用户名: 密码: 验证码:
多模态神经成像技术在特发性全面性癫痫中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是以大脑神经元反复出现过度放电导致的中枢神经系统功能失常为特征的慢性脑部疾病。作为神经系统的一个典型疾病,从微观到宏观的各个层次的癫痫机制研究一直受到高度重视。本工作着眼于神经成像技术所能触及到的神经元群及其网络层次上的问题,采用新近发展起来的多模态神经成像技术,综合应用多种数据处理方法,对特发性全面性癫痫(Idiopathic Generalized Epilepsy, IGE)的脑机制,从病灶定位方法、功能网络特征和结构参数改变几个方面,进行了比较深入的研究。主要内容包括以下三个方面:
     1,发展了一种基于同步EEG-fMRI提高癫痫灶定位效果的方法。该方法采用独立成分分析(Independent Component Analysis,ICA)和相关分析相结合的办法对癫痫放电进行分类,然后将分类后的放电信息用于fMRI(functional Magnetic Resonance Imaging)的成像计算。将该方法应用于临床采集的实际EEG-fMRI数据,发现在常规方法处理结果为阴性的一些情况,该方法也能成像出与癫痫放电有关,且与临床现象一致的区域。说明该方法可提高EEG-fMRI对癫痫灶的检出敏感性,具有一定的为临床意义。
     2,针对IGE的全面性棘慢波放电(generalized Spike and Wave Discharges,SWDs)的起源、播散及其对大脑基本功能的影响,我们利用静息态fMRI脑功能网络分析方法,研究了皮层-丘脑网络(Cortico-Thalamus Network,CTN)、基底节网络(Basal Ganglia Network,BGN)和“默认模式”网络(Default Mode Network,DMN)。这些研究都基于EEG-fMRI技术,以区分或者排除SWDs对这些脑静息态网络的干扰。在对于SWDs的起源和传播密切相关的皮层-丘脑网络的研究中发现,在具有典型失神发作的IGE患者中,在排除SWDs的影响后,存在丘脑和前扣带回间的功能失连接,推测这个失连接可能在IGE患者SWDs的起源、传播中起到极其重要的作用;在对基底节网络的研究中发现,静息态BGN在IGE患者中显示出显著增强的功能连接,IGE患者在有SWDs时功能连接更强,而且增强的连接性与SWDs的数目正相关,由此推测BGN可能作为一个SWDs的调节器在IGE中扮演了一个重要角色;在对“默认模式”网络的研究中发现,没有SWDs情况下的DMN在IGE患者中表现为显著的连接降低,这个结果可能反映了慢性长期的SWDs导致了DMN功能的异常集成,这可能源自解剖方面的异常或者功能方面的重组;这些改变有可能导致IGE患者中的认知心理损害以及癫痫发作时的意识丧失。这些结果表明,IGE对脑功能造成了多方面的影响,总体上表现为皮层相关连接减低,皮层下结构内连接增强,进一步说明,IGE的脑机制是分布式的,需要从脑网络角度深入研究。
     3,利用高分辨MRI结构像和弥散张量成像,从结构水平上研究了具有失神发作的IGE患者的皮层下结构(丘脑和基底节神经核团)的体积和弥散参数。结果发现IGE患者皮层下结构水分子的弥散特性和体积都存在异常;它证实了在长期受到癫痫放电影响的皮层下结构中存在微结构变化,而且这种变化在早发患者中比在晚发患者中更加严重。这些发现也为上面功能网络研究中发现的,基底节和丘脑参与了SWDs的传播和调节的推测,提供了来自结构方面的证据。所有这些来自结构和功能方面的规律性的变化,有可能是具有典型失神发作IGE患者的特征指标,值得进一步进行临床应用研究。
Epilepsy is a chronic neurologic condition characterized by recurrent unprovoked seizures, which caused by the excessive, synchronized and disorderly discharges of a set of cerebral neurons. Hence, it is of great importance to study the mechanism of epilepsy from both micro level and macro level. In the current study, we focus on the neural mass level action in epilepsy with a new emerging non-invasive technique, i.e., multimodel neuroimagings including simultaneous electroenphalogram and functional magnetic resonance imaging (EEG-fMRI), diffusion tensor imaging (DTI)as well as high resolution anatomical MRI. Using these methods, the brain mechanism of idiopathic generalized epilepsy (IGE) was studied, achieving three lines of breakthroughs: method of epileptic focus localization, features of functional network and variation of structural parameters.
     1, We developed a new scheme based on simultaneous EEG-fMRI to promote the detectability of epileptic focus. With this new scheme, we classified interictal epileptic discharge (IED) by a combination of an independent component analysis (ICA) and a temporal correlation analysis. The discharge information after classification of IED was used for blood oxygenation-level-dependent (BOLD) imaging. The proposed scheme was effective to identify the regions of BOLD action consistent with clinico-electron localization, where no BOLD change related to IED was found by routine method in patients with complex epileptic discharges. Therefore, the scheme was of clinical meaning in providing more detailed information of the foci.
     2, Using the resting-state fMRI, a set of important functional networks in IGE were analyzed in-depth, including cortico-thalamus network, basal ganglia network (BGN) and default mode network (DMN), which were related to the generation and propagation of SWDs or influence of brain resting function by SWDs. Because SWDs might affect these functional networks, the simultaneous EEG during fMRI acquisition was recorded to classify whether the BOLD signal was hybrided by SWDs or not. For the cortico-thalamus network, which was important to the generation and propagation of SWDs, the functional connectivity between thalamus and anterior cingulated cortex (ACC) was significantly decreased in IGE with absence seizures during the non-discharge period (NDP). This finding, avoided effects from SWDs, might reflect a permanent abnormality between thalamus and ACC in IGE. The abnormality might play important role in the generation and propagation of SWDs in IGE. For the BGN, the functional connectivity of BGN in IGE patients demonstrated more integration within the network during NDP and WDP (the period with discharge). Furthermore, it increased more evidently during WDP compared with that in NDP, and it showed a positive relationship with the number of SWDs in WDP. These findings provided an evidence confirming the role of the BGN as an important modulator of SWDs in IGE. For the DMN, the decreased functional connectivity within DMN in IGE patients with absence seizures was found during NDP. These results indicated abnormal functional integration in DMN, which was derived from anatomic abnormality or functional reorganization. Such changes could lead to the cognitive mental impairment and unconsciousness during absence seizure. These findings on the three networks suggested that IGE could result in complex impairment of brain function, namely, decreased connectivity in the cortex and increased connectivity within subcortical nuclei. Such findings also supported that the abnormality of brain function in IGE presented a characteristic of decentralization.
     3, Based on the brain structural imagings (DTI and high resolution anatomical MRI), the diffusion properties and volume of subcortical nuclei, were evaluated in IGE patients with absence seizure. Abnormality in both of them was found, which provide preliminary evidence demonstrating microstructural changes of subcortical structures related to the chronic abnormal epileptic activity. It also found to be more severe in patients with early age of onset than those with later age of onset. This structural disturbance provided anatomical evidence for the functional network and derived presumption that thalamus and basal ganglia were involved in propagation and modulation of SWDs in IGE. These consistant alterations from anatomical and functional abnormality might be a characteristic for IGE patients with absence seizures, which deserves further study in clinical application.
引文
[1] A.-L. Heather,M.P. Linda. Epilepsy: epidemiology, classification and natural history. Medicine 2008, 36(11): 571-578
    [2]周永,刘民,梁万年.癫痫流行病学研究进展.中华流行病学杂志, 2007, 28(1): 92-94
    [3] J. Engel, Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42(6): 796-803
    [4] Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia, 1981, 22(4): 489-501
    [5] P. Gloor. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia, 1968, 9(3): 249-263
    [6] D.A. Prince,D. Farrell. Centrencephalic”spike-wave discharges following parenteral penicillin injection in the cat. Neurology, 1969, 19: 309-310
    [7] H.K. Meeren,J.P. Pijn,E.L. Van Luijtelaar,et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22(4): 1480-1495
    [8]尧德中.脑功能探测的电学理论与方法.北京:科学出版社,2003
    [9] J. Engel, Jr. A practical guide for routine EEG studies in epilepsy. J Clin Neurophysiol, 1984, 1(2): 109-142
    [10] S. Noachtar,J. Remi. The role of EEG in epilepsy: a critical review. Epilepsy Behav, 2009, 15(1): 22-33
    [11] B.C. Bernhardt,D.A. Rozen,K.J. Worsley,et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage, 2009, 46(2): 373-381
    [12] S.G. Mueller,K.D. Laxer,N. Cashdollar,et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia, 2006, 47(5): 900-907
    [13] L.E. Betting,S.B. Mory,I. Lopes-Cendes,et al. MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures. Epilepsy Behav, 2006, 8(3): 575-580
    [14] S. Ogawa,T.M. Lee,A.R. Kay,et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9672
    [15] F.G. Woermann,H. Jokeit,R. Luerding,et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology, 2003, 61(5): 699-701
    [16] M. Richardson. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol, 2010, 121(8): 1153-1175
    [17] J.R. Ives,S. Warach,F. Schmitt,et al. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 1993, 87(6): 417-420
    [18] D. Mantini,M.G. Perrucci,C. Del Gratta,et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A, 2007, 104(32): 13170-13175
    [19] J. Gotman,E. Kobayashi,A.P. Bagshaw,et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging, 2006, 23(6): 906-920
    [20] J. Gotman,C. Grova,A. Bagshaw,et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A, 2005, 102(42): 15236-15241
    [21] K. Hamandi,A. Salek-Haddadi,H. Laufs,et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage, 2006, 31(4): 1700-1710
    [22] C.S. Hawco,A.P. Bagshaw,Y. Lu,et al. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage, 2007, 35(4): 1450-1458
    [23] F. Moeller,H.R. Siebner,S. Wolff,et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia, 2008, 49(9): 1510-1519
    [24] E. Kobayashi,A.P. Bagshaw,C. Grova,et al. Negative BOLD responses to epileptic spikes. Hum Brain Mapp, 2006, 27(6): 488-497
    [25] E. Kobayashi,A.P. Bagshaw,C.G. Benar,et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47(2): 343-354
    [26] Y. Aghakhani,E. Kobayashi,A.P. Bagshaw,et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol, 2006, 117(1): 177-191
    [27] A. Salek-Haddadi,B. Diehl,K. Hamandi,et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res, 2006, 1088(1): 148-166
    [28] E. Kobayashi,A.P. Bagshaw,C. Grova,et al. Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain, 2006, 129(Pt 2): 366-374
    [29] L. Tyvaert,C. Hawco,E. Kobayashi,et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain, 2008, 131(Pt 8): 2042-2060
    [30] P.J. Basser,J. Mattiello,D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66(1): 259-267
    [31] F.J. Rugg-Gunn,S.H. Eriksson,M.R. Symms,et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain, 2001, 124(3): 627-631
    [32] T. Kimiwada,C. Juhász,M. Makki,et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia, 2006, 47(1): 167-175
    [33] L. Concha,D.W. Gross,C. Beaulieu. Diffusion tensor tractography of the limbic system. American Journal of Neuroradiology, 2005, 26(9): 2267-2274
    [34] H.W. Powell,G.J. Parker,D.C. Alexander,et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage, 2007, 36(1): 209-221
    [35] H. Chahboune,A.M. Mishra,M.N. DeSalvo,et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage, 2009, 47(2): 459-466
    [36] C. la Fougere,A. Rominger,S. Forster,et al. PET and SPECT in epilepsy: a critical review. Epilepsy Behav, 2009, 15(1): 50-55
    [37] H. Blumenfeld,G.I. Varghese,M.J. Purcaro,et al. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain, 2009, 132(Pt 4): 999-1012
    [38] O. Willmann,R. Wennberg,T. May,et al. The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery. A meta-analysis. Epilepsy Res, 2006, 71(2-3): 149-158
    [39] K.J. Friston. Models of brain function in neuroimaging. Annu Rev Psychol, 2005, 56: 57-87
    [40] B. Biswal,F.Z. Yetkin,V.M. Haughton,et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 1995, 34(4): 537-541
    [41] M.D. Fox,M.E. Raichle. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8(9): 700-711
    [42] V.D. Calhoun,T. Eichele,G. Pearlson. Functional brain networks in schizophrenia: a review. Front Hum Neurosci, 2009, 3: 17-23
    [43] V.D. Calhoun,T. Adali,G.D. Pearlson,et al. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 2001, 14(3): 140-151
    [44] V.D. Calhoun,J. Liu,T. Adali. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 2009, 45(1 Suppl): S163-S172
    [45] S. Achard,R. Salvador,B. Whitcher,et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci, 2006, 26(1): 63-72
    [46] D. Cordes,V. Haughton,J.D. Carew,et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging, 2002, 20(4): 305-317
    [47] D.S. Bassett,E. Bullmore. Small-world brain networks. Neuroscientist, 2006, 12(6): 512-523
    [48] R. Salvador,J. Suckling,M.R. Coleman,et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15(9): 1332-1342
    [49] M. Rubinov,O. Sporns. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52(3): 1059-1069
    [50] Y. He,Z.J. Chen,A.C. Evans. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 2007, 17(10): 2407-2419
    [51] G. Sanabria-Diaz,L. Melie-Garcia,Y. Iturria-Medina,et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage, 2010, 50(4): 1497-1510
    [52] Y. He,Z. Chen,A. Evans. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci, 2008, 28(18): 4756-4766
    [53] G. Gong,Y. He,L. Concha,et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19(3): 524-536
    [54] M.P. van den Heuvel,R.C. Mandl,C.J. Stam,et al. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci, 2010, 30(47): 15915-15926
    [55] J. Gotman. Epileptic networks studied with EEG-fMRI. Epilepsia, 2008, 49 Suppl 3: 42-51
    [56] Q. Li,C. Luo,T. Yang,et al. EEG–fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy research, 2009, 87(2-3): 160-168
    [57] P.N. Banerjee,D. Filippi,W. Allen Hauser. The descriptive epidemiology of epilepsy-a review. Epilepsy Res, 2009, 85(1): 31-45
    [58] P.W. Carney,R.A. Masterton,A.S. Harvey,et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology, 2010, 75(10): 904-911
    [59] M.D. Holmes,J. Quiring,D.M. Tucker. Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage, 2010, 49(1): 80-93
    [60] G. Bettus,E. Guedj,F. Joyeux,et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30(5): 1580-1591
    [61] A.E. Vaudano,H. Laufs,S.J. Kiebel,et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One, 2009, 4(8): e6475
    [62] S. Lui,L. Ouyang,Q. Chen,et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging, 2008, 27(6): 1214-1220
    [63] Y. Tian,B. Dong,J. Ma,et al. Attention networks in children with idiopathic generalized epilepsy. Epilepsy Behav, 2010, 19(3): 513-517
    [64] Z. Zhang,G. Lu,Y. Zhong,et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31(12): 1851-1861
    [65] Z. Zhang,G. Lu,Y. Zhong,et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. Journal of Neurology, 2009, 256(10): 1705-1713
    [66] Z. Zhang,G. Lu,Y. Zhong,et al. Impaired attention network in temporal lobe epilepsy: A resting FMRI study. Neuroscience Letters, 2009, 458(3): 97-101
    [67] W. Liao,Z. Zhang,Z. Pan,et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PloS one, 2010, 5(1): e8525
    [68] M. Brazdil,P. Chlebus,M. Mikl,et al. Reorganization of language-related neuronal networks in patients with left temporal lobe epilepsy - an fMRI study. Eur J Neurol, 2005, 12(4): 268-275
    [69] K. Labudda,M. Mertens,J. Aengenendt,et al. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res, 2010, 92(2-3): 258-261 85
    [70] X. You,M. Guillen,B. Bernal,et al. fMRI activation pattern recognition: A novel application of PCA in language network of pediatric localization related epilepsy. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009: 5397-5400
    [71] K.J. Friston,A.P. Holmes,J.B. Poline,et al. Analysis of fMRI time-series revisited. Neuroimage, 1995, 2(1): 45-53
    [72] Y. Lu,A.P. Bagshaw,C. Grova,et al. Using voxel-specific hemodynamic response function in EEG-fMRI data analysis. Neuroimage, 2006, 32(1): 238-247
    [73] L. Lemieux,H. Laufs,D. Carmichael,et al. Noncanonical spike-related BOLD responses in focal epilepsy. Hum Brain Mapp, 2008, 29(3): 329-345
    [74] R. Rodionov,F. De Martino,H. Laufs,et al. Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI. Neuroimage, 2007, 38(3): 488-500
    [75] E. Urrestarazu,J. Iriarte,J. Artieda,et al. Independent component analysis separates spikes of different origin in the EEG. J Clin Neurophysiol, 2006, 23(1): 72-78
    [76] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw, 1999, 10(3): 626-634
    [77] G. Garreffa,M. Carni,G. Gualniera,et al. Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging, 2003, 21(10): 1175-1189
    [78] S. Makeig,M. Westerfield,T.P. Jung,et al. Functionally independent components of the late positive event-related potential during visual spatial attention. J Neurosci, 1999, 19(7): 2665-2680
    [79] K. Kobayashi,C.J. James,T. Nakahori,et al. Isolation of epileptiform discharges from unaveraged EEG by independent component analysis. Clin Neurophysiol, 1999, 110(10): 1755-1763
    [80] K. Jann,R. Wiest,M. Hauf,et al. BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis. Neuroimage, 2008, 42(2): 635-648
    [81] M.M. Menz,J. Neumann,K. Muller,et al. Variability of the BOLD response over time: an examination of within-session differences. Neuroimage, 2006, 32(3): 1185-1194
    [82] J. Jacobs,E. Kobayashi,R. Boor,et al. Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia, 2007, 48(11): 2068-2078
    [83] H. Gu,W. Engelien,H. Feng,et al. Mapping transient, randomly occurring neuropsychological events using independent component analysis. Neuroimage, 2001, 14(6): 1432-1443
    [84] E.G. Jones,D. McCormick,M. Steriade.The thalamus.Cambridge University Press New York,2007
    [85] T.E. Behrens,H. Johansen-Berg,M.W. Woolrich,et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci, 2003, 6(7): 750-757
    [86] D. Zhang,A.Z. Snyder,M.D. Fox,et al. Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol, 2008, 100(4): 1740-1748
    [87] O.M. Penfield,M.D. Jasper. Epilepsy and the functional anatomy of the human brain. JAMA, 1954, 155(1): 86-94
    [88] G. Buzsaki. The thalamic clock: emergent network properties. Neuroscience, 1991, 41(2-3): 351-364
    [89] J. Bancaud. Physiopathogenesis of generalized epilepsies of organic nature (stereo-electroencephalographic study). The physiopathogenesis of the epilepsies, 1969: 158-185
    [90] A. Salek-Haddadi,L. Lemieux,M. Merschhemke,et al. Functional magnetic resonance imaging of human absence seizures. Ann Neurol, 2003, 53(5): 663-667
    [91] C.H.P. Chan,R.S. Briellmann,G.S. Pell,et al. Thalamic atrophy in childhood absence epilepsy. Epilepsia, 2006, 47(2): 399-405
    [92] M.D. Fox,D. Zhang,A.Z. Snyder,et al. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol, 2009, 101(6): 3270-3283
    [93] K. Murphy,R.M. Birn,D.A. Handwerker,et al. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage, 2009, 44(3): 893-905
    [94] Q. Li,C. Luo,T. Yang,et al. EEG–fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res, 2009, 87(2-3): 160-168
    [95] F. Moeller,P. LeVan,H. Muhle,et al. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia, 2010, 51(10): 2000-2010
    [96] Q. Zou,X. Long,X. Zuo,et al. Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: a resting-state fMRI study. Hum Brain Mapp, 2009, 30(9): 3066-3078
    [97] A. Morel,M. Magnin,D. Jeanmonod. Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol, 1997, 387(4): 588-630
    [98] R. Caplan,J. Levitt,P. Siddarth,et al. Frontal and temporal volumes in Childhood Absence Epilepsy. Epilepsia, 2009, 50(11): 2466-2472
    [99] M.D. Holmes,M. Brown,D.M. Tucker. Are "generalized" seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia, 2004, 45(12): 1568-1579
    [100] D.M. Tucker,M. Brown,P. Luu,et al. Discharges in ventromedial frontal cortex during absence spells. Epilepsy Behav, 2007, 11(4): 546-557
    [101] S.B. Legarda,M.P. Booth,E.B. Fennell,et al. Altered cognitive functioning in children with idiopathic epilepsy receiving valproate monotherapy. J Child Neurol, 1996, 11(4): 321-330
    [102] G.E. Alexander,M.R. DeLong,P.L. Strick. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 1986, 9: 357-381
    [103] L.D. Selemon , P.S. Goldman-Rakic. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci, 1985, 5(3): 776-781
    [104] M. Raichle. The brain's dark energy. Scientific American Magazine, 2010, 302(3): 44-49
    [105] J.S. Damoiseaux,S.A. Rombouts,F. Barkhof,et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A, 2006, 103(37): 13848-13853
    [106] J.S. Damoiseaux,C.F. Beckmann,E.J. Arigita,et al. Reduced resting-state brain activity in the" default network" in normal aging. Cerebral Cortex, 2008, 18(8): 1856-1864
    [107] A. Abou-Elseoud,T. Starck,J. Remes,et al. The effect of model order selection in group PICA. Hum Brain Mapp, 2010, On line:
    [108] S. Robinson,G. Basso,N. Soldati,et al. A resting state network in the motor control circuit of the basal ganglia. BMC neuroscience, 2009, 10(1): 137-142
    [109] R. Caplan,P. Siddarth,L. Stahl,et al. Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia, 2008, 49(11): 1838-1846
    [110] C. Hommet,H.C. Sauerwein,B. De Toffol,et al. Idiopathic epileptic syndromes and cognition. Neurosci Biobehav Rev, 2006, 30(1): 85-96
    [111] A.D. Norden,H. Blumenfeld. The role of subcortical structures in human epilepsy. Epilepsy Behav, 2002, 3(3): 219-231
    [112] M.R. Newton,S.F. Berkovic,M.C. Austin,et al. Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures. Neurology, 1992, 42(2): 371-384 88
    [113] M. Seeck,S. Dreifuss,G. Lantz,et al. Subcortical nuclei volumetry in idiopathic generalized epilepsy. Epilepsia, 2005, 46(10): 1642-1645
    [114] Y.O. Li,T. Adal,V.D. Calhoun. Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp, 2007, 28(11): 1251-1266
    [115] R.B. Postuma,A. Dagher. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex, 2006, 16(10): 1508-1521
    [116] J.T. Paz,M. Chavez,S. Saillet,et al. Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci, 2007, 27(4): 929-935
    [117] C. Deransart,B. Hellwig,M. Heupel-Reuter,et al. Single-unit analysis of substantia nigra pars reticulata neurons in freely behaving rats with genetic absence epilepsy. Epilepsia, 2003, 44(12): 1513-1520
    [118] L. Danober,C. Deransart,A. Depaulis,et al. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Progress in neurobiology, 1998, 55(1): 27-57
    [119] T. Loddenkemper,A. Pan,S. Neme,et al. Deep brain stimulation in epilepsy. J Clin Neurophysiol, 2001, 18(6): 514-520
    [120] J.G. McHaffie,T.R. Stanford,B.E. Stein,et al. Subcortical loops through the basal ganglia. TRENDS in Neurosciences, 2005, 28(8): 401-407
    [121] P. Sumner,P. Nachev,P. Morris,et al. Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron, 2007, 54(5): 697-711
    [122] C.R. McDonald. The use of neuroimaging to study behavior in patients with epilepsy. Epilepsy Behav, 2008, 12(4): 600-611
    [123] M. Boly,C. Phillips,L. Tshibanda,et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci, 2008, 1129: 119-129
    [124] S.J. Broyd,C. Demanuele,S. Debener,et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev, 2009, 33(3): 279-296
    [125] P. Fransson. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005, 26(1): 15-29
    [126] M.E. Raichle,A.M. MacLeod,A.Z. Snyder,et al. A default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98(2): 676-682
    [127] M.D. Fox,A.Z. Snyder,J.L. Vincent,et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 2005, 102(27): 9673-9678
    [128] M.D. Greicius,B. Krasnow,A.L. Reiss,et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 2003, 100(1): 253-258
    [129] D.A. Fair,A.L. Cohen,N.U. Dosenbach,et al. The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A, 2008, 105(10): 4028-4032
    [130] A.F. Luat,H.T. Chugani. Molecular and diffusion tensor imaging of epileptic networks. Epilepsia, 2008, 49 Suppl 3: 15-22
    [131] M.D. Greicius,G. Srivastava,A.L. Reiss,et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A, 2004, 101(13): 4637-4642
    [132] E. Pomarol-Clotet,R. Salvador,S. Sarro,et al. Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med, 2008, 38(8): 1185-1193
    [133] P. Pavone,R. Bianchini,R.R. Trifiletti,et al. Neuropsychological assessment in children with absence epilepsy. Neurology, 2001, 56(8): 1047-1051
    [134] G. Ojemann,J. Ojemann,E. Lettich,et al. Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 1989, 71(3): 316-326
    [135] A.B. Waites,R.S. Briellmann,M.M. Saling,et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol, 2006, 59(2): 335-343
    [136] M. Steriade. Active neocortical processes during quiescent sleep. Arch Ital Biol, 2001, 139(1-2): 37-51
    [137] E.R. John,L.S. Prichep,W. Kox,et al. Invariant reversible QEEG effects of anesthetics. Conscious Cogn, 2001, 10(2): 165-183
    [138] S. Laureys,C. Lemaire,P. Maquet,et al. Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry, 1999, 67(1): 121-130
    [139] A.E. Cavanna,F. Monaco. Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol, 2009, 5(5): 267-276
    [140] L. Yu,H. Blumenfeld. Theories of impaired consciousness in epilepsy. Ann N Y Acad Sci, 2009, 1157: 48-60
    [141] V. Crunelli,N. Leresche. Childhood absence epilepsy: genes, channels, neurons and networks. Nature Reviews Neuroscience, 2002, 3(5): 371-382
    [142] K. Arfanakis,B.P. Hermann,B.P. Rogers,et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging, 2002, 20(7): 511-519
    [143] B.A. Assaf,F.B. Mohamed,K.J. Abou-Khaled,et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. American journal of neuroradiology, 2003, 24(9): 1857-1863
    [144] Q. Chen,S. Lui,C.X. Li,et al. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI. Epilepsy Res, 2008, 80(1): 83-89
    [145] A. Dumas de la Roque,C. Oppenheim,F. Chassoux,et al. Diffusion tensor imaging of partial intractable epilepsy. European Radiology, 2005, 15(2): 279-285
    [146] S.H. Eriksson,F.J. Rugg-Gunn,M.R. Symms,et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain, 2001, 124(3): 617-622
    [147] F.J. Rugg-Gunn,S.H. Eriksson,M.R. Symms,et al. Diffusion tensor imaging in refractory epilepsy. Lancet, 2002, 359(9319): 1748-1751
    [148] G. Gong,L. Concha,C. Beaulieu,et al. Thalamic diffusion and volumetry in temporal lobe epilepsy with and without mesial temporal sclerosis. Epilepsy Res, 2008, 80(2-3): 184-193
    [149] J.W. Hugg,E.J. Butterworth,R.I. Kuzniecky. Diffusion mapping applied to mesial temporal lobe epilepsy: preliminary observations. Neurology, 1999, 53(1): 173-180
    [150] M. Yogarajah,J.S. Duncan. Diffusion-based magnetic resonance imaging and tractography in epilepsy. Epilepsia, 2008, 49(2): 189-200
    [151] S.Y. Yoo,K.H. Chang,I.C. Song,et al. Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers. American Journal of Neuroradiology, 2002, 23(5): 809-814
    [152] L. Thivard,S. Lehéricy,A. Krainik,et al. Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage, 2005, 28(3): 682-690
    [153] A. Righini,C. Pierpaoli,J.R. Alger,et al. Brain parenchyma apparent diffusion coefficient alterations associated with experimental complex partial status epilepticus. Magn Reson Imaging, 1994, 12(6): 865-871
    [154] A. Pitk nen,J. Nissinen,J. Nairism gi,et al. Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Progress in brain research, 2002, 135: 67-83
    [155] C.G. Wasterlain,D.G. Fujikawa,L.R. Penix,et al. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia, 1993, 34(s1): S37-S53
    [156] S.J. Slaght,T. Paz,M. Chavez,et al. On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy. J Neurosci, 2004, 24(30): 6816-6822
    [157] P. Mukherjee,J.I. Berman,S.W. Chung,et al. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. American Journal of Neuroradiology, 2008, 29(4): 632-641
    [158] A. Parent,L.N. Hazrati. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 1995, 20(1): 91-127
    [159] P. Mukherjee,R.C. McKinstry. Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clinics of North America, 2006, 16(1): 19-43
    [160] P. Mukherjee,J.H. Miller,J.S. Shimony,et al. Normal Brain Maturation during Childhood: Developmental Trends Characterized with Diffusion-Tensor MR Imaging1. Radiology, 2001, 221(2): 349-355
    [161] P. Mukherjee,J.H. Miller,J.S. Shimony,et al. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. American Journal of Neuroradiology, 2002, 23(9): 1445-1454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700