005.
    [193]金以慧,方崇智.过程控制[M].北京,清华大学出版社, 2001.
    [194] ?str?m K.J., Eklund K. A simplified non-linear model of a drum-boiler-turbine unit[J]. International journal of control, 1972, 16(1): 146-169.
    [195] Habbi H., Zelmat M., Bouamama B.O. A dynamic fuzzy model for a drum–boiler–turbine system[J]. Automatica, 2003, 39(7): 1213-1219.
    [196]栾秀春,李士勇,张宇.单元机组的T-S模糊协调控制系统极其LMI分析[J].中国电机工程学报, 2005, 25(19): 91-95.
    [197]林金星,沈炯,李益国.基于免疫优化的机炉协调系统模糊增益调度H∞鲁棒控制[J].中国电机工程学报, 2008, 28(17): 92-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700