用户名: 密码: 验证码:
NSC和OEC联合移植对SCT大鼠大脑皮质运动区神经元的作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】探讨NSC和OEC联合移植对脊髓全横断损伤大鼠的运动功能及大脑皮质运动区神经元的保护作用,并探讨其作用机制。
     【方法】采用细胞培养、免疫组织化学、TUNEL法、蛋白质印迹法和逆转录聚合酶链式反应等技术,结合动物行为学观察(BBB评分及运动诱发电位检测),研究全横断脊髓损伤及NSC和OEC联合移植后,损伤大鼠运动功能的变化、大脑皮质运动区神经元的存活与凋亡、相关凋亡基因表达变化及其信号转导分子的调节。
     【结果】
     1.T_9全横断脊髓损伤后,大鼠后肢运动功能完全丧失,随时间延长,有一定的(甚至无)自发性恢复,但此种自发性恢复能力非常有限。在脊髓全横断损伤后的1~4周的各个时间点,手术组大鼠BBB评分明显低于假手术组(P<0.001)。术后4周,手术组80%的大鼠未检测到MEP,20%的大鼠检测到波幅极低的MEP波形;假手术组MEP检出率为100%,波幅、潜伏期正常。细胞凋亡TUNEL检测显示:术后2周,手术组大脑皮质V层TUNEL阳性细胞数较假手术组增多(P<0.05)。免疫组化结果表明:术后4周,手术组大脑皮质V层NeuN阳性细胞数较假手术组减少(P<0.05);同时,手术组Bax和Caspase-3的阳性细胞数较假手术组明显增多(P<0.05),而Bcl-2两组相比无统计学差异(P>0.05)。RT-PCR结果显示:大脑皮质运动区Bax的表达在手术组各时间点与假手术组比较均无差异(P>0.05);而Bcl-2的表达术后14天和28天较假手术组明显减少(P<0.05);Caspase-3则在术后3天较假手术组表达高(P<0.05),其他时间点接近假手术组水平。
     2.从细胞移植术后第3周末开始,NSC和OEC联合移植组大鼠后肢运动功能的恢复明显优于单纯全横断组(P<0.05);三个细胞移植组大鼠的BBB评分在整个恢复过程中均有明显的提高,其中NSC和OEC联合移植组的BBB分值在第3周末高于NSC移植组和OEC移植组,在第4周末高于NSC移植组(P<0.05);NSC移植组和OEC移植组的BBB评分在移植术后第4周末高于单纯全横断组(P<0.05)。细胞移植术后4周,各细胞移植组均有不同程度的MEP波幅,但均明显低于假手术组(P<0.01);NSC和OEC联合移植组的所有受试动物均检测到MEP波形,检出率达100%,NSC和OEC单独移植组MEP检出率均为50%。细胞移植后2周,假手术组和各细胞移植组大鼠大脑皮质V层TUNEL阳性染色细胞较单纯全横断手术组少(P<0.05);联合移植组较OEC移植组细胞凋亡数少(P<0.05)。细胞移植术后4周,免疫组化结果显示:尽管全横断损伤组、NSC和OEC单独移植组的NeuN阳性细胞数较假手术组明显减少(P<0.05),而NSC和OEC联合移植组与假手术组相比却无明显差异(P>0.05),说明细胞联合移植可减轻皮质运动神经元的凋亡。结果还发现:联合移植组大脑皮质V层抗凋亡因子Bcl-2阳性细胞数较各对照组多(P<0.05);而联合或单细胞移植组促凋亡基因Bax阳性细胞数均较手术组减少(P<0.05);Caspase-3阳性细胞数仅联合移植组和OEC移植组较手术组减少,且联合移植组较两种细胞单一移植组减少明显(P<0.05)。RT-PCR检测发现:NSC和OEC联合移植后3天,Bax mRNA的表达较NSC移植组增多,但较OEC移植组降低(P<0.05);而在联合移植后14天和21天,Bcl-2的表达较OEC移植组增高(P<0.05);Caspase-3的表达在移植后3天和7天较手术组表达降低(P<0.05),移植后14天,较NSC移植组表达降低(P<0.05)。
     3.信号通路分子RT-PCR检测显示:细胞移植术后3天,联合移植组、OEC移植组和手术组大脑皮质运动区PKB mRNA的表达均明显高于NSC移植组(P<0.05),手术组还较假手术组表达高(P<0.05);而术后14天,NSC移植组PKB mRNA的表达明显回升且显著高于OEC移植组(P<0.05);移植术后21天,NSC和OEC联合移植组PKB mRNA的表达较NSC移植组和OEC移植组高(P<0.05),其中,OEC移植组还低于手术组和假手术组(P<0.05)。术后7天和28天,各组比较无差异(P>0.05)。比较之,单独和联合移植术后ERK1mRNA的表达在各时间点均较假手术组和手术组明显减低(P<0.01);且术后3天,NSC移植组高于OEC移植组和联合移植组(P<0.01)。Stat-3 mRNA的表达则表现为细胞移植术后3天,联合移植组和OEC移植组较假手术组及手术组表达高(P<0.05);移植术后14天手术组较假手术组降低(P<0.05),而各细胞移植组均较手术组明显升高(P<0.05);在细胞移植术后21天,各细胞移植组Stat-3的表达均较假手术组降低(P<0.05);而在移植术后28天,NSC移植组Star-3较假手术组和联合移植组表达增高(P<0.05)。进而,Western-blot检测结果发现:移植术后14天,联合移植组Akt非磷酸化蛋白、ERK1/2磷酸化蛋白的表达均比手术组和假手术组高,且Akt非磷酸化蛋白在NSC移植组比手术组表达高(P<0.05)。联合移植组非磷酸化Stat-3的表达较假手术组、手术组、NSC移植组表达高(P<0.05);Akt磷酸化蛋白、Stat-3磷酸化蛋白和ERK1/2非磷酸化蛋白的表达各组间比较均无差异(P>0.05)。
     4.体外共培养显示:NSC和OEC共培养7天,联合培养组NeuN阳性细胞数较NSC单独培养组多(P<0.05),而未分化的Nestin阳性细胞较单独培养组低(P<0.05);GFAP和APC阳性细胞分化率两组比较无差异(P>0.05)。提示OEC可能促进NSC向神经细胞分化。
     【结论】
     1.脊髓全横断损伤后可能有部分自主运动功能恢复,但非常有限,需要寻找有效的治疗措施;脊髓全横断损伤引发大脑皮质运动区神经元凋亡基因表达失控,进而导致细胞凋亡,因此,脊髓损伤的研究必须考虑到脊髓自身以外的损害,特别是大脑皮质。
     2.NSC和OEC作为两种有用的“种子”细胞,其单独和联合移植能有效促进脊髓损伤大鼠运动功能部分恢复,且联合移植优于单细胞移植。
     3.NSC和OEC联合移植发挥作用的机制可能涉及:①OEC能促进NSC的增殖和向神经元分化;②减少大脑皮质运动区神经元凋亡;③促进抗凋亡因子Bcl-2的基因和蛋白质表达;④调节ERK1/2信号转导通路。
Objective To explore the effects of neural stem cells (NSC) and olfactory ensheathing cells (OEC) co-transplantation on the neurons of primary motor cortex and the locomotor functions in the rats subjected to spinal cord transection (SCT). And elucidate the underlying molecular mechanisms.
     Method The cells culture, Immunohistochemistry (IHC), Terminal deoxynucleotidyl transferase mediated dUTP Nick end labeling (TUNEL), Western-blot, Reverse Transcription polymerase Chain Reaction (RT-PCR) and Behavioral test (BBB locomotor score and Motor evoked potential) were employed to test the hindlimb locomotor functions, the surviving or dying of the neurons of primary motor cortex , the expression of apoptosis associated factors and the molecular signal transduction molecular in the rats subjected to SCT and received NSC and OEC co-transplantation.
     Result
     1. Rats subjected to SCT at spinal level T9, which hindlimbs showed flaccid paralysis, indicating that the transection of the cord was complete. There was spontaneous, howbeit incomplete, recovery of the hindlimb locomotor functions after SCT. The BBB score of operation group was significant lower than sham operation group at all of the different time points (P<0.05). At 4 weeks after SCT, transcranial magnetic motor-evoked potentials (MEP) were not recorded in 80% experiment rats. Whereas all of the sham operation rats had the successful MEP records. At 2 weeks after transection, the TUNEL staining showed the operation group rats had more positive staining cells in the V layer of cortex than the sham operation group rats (P<0.05). Immunohistochemical staining revealed that the operation group rats expressed specific neuronal marker (Neun) in the V layer of cortex was significantly less than sham operation group rats at 4 weeks post operation (P<0.05). And the quantitative analysis demonstrated that the number of Bax and Caspase-3 immunoreactive products were more in the operation group rats than sham operation group rats in the V layer of cortex (P<0.05). Whereas the Bcl-2 immunoreactive products have no statistical difference between the operation group and sham operation group (P>0.05). The result of RT-PCR showed as follows: Compared with sham-operation group, the expression of Bcl-2 mRNA in the primary motor cortex decreased significantly in operation group at 14 and 21 days post operation (dpo), while a significant increase on the expression of Caspase-3 mRNA was found at 3dpo in the operation group rats (P<0.05). The expression of Bax, however, had no statistical difference between two groups (P>0.05).
     2. The rats received NSC and OEC co-transplantation had a better recovery of hindlimb locomotor functions than operation group rats from 3 weeks after transplantation (P<0.05). All of the rats received cell transplantation had a significant improvement of BBB locomotor score. The rats received NSC and OEC co-transplantation had the highest BBB score among three cell transplantation groups at 3 weeks after operation (P<0.05) . At 4 weeks post operation, NSC and OEC co-transplantation group rats had higher BBB score than NSC transplantation group rats (P<0.05). The BBB score of NSC transplantation group and OEC transplantation group was higher than operation group at 4 weeks post operation, respectively (P<0.05). At 4 weeks post transplantation, all of the rats received NSC and OEC co-transplantation had the successful MEP records. However, the amplitudes were lower than sham operation group (P<0.01). There was only one half rats had the MEP records in NSC transplantation group and OEC transplantation group. Both had lower amplitudes than sham operation group rats (P<0.01). The latencies of OEC transplantation group rats were the longest among all the experimental rats (P<0.05). Two weeks after cell transplantation, the TUNEL staining revealed the operation group rats had the most numbers of TUNEL positive staining cells in the V layer of motor cortex among all the experimental animals (P<0.05). The TUNEL staining cells of NSC and OEC co-transplantation rats were less than OEC transplantation group rats (P<0.05). Four weeks following cell transplantation, the statistical result showed the sham operation group rats had the most number of NeuN immunoreactivity in the V layer of motor cortex among all of the experiment rats except for NSC and OEC co-transplantation group (P<0.05). There was, however, no statistical difference of NeuN immunoreactive between sham operation group and co-transplantation group (P>0.05). Which suggested NSC and OEC co-transplantation have the potential to rescue the neurons of primary motor cortex. Significantly, the number of the Bcl-2 immunoreactive products in NSC and OEC co-transplantation group were the most among all of the experimental group rats (P<0.05). In the V layer of motor cortex, all of the cell transplantation groups rats had less Bax immunoreactive products than the operation group rats (P<0.05). NSC and OEC co-transplantation group and OEC transplantation group had less Caspase-3 immunoreactive products than operation group (P<0.05). Moreover, NSC and OEC co-transplantation group had the least number of Caspase-3 immunoreactive products among three cell transplantation groups (P<0.05). The result of RT-PCR showed that the expression of Bax mRNA in co-transplantation group was increased compared with NSC transplantation group, whereas decreased compared with OEC transplantation group at 3dpo (P<0.05). The expression of Bcl-2 mRNA in the NSC and OEC co-transplantation group was increased at 14dpo and 21dpo compared with OEC transplantation group and increased at 21 dpo compared with operation group (P<0.05). Compared with operation group, the expression of Caspase-3 in the motor cortex of NSC and OEC co-transplantation group rats were decreased at 3 and 7dpo (P<0.05). And lower than NSC transplantation group at 14dpo (P<0.05).
     3.The result of RT-PCR showed that the expression of PKB mRNA in the motor cortex of NSC transplantation group rats was lower than co-transplantation group, OEC transplantation group and operation group at 3 dpo (P<0.05). At the same time point, operation group was lower than sham operation group (P<0.05). At 14dpo, the expression of PKB mRNA in NSC transplantation group was reversed and was higher than OEC transplantation group (P<0.05). NSC and OEC co-transplantation group rats had the highest expression of PKB mRNA among three cell transplantation groups (P<0.05). And OEC transplantation group was lower than operation group and sham operation group (P<0.05) .There was no statistical difference in all of the experimental rats at 7 dpo and 28 dpo (P>0.05). Conversely, the expression of ERK1 mRNA was higher in the motor cortex of sham operation group and operation group than three cell transplantation groups (i.e. NSC transplantation group, OEC transplantation group and co-transplantation group) at all of the time points (P<0.01). Moreover, the expression of ERK mRNA was the highest in the motor cortex of NSC transplantation group among three cell transplantation groups at 3dpo (P<0.01). At 3dpo, the expression of Stat-3 mRNA in the motor cortex of co-transplantation group and OEC transplantation group was higher than operation group and sham operation group (P<0.05) . At 14 dpo, operation group was less than sham operation group (P <0.01). And each cell transplantation groups was higher than operation group, respectively (P<0.05) . At 21 dpo, the expression of Stat-3 mRNA of every cell transplantation group was less than sham operation group (P<0.05). NSC transplantation group showed a significant upregulation at 28 dpo compared with sham operation group and NSC and OEC co-transplantation group (P <0.05) . At 14 dpo, Western-blot analysis showed that the expression of Akt non-phosphorylated protein and ERK 1/2 phosphorylated protein in the motor cortex of NSC and OEC co-transplantation group was increased compared with operation group and sham-operation group (P<0.05). And the expression of Akt non-phosphorylated protein in NSC transplantation group was higher than operation group (P<0.05). Compared with sham operation group, operation group and NSC transplantation group, there was a significant upregulation of Stat-3 non-phosphorylated protein in the motor cortex of co-transplantation group (P<0.05). The result also showed there was no difference on the expressions of Akt phosphorylated protein, ERK1/2 non-phosphorylated protein and Stat-3 phosphorylated protein in all of the experiment animals (P>0.05).
     4. Immunocytochemical analysis showed that there was more NeuN immunoreactivity neurospheres and less Nestin-positive cells in the co-culture medium than NSC single culture medium at 7 days (P<0.05). There was, however, no statistical difference in the numbers of GFAP-positive cells and APC-positive cells between co-culture and single culture medium (P>0.05). Which suggested OEC are capable of promoting NSC differentiate into neurons.
     Conclusion
     1. There was spontaneous, howbeit very limited, recovery of the hindlimb locomotor functions after SCT. It is urgent to find an optional and effective measure to improve the motor functions after spinal cord injury. The neurons of motor cortex in the rats suffered to apoptosis and death after SCT. The abnormal expression of apoptosis genes in the motor cortex would be responsible for the result, which was triggered by SCT. Therefore, it is prerequisite to play light on the changes of cerebral cortex after SCI.
     2. NSC and OEC as two types of 'seed' cells. Both of them single or combinated engrafted into the rats subjected to SCT could effectively promote the recovery of the hindlimb locomotor functions. Whereas, co-transplantation had the better effects than single transplantation.
     3. The underlying mechanism of NSC and OEC co-transplantation maybe as follows: The first, OEC have the potential to promote NSC profileration and differentiate into neurons. The second, co-transplantation prevented the neurons of motor cortex from apoptosis in the rats subjected to SCT. The third, NSC and OEC co-transplantation promoted the expression of Bcl-2 mRNA and protein level. And the effect was associated with the activated of ERK signal transduction molecular.
引文
1.Lim PA,Tow AM,Recovery and regeneration after spinal cord injury:a review and summary of recent literature.Ann Acad Med Singapore.2007,36(1):49-57
    2.高宜录,顾晓松.脊髓损伤的再生与重建策略.组织工程与重建外科杂志.2006,2(1):45-49.
    3.van den Berg ME,Castellote JM,Mahillo-Fernandez I,et al.Incidence of spinal cord injury worldwide:a systematic review.Neuroepidemiology.2010,34(3):184-92
    4.Kwon BK,Fisher CG,Dvorak MF,et al.Strategies to promote neural repair and regeneration after spinal cord injury.Spine,2005,30(17 Supp 1):S3-13
    5.Cramer SC,Lastra L,Lacourse MG,et al.Brain motor system function after chronic,complete spinal cord injury.Brain,2005,128(pt 12):2941-2950
    6.Hains BC,Black JA,Waxman SG.Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury.J Comp Neurol,2003,462(3):328-341
    7.Emery E,Aldana P,Bunge MB,et al.Apoptosis after traumatic human spinal cord injury.J Neurosurg,1998,89(6):911-920.
    8.Li GL,Farooque M,Olsson Y,et al.Changes of Fas and Fas ligand immunoreactivity after compression trauma to rat spinal cord.Acta Neuropathol,2000,100(1):75-81.
    9.刘亚东,关骅.脊髓损伤后大脑皮质的变化.中国康复理论与实践,2008,14(8):713-715.
    10.鞠躬,《神经生物学》.第一版,北京,人民卫生出版社,2004年.676-679.
    11.Koshizuka S,Okada S,Okawa A,et al.Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice.J Neuropathol Exp Neurol,2004,63(1):64-72
    12.卓本慧,李廷玉.间充质干细胞与神经细胞移植.国外医学脑血管疾病分册,2002,10(4):290-292
    13.Steward O,Sharp K,Selvan G,et al.A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats.Exp Neurol,2006,198(2):483-99
    14.Boyd JG,Lee J,Skihar V,et al.LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord.Proc Natl Acad Sci USA.2004,101(7):2162-6
    15. Riddell JS, Enriquez-Denton M, Toft A,et al. Olfactory ensheathing cell grafts have minimal influence on regeneration at the dorsal root entry zone following rhizotomy. Glia, 2004,47 (2):150-67
    
    16. Lee IH, Bulte JW, Schweinhardt P. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol. 2004,187(2):509-16
    
    17. Reier PJ. Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx ,2004,1 (4):424 451.
    
    18. Martin D, Robe P, Franzen R, et al. Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. J Neurosci Res, 1996,45(5):588 597.
    
    19. Romano G. Stem cell transplantation therapy:controversy over ethical issues and clinical relevance. J Drug News Perspect, 2004,17(10):637-45.
    
    20.陈佳,李超英,细胞移植治疗脊髓损伤的研究进展.医学综述,2008,14(24)L3743-3746
    
    21. Cao QL, Zhang YP, Howard RM,et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001,167(1):48—58.
    
    22. McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med, 1999;5(12):1410-2.
    
    23.Han SS, Kang DY, Mujtaba T,et al. Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol. 2002,177(2):360-75.
    24.Tarasenko YI, Gao J, Nie L, et al. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res,2007,85(l):47-57.
    25. Johansson CB, Momma S, Clarke DL, et al.Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999,96(1):25-34.
    26.Chow SY, Moul J, Tobias CA, et al. Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord. Brain Res, 2000,874(2):87-106
    
    27. Ishii K, Nakamura M, Dai H, et al. Neutralization of Ciliary Neurotrophic Factor Reduces Astrocyte Production From Transplanted Neural Stem Cells and Promotes Regeneration of Corticospinal Tract Fibers in Spinal Cord Injury, J Neurosci Res. 2006,84(8):1669-1681.
    
    28. Ramon-Cueto A, Valverde F. Olfactory Bulb Ensheathing Glia : A Unique Cell Type with Axonal Growth-promoting Properties.Glia, 1995,14 (3) :163-173.
    29.Woodhall E,West AK,Chuah MI.Cultured olfactory ensheathing cells express nerve growth factor,brain-derived neurotrophic factor,glia cell line-derived neurotrophic factor and their receptors.Brain Res Mol Brain Res.2001,88(1-2):203-13.
    30.Ramon-Cueto A,Avila J.Olfactory ensheathing glia:properties and function.Brain Res Bull,1998,46(3):175-187.
    31.谢雪微,唐洲平,王伟.OEC的分离、培养和纯化技术及应用研究进展.神经损伤与功能重建,2007,2(4):247-248.
    32.Polentes J,Gauthier P,Transplantation of olfactory glial cells after spinal injury.Ⅰ-From experimental data to repair strategy after centrai injury.Neurochirurgie.2005;51(5):421-34.
    33.Lu J,Ashwell K,Olfactory ensheathing cells:their potential use for repairing the injured spinal.Spine.2002,27(8):887-92.
    34.Bunge MB,Pearse DD,Transplantation strategies to promote repair of the injured spinal cord.J Rehabil Res Dev,2003;40(4 Suppl 1):55-62.
    35.Collazos-Castro JE,Muneton-Gomez VC,Nieto-Sampedro M,Olfactory glia transplantation into cervical spinal cord contusion injuries.J Neurosurg Spine,2005,3(4):308-17.
    36.Ao Q,Wang A J,Chen GQ,et al.Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.Med Hypotheses,2007:69(6):1234-7.
    37.尹国栋,汤逊,林月秋,等.人胚胎嗅鞘细胞与神经干细胞联合移植修复大鼠脊髓全横断损伤的研究.中国康复医学杂志.2006,21(8):680-683
    38.Martinou JC,Dubois-Dauphin M,Staple JK,et al.Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.Neuron.1994;13(4):1017-1030.
    39.White FA,Keller-Peck CR,Knudson CM,et al.Widespread elimination of naturally occurring neuronal death in Bax-deficient mice.J Neurosci.1998;18(4):1428-1439
    40.Hengartner MO.The biochemistry of apoptosis.Nature.2000;407(6805):770-776
    41.Kan Xu,Chen QX,Li FC,et al.Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury.J Zhejiang University B.2009;10(3):180-187
    42.Tator CH,Fehlings MG.Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms.J Neurosurg,1991;75(1):15-26
    43. Kamei N, Tanaka N, Oishi Y, et al.BDNF,NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine.2007;32(12):1272-8.
    
    44. Henderson CE, Camu W, Mettling C, et al, Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature. 1993;363(6426):266-70.
    
    45. Dudek H,Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997;275 (5300): 661- 665
    
    46. Toborek M, Son KW, Pudelko A, et al. ERK 1/2 signaling pathway is involved in nicotine-mediated neuroprotection in spinal cord neurons. J Cell Biochem.2007,100(2):279-92
    
    47. Oh MJ, Seo TB. Kwon KB, et al. Axonal outgrowth and Erk1/2 activation by training after spinal cord injury in rats. J Neurotrauma, 2009,26(11):2071-82
    
    48. Isele NB, Lee HS, Landshamer S, et al. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int, 2007,50(1):243-50
    
    49. Oshiro MM, Landowski TH, Catlett Falcone R, et al. Inhibition of JAK kinase activity enhances Fas-mediated apoptosis but reduces cytoxic activity of topoisomerase-2 inhibition in U266 myeloma cells. Clin Canver Res,2001,7 (12) :4262 - 4271
    
    50. Lee BH, Lee KH , Kim UJ, et al. Injury in the spinal cord may produce cell death in the brain. Brain Res, 2004,1020(1-2):37-44
    
    51. Wannier T, Schmidlin E, Bloch J, et al. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex. Neurotrauma,2005, 22(6):703-717
    
    52. Ament PA, Cohen MJ, Schandler SL, et al. Auditory P3 event related potentials (ERP) and brainstem auditory evoked responses (BAER) after spinal cord injury in humans. Spinal Cord Med, 1995,18(3): 2.08-15
    
    53. Green JB, Sora E, Bialy Y,et al. Cortical motor reorganization after paraplegia: an EEG study.Neurology,1999, 53(4): 736-43
    
    54. Lacourse M, Cohen M, Lawrence K, et al. Cortical potentials during imagined movements in individuals with chronic spinal cord injuries.Behav Brain Res, 1999,104(1-2): 73-88
    
    55. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable Iocomotor rating scale for open filed testing in rats .J Neurotrauma,1995,12(l):l-21
    56.Zhang YP,Shields LB,Zhang Y,et al.Use of magnetic stimulation to elicit motor evoked potentials,somatosensory evoked potentials,and H-reflexes in non-sedated rodents.J Neurosci Methods,2007,165(1):9-17
    57.Linden RD,Zhang YP,Burke DA,et al.Magnetic motor evoked potential monitoring in the rat.J Neurosurg.1999,91(2 Supp 1):205-10
    58.张志坚,姜平,刘锦波,等.神经生长因子及其高亲和力受体在脊髓损伤大鼠大脑运动皮质及皮质脊髓束的表达.解剖学报,2004,35(6):589-594.
    59.Fehling MG,Tator CH.The relationships among the severity of spinal cord injury,residual neurological function,axon counts,and counts of retrogradely labeled neurons after experimental spinal cord injury.Exp Neurol,1995,132(2):220-228
    60.Talac R,Friedman J.A,Moore MJ,et al.Animal models of spinal cord injury for evaluation of tissue enginering treatment strategies.Biomaterials,2004,25(9):1505-1510
    61.Pu Y,Guo QS,Wang AM,et al.Repair of Acutely Injured Spinal Cord through Constructing Tissue engineered Neural Complex in Adult Rats.Chin J Traumatol,2007,10(3):171-176
    62.Roussos I,Rodriguez M,Villan D,et al.Development of a Rat Model of Spinal Cord Injury and Cellular Transplantation.Transplant Proc,2005,37(9):4127-4130
    63.Bradley JA.Repairing Spinal Cord Injury by Cell Transplantation.Transplantation,2008,86(6):769-771
    64.Fehlings MG,Tator CH,Linden RD et al,Motor evoked potentials recorded from normal and spinal cord-injured rats,Neurosurgery,1987,20(1):125-130
    65.Ross IB.,Tator CH.,Spinal cord blood flow and evoked potential responses after treatment with nimodipine or methylprednisolone in spinal cord injured rats,Neurosurgery,1993,33:(3)470- 477
    66.Fujiki M,Kobayashi H,Inoue R,et al.Immediate plasticity in the motor pathways atter spinal cord hemisection:implications for transcranial magnetic motor-evoked potentials.Exp Neurol,2004,187(2):468 77
    67.宋斌,王玮.诱发电位与脊髓损伤.解剖学研究,2004,26(4):298-302
    68.Stewart M,Quirk GJ,Amassian VE,Corticospinal responses to electrical stimultation of motor cortex in the rats.Brain Res,1990,508(2):341-344.
    69.Ramo'n-Cueto,A,Cordero,MI,Santos-Benito,FF,et al.Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia.Neuron,2000,25(2):425-435.
    70.Lopez-Vales R,Fores J,Verdu E,Enrique Verdu.Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord.Neurobiology of Disease.2006;21:57-68.
    71.Cuello-Carrion FD,Ciocca DR.Improved detection of apoptotic cells using a modified in situ TUNEL technique.J Histochem Cytochem.1999,47(6):837-9.
    72.武赟,郝建军.高雨仁,等.大鼠脊髓全横断后NT-3在运动皮质表达的变化.山西医科大学学报.2007,37(7):678-681.
    73.Yune TY,Kim SJ,Lee SM,et al.Systemic administration of 17beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats.J Neurotrauma,2004,21(3):293-306.
    74.Yong C,Arnold PM,Zoubine MN,et al.Apoptosis in cellular compartments of rat spinal cord after severe contusion injury.J Neurotraurna,1998,15(7):459-472
    75.Theriault E,Tator CH.Persistence of rubrospinal projections following spinal cord injury in the rat.J Comp Neurol.1994;342(2):249-258
    76.Mori F,Himes BT,Kowada M,et al.Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats.Exp Neurol.1997;143(1):45-60.
    77.Sanner CA,Cunningham TJ,Goldberger ME.NMDA receptor blockade rescues Clarke's and red nucleus neurons after spinal hemisection.J Neurosci.1994;14(11 Pt 1):6472-6480
    78.Houle JD,Ye JH.Survival of chronically-injured neurons can be prolonged by treatment with neurotrophic factors.Neuroscience.1999.94(3):929-936
    79.Kwon BK,Liu J,Oschipok L,et al.Reaxotomy of chronically injured rubrospinal neurons results in only modest cell loss.Exp Neurol.2002;177(1):332-337
    80.Liu Y,Himes BT,Murray M,et al.Grafts of BDNF producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy.Exp Neurol,2002,178(2):150-164
    81.Goshgarian HG,Koistinen JM,Schmidt ER.Cell death and changes in the retrograde transport of horseradish peroxidase in rubrospinal neurons following spinal cord hemisection in the adult rat.J Comp Neurol,1983,214(3):251-257
    82.McBride RL,Feringa ER,Garret MK,et al.Prelabeled red nucleus and sensorimotor cortex neurons of the rat survive 10 and 20 weeks after spinal cord transection.J Neuropathol Exp Neurol,1989,48(5):568-576
    83.Coopersmith CM,Chang KC,Swanson PE et al.Overexpression of Bcl-2 in the intestinal epithelium improves survival in septic mice.Crit CareMed,2002;30(1):195-201
    84.Jacob T,Ascher E,HingoraniA,et al.Glycine prevents the induction of apoptosis attributed to mesenteric ischemia / reperfusion injury in a rat model.Surgery,2003;134(3):457-466
    85.Reed JC.Bcl-2 and the regulation of programmed cell death.J Cell Biol,1994;124(1-2):1-6
    86.Tsukaharas S,Yamamoto S,Shew TT,et al.Inhalation of low level formal-dehyde increases the bcl-2/bax expression ratio in the hippocampus of immunologically sensitized mice.Neuroimmuno modulation,2006;13(2):63-8
    87.Brooks C,Dong Z.Regulation of mitochondrial morphological dynamics during apoptosis by Bcl-2 family proteins:a key in Bak.Cell Cycle,2007,6(24):3043-7
    88.Prakasa Babu P,Yoshida Y,Su M,et al.Immunohistochemical expression of Bcl-2,Bax and cytochrome C following focal cerebral ischemia and effect of hypothermia in rat.Neurosci Lett,2000;291(3):196-200.
    89.Stennicke HR,Salvesen GS.Properties of the caspases.Biochim Biophys Acta,1998,1387(1-2):17-31.
    90.孔明健,胡兴国,曾因明.神经病理性痛大鼠脊髓背角神经元凋亡及Bax和Bcl-2的表达.中华麻醉学杂志.2005,25(12):932-933
    91.段有文,吕刚,吴海龙,等.bcl-2和bax基因与细胞凋亡的关系及在脊髓损伤中的作用.中华实验外科杂志,2005,22(10):1246-1247
    92.Kwon BK,Tetzlaff W.Spinal cord regeneration:from gene to transplants.Spine,2001,26(24 Suppl):S13-22.
    93.Gage F.Mammalian neural stem cells,neuroscience,2000,287(5457):1433-1438.
    94.Tarasenko YI,Gao J,Nie L,et al.Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior.Neurosci Res,2007,85(1):47-57.
    95.Johansson CB,Momma S,Clarke DL,et al.Identification of a neural stem cell in the adult mammalian central nervous system.Cell,1999,96(1):25-34.
    96.Chow SY,Moul J,Tobias CA,et al.Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord.Brain Res. 2000,874(2):87-106.
    97.孙来卿,陈先,王志强,等.嗅鞘细胞的特点及其研究现状.中国组织工程研究与临床康复,2007,11(24):4810-4814
    98.Ramon-Cueto A,Avila J.Olfactory ensheathing glia:properties and function.Brain Res Bull,1998;46(3):175-187
    99.Lu P.Jones,LL.Snyder,EY,et al.Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury.Exp Neurol,2003,181(2):115-129
    100.Kamei N,Tanaka N,Oishi Y,et al.BDNF,NT-3,and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures.Spine.2007,32(12):1272-1278
    101.郝春光,脊髓全横断损伤慢性期联合NSC和OEC移植对大鼠行为学的影响.[硕士学位论文].昆明:昆明医学院,2009
    102.Nash HH,Borke RC,Anders JJ.New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb.Glia,2001,34(2):81-7.
    103.Dumitru D.Branisteanu;Mark Waer;et al.Prevention of murine experimental allerimental allergic encephalomyelitis:cooperative effects of Cyclosporine and 1 α,25-(OH)_2D_3,Journal of Neuroimmunology,1995,61(199):151-160.
    104.Lipson AC,Widenfalk J,Lindqvist E.Neurotrophic properties of olfactory ensheathing glia.Exp Neurol.2003;180(2):167-71.
    105.Srivastava N,Seth K,Khanna VK,et al.Long-term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction:co-transplantation with olfactory ensheathing cells for neurotrophic factor support.Int J Dev Neurosci,2009,27(1):103-10
    106.Cervos NJ,Lafuente JV.Traumatic brain injuries:structural changes.J Neurol Sci,1999,103(Suppl):S3-14.
    107.Silver J,Miller JH.Regeneration beyond the glial scar.Nat Rev Neurosci,2004,5(2):146-156.
    108.Yiu G,He ZG.Glial inhibition of CNS axon regeneration.Nat rev Neurosci,2006,7(8):617-627.
    109.Davies SJ,Fitch MT,Memberg SP,et al.Regeneration of adult axons in white matter tracts of the central nervous system. Nature,1997,390(6661): 680-683
    
    110. Jones LL, Margolis RU, Tuszynski MH. The chondroitin sulfate proteoglycans neurocan,brevican, phosphacan, and versican are differentially regulated following spinal cord injury.Exp Neurol,2003,182(2): 399-411
    
    111. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol, 2008,209(2): 294-301
    
    112. Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci ,2004,24(9): 2143-2155
    
    113. Bush TG, Puvanachandra N, Homer CH, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes in adult transgenic mice. Neuron, 1999,23(2): 297-308
    
    114. Okada S, Nakamura M, Katoh H, et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med,2006,12(7): 829-834
    
    115. Stichel CC, Muller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res,1998,294(1): 1-9.
    
    116. Li Y, Li D, Raisman G. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: The 'pathway hypothesis'. J Neurocytol,2005,34(3-5): 343-351.
    
    117. Andrews MR, Stelzenr DJ.Evaluation of Olfactory Ensheathing and Schwann Cells after Implantation into a Dorsal Injury of Adult Rat Spinal Cord. J Neurotrauma, 2007,24(11):1773-1792
    
    118. Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia, 2000,32(3):214-225
    
    119. Lakatos A, Barnett SC, Franklin RJ. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol,2003,184(1): 237-246
    
    120. Ramon-Cueto A, Nieto-Sampedro M .Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol, 1994,127(2): 232-244
    
    121. van den Pol AN, Santarelli JG .Olfactory ensheathing cells: time lapse imaging of cellular interactions, axonal support, rapid morphologic shifts, and mitosis. J Comp Neurol,2003, 458(2):175-194.
    122.Horner P.J,Power A.E,Kempermann G,et al.Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord.J.Neurosci,2000,20(6):2218-2228.
    123.Johansson C.B,Momma S,Clarke D.L,et al.Identification of a neural stem cell in the adult mammalian central nervous system.Cell,1999,96(1):25-34.
    124.Namiki J,Tator C.H.Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury.J.Neuropathol Exp Neurol.1999,58(5):489-498.
    125.Weiss S,Dunne C,Hewson,et al.Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis.J Neurosci,1996,16(23):7599-7609.
    126.Ma DK,Bonaguidi MA,Ming GL,et al.Adult Stem cells in the adult mammalian central nervous system.Cell Res,2009,19(6):672-82.
    127.Cao QL,Howard RM,Dennison JB,et al.Differentiation of engrafted neuronal- restricted precursor cells is inhibited in the traumatically injured spinal cord.Exp Neurol 2002,177(2):349-359
    128.Yan J,Welsh AM,Bora SH,et al.Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord.J Comp Neurol,2004,480(1):101-114
    129.Shihabuddin LS,Horner PJ,Ray J,et al.Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus.J Neurosci,2000,20(23):8727-8735
    130.Ogawa Y,Sawamoto K,Miyata T,et al.Transplantation of in vitro expanded fetal neural progenitor cells result in neurogenesis and functional recovery after spinal cord contusion injury in adult rats.J Neurosci Res,2002,69(6):925-933
    131 黄灿阳,张文明,朱维钦.NSC移植在脊髓损伤中应用的研究进展.福建医药杂志,2007,29(2):100-102
    132.Okano H,Ogawa Y,Nakamura M,et al.Transplantation of neural stem cells into the spinal cord after injury.Semin Cell Dev Biol,2003,14(3):191-198.
    133.Lu J,Feron F,Mackay-Sim A,et al.Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord.Brain,2002,125(Pt 1):14-21.
    134.Keyvan-Fouladi N,Raisman G,Li Y.Functional Repair of the Corticospinal Tract by Delayed Transplantation of Olfactory Ensheathing Cells in Adult Rats.J Neurosci,2003,23(28):9428-9434.
    135. Plant GW, Christensen CL, Oudega M,et al. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J Neurotrauma,2003,20(1): 1-16.
    
    136. Woodhouse A, Vincent AJ, Kozel MA,et al. Spinal cord tissue affects ensheathing cell proliferation and apoptosis. Neuroreport, 2005,16(7):737-40.
    
    137. Yun Li, Wei-Min Zhang, Ting-Hua Wang .Transplantation of neural stem cells in optimal location and time in the rats subjected to cord transaction.Neurochemical Res.(Revising).
    
    138. Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science, 1997,277(5334):2000-2002.
    
    139. Li Y, Field PM, Raisman G. Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci ,1998,18:10514-10524.
    
    140. Ramon-Cueto A, Avila J. Olfactory ensheathing glia: properties and function. Brain Res Bull,1998,46(3):175-187.
    
    141. Lee SI, Kim BG, Hwang DH, et al. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury.Neurosci Res,2009,87( 14):3186-97
    
    142.Kumagai G, Okada Y, Yamane J, et al. Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One.2009,4(11):e7706
    
    143. Parr AM, Kulbatski I, Zahir T, et al. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury.Neuroscience. 2008,155(3):760-70.
    
    144. Guo JS, Zeng YS, Li HB, et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord. Spinal Cord. 2007,45(1): 15-24.
    
    145. Wijsman JH, Jonker RR, Keijzer R, et al. A new method to detect apoptosis in paraffin sections in situ end labeling of fragmented DNA. J Histochem, 1993,41 (1): 7-10
    
    146.Sasaki M, Hains BC, Lankford KL, et al. Protection of Corticospinal Tract Neurons After Dorsal Spinal Cord Transection and Engraftment of Olfactory Ensheathing Cells. Glia,2006;53(4): 352-359
    147.李云,黄桂琴,巴迎春,王廷华.NSC移植影响脊髓全横断大鼠大脑运动皮质相关凋亡 基因的表达.中国组织工程研究与临床康复,2009,13(49):9655-9658
    148.Dasari VR.Spomar DG.Cady C.et al.Mesenchymal Stem Cells from Rat Bone Marrow Downregulate Caspase-3-mediated Apoptotic Pathway After Spinal Cord Injury in Rats.Neurochem Res,2007,32(12):2080-2093
    149.Crowe,MJ,Bresnahan,JC,Shuman,S.L,et al.Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys.Nat Med,1997,3(1):73-76.
    150.Shuman,S.L,Bresnahan,J.C,Beattie,M.S,Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats.J Neurosci Res,1997,50(5):798-808.
    151.Wada S,Yone K,Ishidou Y,et al.Apoptosis following spinal cord injury in rats and preventative effect of N-methyl-D-aspartate receptor antagonist.J.Neurosurg.Spine,1999,91(1Suppl.):98-104.
    152.Springer JE,Azbill RD,Knapp PE,Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury.Nat Med,1999,5(8):943-946.
    153.Saito N,Yamamoto T,Watanabe T,et al.Implications of p53 protein expression in experimental spinal cord injury.J Neurotrauma.2000,17(2):173-182.
    154.鞠躬,《神经生物学》.第一版,北京,人民卫生出版社,2004年.320-329
    155.鞠躬,《神经生物学》.第一版,北京,人民卫生出版社,2004年.240-243.
    156.Schindler C,Darnell JE Jr.Transcriptional responses to polypeptide ligands:the JAK/STAT pathway.Annu Rev Biochem,1995,64:621-651
    157.Chang F,Steelman LS,Lee JT,et al.Signal transduction mediated by the Ras/Raf/MEK/ERK1/2 pathway from cytokine receptors to transcription factors:potential targeting for therapeutic intervention.Leukemia,2003,17:1263-1293
    158.朱锐锋,石庆之,华建媛.PI3K/Akt在细胞凋亡及白血病耐药方面的研究进展.江西医药,2008,43(1):51-54
    159.De Bartolo P,Leggio MG,Mandolesi L,et al.Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility.Neuroscience,2008,154(2):444-453
    160.Yamagishi S,Matsumoto T,Numakawa T,et al.ERK1/2 are involved in low potassium-induced apoptotic signaling downstream of ASKl-p38 MAPK pathway in cultured cerebellar granule neurons.Brain Res.2005,1038(2):223-230
    161.Satoh T,Nakatsuka D,Watanabe Y,et al.Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons.Neurosci Lett.2000,288(2):163-166.
    162.Stanciu M,Wang Y,Kentor R,et al.Persistent activation of ERK contributes to glutamateinduced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures.J Biol Chem.2000,275(16):12200-12206.
    163.马莲环,刘建.ERK1/2的研究进展.国际病理科学与临床杂志.2005,25(3).279-282.
    164.Meng L,Yu EH.Role of JAK-STAT signal transduction pathway in central nervous system.Prog Phyiol Sci,2002,33(2):151-153.
    165.Dell Albani P,Santangelo R,Torrisi L,et al.Role of the JAK/STAT signal transduction pathway in the regulation of gene expression in CNS.Neurochem Res,2003,28(1):53-64.
    1.Lim PA,Tow AM,Recovery and regeneration after spinal cord injury:a review and summary of recent literature.Ann Acad Med Singapore.2007;36(1):49-57.
    2.高宜录,顾晓松.脊髓损伤的再生与重建策略.组织工程与重建外科杂志.2006;2(1):45-49.
    3.Kwon BK,Fisher CG,Dvorak MF,et al.Strategies to promote neural repair and regeneration after spinal cord injury.Spine,2005,30(17 Supp 1):S3-13.
    4.Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science.1992;255(5052):1707-10
    5.Richards LJ,Kilpatrick TJ,Bartlett PF.De novo generation of neuronal cells from the adult mouse brain.Proc Natl Acad Sci U S A.1992;89(18):8591-5.
    6.Weiss S,Dunne C,Hewson J,et al.Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis.J Neurosci,1996,16(23):7599-7609.
    7.Gage FH.Mammalian neural stem cells.Science.2000;287(5457):1433-8.
    8.王廷华.神经细胞培养理论与技术.第一版,北京:科学出版社,2004
    9.Okano H,Yoshizaki T,Okada S.Regeneration of central nervous system:its concept and strategy.Rinsho Shinkeigaku.2003;43(11):824-6.
    10.陈佳,李超英.细胞移植治疗脊髓损伤的研究进展.2008,14(24):3743-3746
    11.Pu Y,Guo QS,Wang AM,et al.Repair of acutely injured spinal cord through constructing tissue-engineeredneural complex in adult rats.Chin J Traumatol.2007,10(3):171-6.
    12.孙勇.胚胎神经干细胞移植及胶质细胞源性神经营养因子对大鼠脊髓损伤的修复作用.生理学报.2003,55(3):349-354
    13.刘媛,曾琳,龙在云,等.神经干细胞移植对大鼠损伤脊髓轴浆运输功能的修复作用.中国矫形外科杂志.2004,12(18):1400-1402
    14.尹国栋,汤逊,林月秋,等.人胚胎嗅鞘细胞与神经干细胞联合移植修复大鼠脊髓全横断损伤的研究.中国康复医学杂志.2006,21(8):680-682
    15.李成仁,李巍,蔡文琴,等.神经干细胞移植促进脊髓损伤大鼠脊髓功能的恢复.中国临床康复.2004,8(29):6364-6366
    16.付源,王廷华,张为民,等.神经干细胞在体外诱导向胆碱能神经元定向分化后移植治疗脊髓损伤.哈尔宾医科大学学报.2007,40(6):460-463 2003,38(1):21-23
    
    18. Liang P, Jin LH, Liang T, et al. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Chin Med J (Engl).2006;119(16):1331-8.
    
    19. Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res. 2005. 80(2): 182-90.403
    20.Nakamura M, Toyama Y, Okano H . Transplantation of neural stem cells for spinal cord injury.Rinsho Shinkeigaku. 2005.45(11):874-6.256
    
    21. Fujiwara Y, Tanaka N, Ishida O,et al. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett. 2004;366(3):287-91.
    
    22. Tzeng SF.Neural progenitors isolated from newborn rat spinal cords differentiate into neurons and astroglia. J Biomed Sci. 2002,9(1):10-6.
    
    23. Mitsui T, Shumsky JS, Lepore AC, et al.Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci. 2005;25(42):9624-36.
    
    24. Wu S, Suzuki Y, Noda T, et al.Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat. J Neurosci Res. 2002 Sep 15;69(6):940-5.
    
    25. Cizkova D, Kakinohana O, Kucharova K,et al. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience.2007;147(2):546-60.-6
    
    26. Suzuki M, McHugh J, Tork C, et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. 2007.32
    
    27. Klein SM, Behrstock S, McHugh J, et al.GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther. 2005;16(4):509-21.
    
    28. Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of in vitro expanded fetal neural progenitor cells result in neurogenesis and functional recovery after spinal cord contusion injury in adult rats.J Neurosci Res,2002,69(6):925-933.
    29.黄灿阳,张文明,朱维钦,NSC移植在脊髓损伤中应用的研究进展.福建医药杂志.2007,29(2):100-102.
    30.Parr AM,Kulbatski I,Tator CH.Transplantation of adult rat spinal cord stern/progenitor cells for spinal cord injury.J Neurotrauma.2007;24(5):835-45.
    31.Karimi-Abdolrezaee S,Eftekharpour E,Wang J,et al.Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury.J Neurosci.2006;26(13):3377-89.
    32.Tarasenko YI,Gao J,Nie L,et al.Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior.J Neurosci Res.2007.85(l):47-57.
    33.Okano H,Ogawa Y,Nakamura M,et al.Transplantation of neural stem cells into the spinal cord after injury.Semin Cell Dev Biol,2003,14(3):191-198.
    34.Yun Li,Wei-Min Zhang,Ting-Hua Wang.Transplantation of neural stem cells in optimal location and time in the rats subjected to cord transaction.Neurochemical Res.(Revising).
    35.Teng YD,Lavik EB,Qu X,Park KI,et al.Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells.Proc Natl Acad Sci U S A.2002;99(5):3024-9.
    36.Prang P,M(u|¨)ller R,Eljaouhari A,et al.The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels.Biomaterials.2006;27(19):3560-9.
    37.Tang X,Cai PQ,Lin YQ,et al.Genetic engineering neural stem cell modified by lentivirus for repair of spinal cord injury in rats.Chin Med Sci J.2006;21(2):120-4.
    38.Castellanos DA,Tsoulfas P,Frydel BR,et al.TrkC overexpression enhances survival and migration of neural stem cell transplants in the rat spinal cord.Cell Transplant.2002;11(3):297-307.
    39.Li J,Sun CR,Zhang H,et al.Induction of functional recovery by cotransplantation of neural stem cells and Schwann cells in a rat spinal cord contusion injury model.Biomed Environ Sci.2007.20(3):242-9
    40.Pfeifer K,Vroemen M,Blesch A,Weidner N.Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury.Eur J Neurosci.2004;20(17):1695-704.
    41.李晋,安沂华,历俊华.等.神经干细胞和施万细胞共移植治疗大鼠脊髓损伤.中华实验外科杂志2006,23(2):214-215
    42.J.W.McDonald,X.Z.Liu,Y.Qu,S.et al.Transplanted embryonic stem cells survive,differentiate and promote recovery in injured rat spinal cord.Nat Med.1999;(5):1410-2.
    43.吴立志,曾园山,丁英,等.施万细胞移植促进大鼠脊髓全横断损伤后大脑皮质锥体神经元和红核神经元的存活.中山大学学报医学科.2004,25(1):10-14
    44.许祖远.神经干细胞静脉移植治疗脊髓损伤的实验研究.中国矫形外科杂志.2007,15(6):459-462
    45.Lepore AC,Fischer I.Lineage-restricted neural precursors survive,migrate,and differentiate following transplantation into the injured adult spinal cord.Exp Neurol.2005;194(1):230-42.
    46.Bai H,Suzuki Y,Noda T,Wu Set al.Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat:a method for cell transplantation.J Neurosci Methods.2003 Apr 15;124(2):181-7.
    47.Bakshi A,Barshinger AL,Swanger SA,et al.Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion:a novel method for minimally invasive cell transplantation.J Neurotrauma.2006;23(1):55-65.
    48 Kennea NL,Mehmet H.Perinatal applications of neural stem cells.Best Pratt Res Clin Obstet Gynaecol.2004;18(6):977-94.
    49.Pearse DD,Bunge MB.Designing cell-and gene-based regeneration strategies to repair the injured spinal cord..l Neurotrauma.2006;23(3-4):438-52.
    50.Joshi D,Behari M.Neuronal stem cells.Neurol India.2003;51(3):323-8.
    1.Kwon BK,Fisher CG,Dvorak MF,et al.Strategies to promote neural repair and regeneration after spinal cord injury.Spine,2005,30(17 Supp 1):3-13.
    2.谢雪微,唐洲平,王伟,嗅鞘细胞的分离、培养和纯化技术及应用研究进展.神经损伤与功能重建.2007,2(4):247-248
    3.Polentes J,Gauthier P,Transplantation of olfactory glial cells after spinal injury.Ⅰ-From experimental data to repair strategy after central injury.Neurochirurgie.2005;51(5):421-34
    4.Lu J,Ashwell K,Olfactory ensheathing cells:their potential use for repairing the injured spinal.Spine.2002;27(18):887-92
    5.RAMONCUETO A,VALVERDE F.Olfactory Bulb Ensheathing Glia:A Unique Cell Type wit h Axonal Growth-promoting Properties.Glia(S0894-1491),1995,14(3):163-173.
    6.Skinner AP,Pachnicke S,Lakatos A,et al.Nasal and frontal sinus mucosa of the adult dog contain numerous olfactory.Res Vet Sci.2005;78(1):9-15
    7.Wang B,Han J,Gao Y,The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing with OEC.Neurosci Lett.2007;421(3):191-6.
    8.Richter M,Westendorf K,Roskams A J,Culturing olfactory ensheathing cells from the mouse olfactoryepithelium.MethodsMolBiol.2008;438:95-102
    9.Choi D,Li D,Law S,A prospective observational study of the yield of olfactory ensheathing cells cultured from biopsies of septal nasal mucosa.Neurosurgery.2008;62(5):1140-4.
    10.Cao L,Su Z,Zhou Q,et al.Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration.Glia.2006;54(6):536-44
    11.Su Z,Cao L,Zhu Y,Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration.J Cell Sci.2007;120(Pt 11):1877-87.
    12.Lipson AC,Widenfalk J,Lindqvist E,et al.Neurotrophic properties of olfactory ensheathing glia.Exp Neurol.2003;180(2):167-71
    15.Liu JB,Tang TS,Gong AH,The mitosis and immunocytochemistry of olfactory ensheathing cells from nasal olfactory mucosa.Chin J Traumatol.2005;8(5):306-10
    13.Richter MW,Fletcher PA,Liu J,et al.Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord.J Neurosci.2005;25(46):10700-11
    14.Boyd JG,Doucette R,Kawaja MD,Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord.FASEB J.2005;19(7):694-703
    15.Lopez-Vales R,Garcia-Alias G,Guzman-Lenis MS,Effects of COX-2 and iNOS inhibitors alone or in combination with olfactory ensheathing cell grafts after spinal cordinjury.Spine.2006;31(10):1100-6
    16.Pastrana E, Moreno-Flores MT, Gurzov EN, Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J Neurosci.2006;26(20):5347-59
    17.Li Y, Li D, Raisman G. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis'. J Neurocytol.2005;34(3-5):343-51.
    
    18..Ramon-Cueto A, Plant GW, Avila J,et al. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci.1998;18(10):3803-15
    19.Lu J, F(?)ron F, Mackay-Sim A. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain. 2002;125(Pt 1):14-21
    20.Shen H, Tang Y, Wu Y, Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats. Chin J Traumatol. 2002;5(3):136-41
    21.Cao L, Liu L, Chen ZY,et al. Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain. 2004;127(Pt 3):535-49. 22.L6pez-Vales R, Fores J, Verd(?) E,et al. Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord. Neurobiol Dis. 2006;21(1):57-68.
    23.Steward O, Sharp K, Selvan G,et al. A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats. Exp Neurol. 2006;198(2):483-99.
    
    24. Lopez-Vales R, Fores J, Navarro X, et al. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transaction in the rat. Glia.2007;55(3):303-11
    
    25. Plant GW, Christensen CL, Oudega M, et al. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J Neurotrauma. 2003;20(1):1-16
    
    26.Resnick DK, Cechvala CF, Yan Y,et al. Adult olfactory ensheathing cell transplantation for acute spinal cord injury. J Neurotrauma. 2003;20(3):279-85
    
    27. Boyd JG, Lee J, Skihar V,et al. LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc Natl Acad Sci U S A.2004;101(7):2162-6.
    
    28.Sun TS, Ren JX, Shi JG,Repair of acute spinal cord injury promoted by transplantation of olfactory ensheathing glia. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2005;27(2): 143-7.
    
    29.Collazos-Castro JE, Mu(?)et(?)n-G(?)mez VC, Nieto-Sampedro M, Olfactory glia transplantation into cervical spinal cord contusion injuries. J Neurosurg Spine. 2005;3(4):308-17.
    
    30.Wu J, Sun TS, Ren JX, Ex vivo non-viral vector-mediated neurotrophin-3 gene transfer to olfactory ensheathing glia: effects on axonal regeneration and functional recovery after implantation in rats with spinal cord injury. Neurosci Bull. 2008;24(2):57-65.
    31.Imaizumi T, Lankford KL, Kocsis ID, Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Res.2000;854(1-2):70-8
    32.Verd(?) E, Garcia-Alias G, Fores J, et al. Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery. Glia.2003;42(3):275-86.
    33.Garcia-Alias G, Lopez-Vales R, Fores J, Acute transplantation of olfactory ensheathing cells orSchwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res.2004;75(5):632-41
    
    34.Andrews MR, Stelzner DJ Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. J Neurotrauma. 2007 Nov;24(11):1773-92
    35.L(?)pez-Vales R, Garcia-Alias G, Fores J,et al. Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells. JNeurotrauma. 2004;21(8):1031-43 36.Ramer LM, Au E, Richter MW, Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol. 2004;473(1): 1-15
    
    37. Sasaki M, Lankford KL, Zemedkun M,et al. Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. J Neurosci. 2004 Sep 29;24(39):8485-93
    
    38. Toft A, Scott DT, Barnett SC, Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain. 2007 Apr;130(Pt 4):970-84
    
    39.Samuil S, Rabinovich A, Victor I, et al. Transp lantation treatment of sp inal cord injury patients. Biomedicine & Pharmacotherapy,2003,57:428 - 433. 40.Feron F, Perry C, Cochrane J, Licina P,et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128(Pt 12):2951-60.
    
    41. Huang HY, Chen L, Wang HM, et al. Influence of patients' age on functional recovery after transp lantation of olfactory ensheathing cells into injured sp inal cord injury[ J ]. Chin Med J,2003,116 ( 10) :1488 -1491.
    
    42. Bruce H,Dobkin, Armin Curt, et al. Cellular transp lants in China:observational study from the largest human experiment in chronic spinal cord injury[ J ]. Neurorehabilitation and Neural Repair, 2006 20(1).
    
    43.Keyvan-Fouladi N, Raisman G, Li Y, Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci. 2003 Oct 15;23(28):9428-34
    
    44. Woodhouse A, Vincent AJ, Kozel MA,et al. Spinal cord tissue affects ensheathing cell proliferation and apoptosis. Neuroreport. 2005 May 12;16(7):737-40
    
    45.Lopez-Vales R, Fores J, Verd(?) E,et al. Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord.Neurobiol Dis.2006 Jan;21(1):57-68.Epub 2005 Jul 26
    46.郑遵成,刘超,高瑞等,移植时间对嗅鞘细胞移植治疗脊髓损伤效果的影响,中国组织工程研究与临床康复2008,12(3):583-586.
    47.Nash HH,Borke RC,Anders JJ.Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord.J Neurosci.2002;22(16):7111-20
    48.Wang B,Zhao Y,Lin H,et al.Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds.Neurosci Lett.2006 19;401(1-2):65-70.
    49.Lopez-Vales R,Fores J,Navarro X,Olfactory ensheathing glia graft in combination with FK506 administration promote repair after spinal cord injury.Neurobiol Dis.2006;24(3):443-54.
    50.Pearse DD,Marcillo AE,Oudega M,et al.Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury:does pretreatment with methylprednisolone and interleukin-10 enhance recovery?
    51.Deumens R,Koopmans GC,Honig WM,et al.Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges.J Neurosci Res.2006;83(5):811-20.
    52.Ruitenberg MJ,Levison DB,Lee SV,et al.NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration.Brain.2005;128(Pt 4):839-53.
    53.Bunge MB,Pearse DD,Transplantation strategies to promote repair of the injured spinal cord.J Rehabil Res Dev.2003;40(4 Suppl 1):55-62.
    54.Ao Q,Wang AJ,Chen GQ,et al.Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.Med Hypotheses.2007;69(6):1234-7.
    55.Riddell JS,Enriquez-Denton M,Toft A,et al.Olfactory ensheathing cell grafts have minimal influence on regeneration at the dorsal root entry zone following rhizotomy.Glia.2004;47(2):150-67.
    56.Lee IH,Bulte JW,Schweinhardt P,In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord.Exp Neurol.2004;187(2):509-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700