用户名: 密码: 验证码:
基于贝叶斯理论的EEG-fMRI融合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑电(electroencephalogram, EEG)和功能磁共振(functional magnetic resonance imaging, fMRI)作为无创的神经成像技术,在认知神经科学和心理学研究中得到广泛应用。它们的信号具有互补性:EEG时间分辨率高而fMRI空间分辨率高。在本文中,我们基于贝叶斯理论,对EEG-fMRI的融合技术及应用进行了比较系统的研究,提出了基于fMRI功能网络的EEG源定位技术,基于EEG信息的fMRI响应函数估计方法,从而建立了一个EEG-fMRI时空对称融合方案,并在癫痫病人的同步EEG-fMRI研究中进行了验证和展示。在此基础上,我们进一步借助阴阳互补平衡思想,提出一个新的框架,实现了从原始数据到网络信息,从模型驱动到数据驱动等多种方法的统一描述。本文完成的主要工作如下:
     1.基于参数贝叶斯模型,提出了借助于fMRI功能网络的EEG源定位技术:网络源成像(network-based source imaging, NESOI)。该技术的核心思想是在EEG源定位的贝叶斯模型中,将fMRI的功能网络当成空间先验信息,并通过贝叶斯模型的参数来确定先验信息的有效性。NESOI在估计神经电活动分布的同时,可以确定与EEG信号相关的fMRI功能网络,为讨论fMRI静息网络相关的电生理特征提供了新的手段。
     2.基于参数贝叶斯模型,发展了借助于EEG信息的fMRI响应函数估计方法。该方法利用EEG信号来提取神经响应的时间和幅度信息,进而解卷积出fMRI的血氧动力学响应函数,实现EEG特征时间相关的血氧代谢活动的成像。该方法与NESOI一起,共同构成了EEG-fMRI时空对称融合(Spatial-temporal EEG-fMRI fusion, STEFF)。STEFF将目前基于空间约束和时间预测的两种融合方法合并到一起,实现了EEG的高时间分辨率和fMRI的高空间分辨率的整合。通过仿真,我们对STEFF的有效性进行了验证。
     3.借助STEFF对部分性癫痫同步EEG-fMRI进行了研究。重点探讨了发作间期放电相关的fMRI活动的时空特征。提出从血氧动力学响应的正负性,响应峰值延迟时间以及与EEG的空间对应关系等多个角度对癫痫相关的血氧代谢活动进行分类。结果表明,STEFF不但能给出时空信息更为丰富的定位结果,还能提高识别癫痫刺激灶的能力。使得从电生理和血氧代谢两方面描绘癫痫网络的动力学过程成为可能。
     4.在STEFF技术的基础上,进一步借助阴阳互补平衡思想,提出了一个EEG-fMRI融合的系统框架,实现了从原始数据到网络信息,从模型驱动到数据驱动等多种方法的统一描述。该框架对现有的基于fMRI约束的EEG成像,基于EEG信息的fMRI分析和EEG-fMRI对称融合等方法进行了重新梳理,阐明它们之间内在的联系:融合的信息层次和时空互补性。在此基础上,讨论了时空对称融合和大尺度脑网络。同时,从该框架出发,我们预示了多种目前没有得到研究的新的融合方法,为理解EEG-fMRI融合提供了新的视角。
Electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) are the mostly used two predominant techniques for their ability to reveal noninvasive brain mapping of the mental process. Simultaneous EEG-fMRI recording provides complementary information about the cerebral activity, and the EEG-fMRI fusion enables a better understanding of the brain with the enhanced spatiotemporal resolution. The work in this dissertation concentrates in the EEG-fMRI fusion based on Bayesian theory and its application in cognitive and clinic problemes. We start with an introduction of the fMRI-constrained EEG source imaging and its applications in multi-modal face study and epileptic discharges. We then develop an EEG-informed fMRI analysis and a novel spatial-temporal EEG-fMRI symmetric fusion. The proposed symmetric fusion is applied in the study of partial epilepsy. Finally, we introduce a systematic perspective of the EEG-fMRI fusion, which is inspired by the proposed symmetric fusion and the harmonic balance between yin and yang. The main contributions of this dissertation are as follows:
     1. NEtwork-based SOurce Imaging (NESOI) is a new method to reconstruct neuroelectric sources based on empirical Bayesian model. In NESOI, multiple functional networks derived from fMRI are employed as constraints for EEG source imaging. In contrast with previous applications of empirical Bayesian model in source reconstruction with smoothness or sparseness priors, functional networks play a fundamental role among the priors employed by NESOI. Using synthetic and real data, we systemically compared the performance of NESOI with other source inversion methods when fMRI priors are used or not used. Our results indicate that NESOI is a potentially useful approach for understanding the electrophysiological signatures of fMRI resting state networks.
     2. Base on empirical Bayesian model, an EEG-informed hemodynamic response function (HRF) estimation is proposed to reconstruct the hemodynamic fluctuation related to EEG features. This estimation and NESOI combine into a parallel fusion, termed Spatial-Temporal Eeg-Fmri Fusion (STEFF), to symmetrically integrate the simultaneous EEG-fMRI recordings. STEFF enables information of one modality to be utilized as priors for the other and hence improves the spatial (for EEG) or temporal (for fMRI) resolution of the other modality. Simulations under realistic noise conditions indicated that STEFF is a feasible and physiologically reasonable hybrid approach for spatiotemporal mapping of cognitive processing in the human brain.
     3. STEFF is applied in simultaneous EEG-fMRI recording for the partial epilepsy study. As interictal epileptiform discharges related components are widespread, STEFF classifies the fMRI component as a function of response sign (positive or negative), peak delay of HRF and consistence of the spatial pattern. Our results indicate that the EEG-fMRI spatial consistent components with early HRF peaks would be the indictors of the epileptogenic focus. STEFF make possible the discripting of the dynamic responses of epileptic networks with bioelectric and hemodanimic information.
     4. Inspired by STEFF and the harmonic balance between yin and yang, a systematic framework is proposed to break the boundary between data level fusion and feature leve fusion. Based on this framework, we discuss many newly emerging fusion methods, including fMRI-constrained EEG imaging, EEG-informed fMRI analysis, and EEG-fMRI symmetric fusion. Our systematic perspective is helpful in explaining the relationship between different fusion schemes: the levels of signal abstraction and the complementary natures of EEG and fMRI. Moreover, some schemes that are little investigated but have great potential are also revealed in this framework.
引文
[1]尧德中.脑功能探测的电学理论与方法.北京:科学出版社, 2003.
    [2] Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 1993, 87: 417-420.
    [3] Alper J. EEG + MRI: a sum greater than the parts. Science, 1993, 261: 559.
    [4] Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage, 2008, 40: 515-528.
    [5] Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, et al. Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp, 2009, 30: 2701-2721.
    [6]李凌,程识君,雷旭,尧德中.功能磁共振和脑电神经成像技术与大脑刺激相结合的研究进展.生物化学与生物物理进展, 2010, 37: 1188-1194.
    [7] Mulert C, Lemieux L. EEG-fMRI: Physiological Basis, Technique and Applications: Springer Verlag, 2010.
    [8] Ullsperger M, Debener S. Simultaneous EEG and FMRI: Recording, Analysis, and Application: Oxford University Press, Incorporated, 2010.
    [9] Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage, 2003, 19: 1273-1302.
    [10] Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage, 2000, 12: 466-477.
    [11] Riera J, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos Trans R Soc Lond B Biol Sci, 2005, 360: 1025-1041.
    [12] Coombes S. Large-scale neural dynamics: Simple and complex. Neuroimage, 2010, 52: 731-739.
    [13] Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 2001, 14: 140-151.
    [14] Sui J, Adali T, Pearlson GD, Clark VP, Calhoun VD. A method for accurate group differencedetection by constraining the mixing coefficients in an ICA framework. Hum Brain Mapp, 2009, 30: 2953-2970.
    [15] Sui J, Adali T, Pearlson G, Yang H, Sponheim SR, White T, Calhoun VD. A CCA + ICA based model for multi-task brain imaging data fusion and its application to schizophrenia. Neuroimage, 2010, 51: 123-134.
    [16] Martinez-Montes E, Valdes-Sosa PA, Miwakeichi F, Goldman RI, Cohen MS. Concurrent EEG/fMRI analysis by multiway Partial Least Squares. Neuroimage, 2004, 22: 1023-1034.
    [17] Bosch-Bayard J, Valdes-Sosa P, Virues-Alba T, Aubert-Vazquez E, John ER, Harmony T, Riera-Diaz J, et al. 3D statistical parametric mapping of EEG source spectra by means of variable resolution electromagnetic tomography (VARETA). Clin Electroencephalogr, 2001, 32: 47-61.
    [18] Sotero RC, Trujillo-Barreto NJ. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage, 2008, 39: 290-309.
    [19] Bledowski C, Prvulovic D, Hoechstetter K, Scherg M, Wibral M, Goebel R, Linden DE. Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci, 2004, 24: 9353-9360.
    [20] Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K. Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci U S A, 2005, 102: 17798-17803.
    [21] Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage, 2004, 21: 1232-1241.
    [22] Mathalon DH, Whitfield SL, Ford JM. Anatomy of an error: ERP and fMRI. Biol Psychol, 2003, 64: 119-141.
    [23] Fan J, Kolster R, Ghajar J, Suh M, Knight RT, Sarkar R, McCandliss BD. Response anticipation and response conflict: an event-related potential and functional magnetic resonance imaging study. J Neurosci, 2007, 27: 2272-2282.
    [24] Iidaka T, Matsumoto A, Nogawa J, Yamamoto Y, Sadato N. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cereb Cortex, 2006, 16: 1349-1360.
    [25] de Zubicaray G, McMahon K, Eastburn M, Pringle AJ, Lorenz L, Humphreys MS. Support for an auto-associative model of spoken cued recall: evidence from fMRI. Neuropsychologia,2007, 45: 824-835.
    [26] Habib R, Nyberg L. Neural correlates of availability and accessibility in memory. Cereb Cortex, 2008, 18: 1720-1726.
    [27] Henson R. A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory. Q J Exp Psychol B, 2005, 58: 340-360.
    [28] Becker R, Ritter P, Moosmann M, Villringer A. Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp, 2005, 26: 221-230.
    [29] Schmid M, Oeltermann A, Juchem C, Logothetis N, Smirnakis S. Simultaneous EEG and fMRI in the macaque monkey at 4.7 Tesla. Magnetic Resonance Imaging, 2006, 24: 335-342.
    [30] Lazeyras F, Zimine I, Blanke O, Perrig SH, Seeck M. Functional MRI with simultaneous EEG recording: feasibility and application to motor and visual activation. J Magn Reson Imaging, 2001, 13: 943-948.
    [31] Ritter P, Moosmann M, Villringer A. Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp, 2009, 30: 1168-1187.
    [32] Thaerig S, Behne N, Schadow J, Lenz D, Scheich H, Brechmann A, Herrmann CS. Sound level dependence of auditory evoked potentials: simultaneous EEG recording and low-noise fMRI. Int J Psychophysiol, 2008, 67: 235-241.
    [33] Brechmann A, Baumgart F, Scheich H. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol, 2002, 87: 423-433.
    [34] Brechmann A, Scheich H. Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex, 2005, 15: 578-587.
    [35] Iannetti GD, Hughes NP, Lee MC, Mouraux A. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol, 2008, 100: 815-828.
    [36] Lui F, Duzzi D, Corradini M, Serafini M, Baraldi P, Porro CA. Touch or pain? Spatio-temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain, 2008, 138: 362-374.
    [37] Mouraux A, Iannetti G. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. Journal of neurophysiology, 2009, 101: 3258.
    [38] Wilke M, Holland SK, Ball WS, Jr. Language processing during natural sleep in a 6-year-old boy, as assessed with functional MR imaging. AJNR Am J Neuroradiol, 2003, 24: 42-44.
    [39] Vitacco D, Brandeis D, Pascual-Marqui R, Martin E. Correspondence of event-related potentialtomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp, 2002, 17: 4-12.
    [40]胡瑾.基于功能磁共振和脑电信号融合的情绪图片加工研究: [博士学位论文]中国科学院自动化研究所; 2007.
    [41]徐鹏,雷旭,尧德中.基于fMRI加权约束的FOCUSS迭代脑电源定位方法及其初步应用.生物医学工程学杂志, 2008, 25: 1425-1429.
    [42]何继军,沈辉,胡德文. EEG/fMRI融合分析综述:脑模型、算法和应用.计算机工程与科学, 2007, 29: 74-81.
    [43]朱建国,卢光明,张志强,田蕾,钟元,孙康健,王中秋. EEG-fMRI同步联合对局灶性癫痫的定位.中国医学影像技术, 2008, 24: 1362-1365.
    [44]刘永宏.癫痫发作期及发作间期同步EEG-fMRI的研究: [博士学位论文]:成都:四川大学; 2007.
    [45] Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J. EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage, 2006, 30: 1161-1170.
    [46] Grova C, Daunizeau J, Kobayashi E, Bagshaw AP, Lina JM, Dubeau F, Gotman J. Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage, 2008, 39: 755-774.
    [47] Vulliemoz S, Thornton R, Rodionov R, Carmichael DW, Guye M, Lhatoo S, McEvoy AW, et al. The spatio-temporal mapping of epileptic networks: combination of EEG-fMRI and EEG source imaging. Neuroimage, 2009, 46: 834-843.
    [48] Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, et al. Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage, 2005, 28: 205-215.
    [49] Bahar S, Suh M, Zhao M, Schwartz T. Intrinsic optical signal imaging of neocortical seizures: the'epileptic dip'. Neuroreport, 2006, 17: 499.
    [50] Luo C, Yao Z, Li Q, Lei X, Zhou D, Qin Y, Xia Y, et al. Imaging foci of epileptic discharges from simultaneous EEG and fMRI using the canonical HRF. Epilepsy Res, 2010, 91: 133-142.
    [51] Sirotin Y, Das A. Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature, 2009, 457: 475-479.
    [52] Hawco C, Bagshaw A, Lu Y, Dubeau F, Gotman J. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage, 2007, 35: 1450-1458.
    [53] Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, et al. Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage, 2008, 39: 1839-1849.
    [54] Jacobs J, LeVan P, Moeller F, Boor R, Stephani U, Gotman J, Siniatchkin M. Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG-fMRI. Neuroimage, 2009, 45: 1220-1231.
    [55] Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS. The combination of EEG Source Imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia, 2010, 51: 491-505.
    [56] Brodbeck V, Lascano AM, Spinelli L, Seeck M, Michel CM. Accuracy of EEG source imaging of epileptic spikes in patients with large brain lesions. Clin Neurophysiol, 2009, 120: 679-685.
    [57] Gholipour T, Moeller F, Pittau F, Dubeau F, Gotman J. Reproducibility of interictal EEG-fMRI results in patients with epilepsy. Epilepsia, 2010, 52: 433-442.
    [58] Vulliemoz S, Rodionov R, Carmichael DW, Thornton R, Guye M, Lhatoo SD, Michel CM, et al. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy. Neuroimage, 2010, 49: 3219-3229.
    [59] Vulliemoz S, Carmichael DW, Rosenkranz K, Diehl B, Rodionov R, Walker MC, McEvoy AW, et al. Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage, 2010, 54: 182-190.
    [60] Lytton WW. Computer modelling of epilepsy. Nat Rev Neurosci, 2008, 9: 626-637.
    [61] Goldman RI, Stern JM, Engel J, Jr., Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 2002, 13: 2487-2492.
    [62] Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage, 2003, 20: 145-158.
    [63] Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A, 2007, 104: 13170-13175.
    [64] Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage, 2009, 45: 903-916.
    [65] Lovblad KO, Thomas R, Jakob PM, Scammell T, Bassetti C, Griswold M, Ives J, et al. Silent functional magnetic resonance imaging demonstrates focal activation in rapid eyemovement sleep. Neurology, 1999, 53: 2193-2195.
    [66] Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron, 2000, 28: 991-999.
    [67] Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp, 2008, 29: 671-682.
    [68] Wehrle R, Czisch M, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmacher T. Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study. Neuroreport, 2005, 16: 853-857.
    [69] Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A, 2007, 104: 13164-13169.
    [70] Schridde U, Khubchandani M, Motelow JE, Sanganahalli BG, Hyder F, Blumenfeld H. Negative BOLD with large increases in neuronal activity. Cereb Cortex, 2008, 18: 1814-1827.
    [71] Mirsattari SM, Wang Z, Ives JR, Bihari F, Leung LS, Bartha R, Menon RS. Linear aspects of transformation from interictal epileptic discharges to BOLD fMRI signals in an animal model of occipital epilepsy. Neuroimage, 2006, 30: 1133-1148.
    [72] Khubchandani M, Jagannathan NR, Mallick HN, Mohan Kumar V. Functional MRI shows activation of the medial preoptic area during sleep. Neuroimage, 2005, 26: 29-35.
    [73] Blumenfeld H. Functional MRI studies of animal models in epilepsy. Epilepsia, 2007, 48 Suppl 4: 18-26.
    [74] Blumenfeld H. Cellular and network mechanisms of spike-wave seizures. Epilepsia, 2005, 46 Suppl 9: 21-33.
    [75] Ogawa S, Lee T, Stepnoski R, Chen W, Zhu X, Ugurbil K. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. P Natl Acad Sci USA, 2000, 97: 11026-11031.
    [76] Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 2002, 36: 1195-1210.
    [77] Shmuel A, Augath M, Oeltermann A, Logothetis NK. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci, 2006, 9: 569-577.
    [78] Laufs H. Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp, 2008, 29: 762-769.
    [79] Beisteiner R, Erdler M, Teichtmeister C, Diemling M, Moser E, Edward V, Deecke L. Magnetoencephalography May Help to Improve Functional MRI Brain Mapping. Eur J Neurosci, 1997, 9: 1072-1077.
    [80] Niedermeyer E, Da Silva F. Electroencephalography: basic principles, clinical applications, and related fields: Lippincott Williams & Wilkins, 2005.
    [81] Gloor P. Neuronal Generators and the Problem of Localization in Electroencephalography: Application of Volume Conductor Theory to Electroencephalography. Journal of Clinical Neurophysiology, 1985, 2: 327-354.
    [82] Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia, 2005, 46: 669-676.
    [83] Palu? M. Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biological Cybernetics, 1996, 75: 389-396.
    [84] Liu Z, Rios C, Zhang N, Yang L, Chen W, He B. Linear and nonlinear relationships between visual stimuli, EEG and BOLD fMRI signals. Neuroimage, 2010, 50: 1054-1066.
    [85] Megevand P, Quairiaux C, Lascano AM, Kiss JZ, Michel CM. A mouse model for studying large-scale neuronal networks using EEG mapping techniques. Neuroimage, 2008, 42: 591-602.
    [86] Nunez PL, Silberstein RB. On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr, 2000, 13: 79-96.
    [87] Yao D, Yin Z, Tang X, Arendt-Nielsen L, Chen AC. High-resolution electroencephalogram (EEG) mapping: scalp charge layer. Phys Med Biol, 2004, 49: 5073-5086.
    [88] Buzsaki G, Kaila K, Raichle M. Inhibition and brain work. Neuron, 2007, 56: 771-783.
    [89] Logothetis NK. What we can do and what we cannot do with fMRI. Nature, 2008, 453: 869-878.
    [90] Glover GH. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage, 1999, 9: 416-429.
    [91] Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A. Where the BOLD signal goes when alpha EEG leaves. Neuroimage, 2006, 31: 1408-1418.
    [92] Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, Gotman J. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain, 2004,127: 1127-1144.
    [93] Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L. BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage, 2008, 39: 608-618.
    [94] Goldman RI, Stern JM, Engel J, Jr., Cohen MS. Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol, 2000, 111: 1974-1980.
    [95] Benar C, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, Gotman J. Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol, 2003, 114: 569-580.
    [96] Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, Gos A, et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 1994, 372: 543-546.
    [97] Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, Delavelle J, et al. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol, 1998, 106: 508-512.
    [98] Debener S, Ullsperger M, Siegel M, Engel AK. Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci, 2006, 10: 558-563.
    [99] Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med, 1997, 38: 943-952.
    [100] Baumann SB, Noll DC. A modified electrode cap for EEG recordings in MRI scanners. Clin Neurophysiol, 1999, 110: 2189-2193.
    [101]徐鹏,陈华富,刘祖祥,尧德中.一种基于稀疏分解去除EEG信号中MRI伪迹的新方法.生物医学工程学杂志, 2007, 24: 439-443.
    [102] Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage, 2000, 12: 230-239.
    [103] Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage, 2005, 28: 720-737.
    [104] Mullinger KJ, Yan WX, Bowtell R. Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position. Neuroimage, 2011, 54: 1942-1950.
    [105] Vanderperren K, De Vos M, Ramautar JR, Novitskiy N, Mennes M, Assecondi S, Vanrumste B, et al. Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects. Neuroimage, 2010, 50: 920-934.
    [106] Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 1994, 2: 189-210.
    [107] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 2004, 134: 9-21.
    [108] Baillet S, Masher J, Leahy R. Electromagnetic brain imaging using brainstorm. In: Biomedical Imaging: Nano to Macro, 2004 IEEE International Symposium on; 2005 15-18 April 2004: IEEE; 2005. p. 652-655.
    [109] Cointepas Y, Poupon C, Maroy R, Riviere D, Le Bihan D, Mangin J. A freely available Anatomist/BrainVISA package for analysis of diffusion MR data. In: In Proc 9th HBM CD-Rom Neuroimage; 2003 June19-22; New York; 2003. p. 810.
    [110] Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A, 1998, 95: 8945-8950.
    [111] Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 2000, 26: 55-67.
    [112] Trujillo-Barreto N, Martinez-Montes E, Melie-Garcia L, Valdes-Sosa P. A symmetrical Bayesian model for fMRI and EEG/MEG neuroimage fusion. Int J of Bioelectromag, 2001, 3: 1.
    [113] Lei X, Xu P, Luo C, Zhao J, Zhou D, Yao D. fMRI Functional Networks for EEG Source Imaging. Human Brain Mapping, 2011: In press. DOI: 10.1002/hbm.21098.
    [114] Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, von Cramon DY, et al. Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A, 2008, 105: 6173-6178.
    [115] Aubert A, Costalat R. A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage, 2002, 17: 1162-1181.
    [116] Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M, Lina JM, et al. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage, 2007, 36: 69-87.
    [117] Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. The dynamic brain: from spiking neurons to neural masses and cortical fields. Plos Comput Biol, 2008, 4: e1000092.
    [118] Lei X, Qiu C, Xu P, Yao D. A parallel framework for simultaneous EEG/fMRI analysis: Methodology and simulation. Neuroimage, 2010, 52: 1123-1134.
    [119] Phillips C, Rugg MD, Friston KJ. Anatomically informed basis functions for EEG sourcelocalization: combining functional and anatomical constraints. Neuroimage, 2002, 16: 678-695.
    [120] Liu Z, Zhang N, Chen W, He B. Mapping the bilateral visual integration by EEG and fMRI. Neuroimage, 2009, 46: 989-997.
    [121] Stancak A, Polacek H, Vrana J, Rachmanova R, Hoechstetter K, Tintra J, Scherg M. EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation. Neuroimage, 2005, 25: 8-20.
    [122] Auranen T, Nummenmaa A, Vanni S, Vehtari A, Hamalainen MS, Lampinen J, Jaaskelainen IP. Automatic fMRI-guided MEG multidipole localization for visual responses. Hum Brain Mapp, 2009, 30: 1087-1099.
    [123] Gonzalez Andino S, Blanke O, Lantz G, Thut G, Grave de Peralta Menendez R. The use of functional constraints for the neuroelectromagnetic inverse problem: Alternatives and caveats. Int J of Bioelectromag, 2001, 3.
    [124] Henson RN, Flandin G, Friston KJ, Mattout J. A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Human Brain Mapping, 2010, 31: 1512-1531.
    [125] Baillet S, Mosher J, Leahy R. Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001, 18: 14-30.
    [126] Helmholtz H. Ueber einige Gesetze der Vertheilung elektrischer Str?me in k?rperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie, 1853, 165: 211-233.
    [127] Yao D. The equivalent source technique and cortical imaging. Electroencephalogr Clin Neurophysiol, 1996, 98: 478-483.
    [128] Xu P, Tian Y, Lei X, Yao D. Neuroelectric source imaging using 3SCO: A space coding algorithm based on particle swarm optimization and l(0) norm constraint. Neuroimage, 2010, 51: 183-205.
    [129] Lei X, Xu P, Chen A, Yao D. Gaussian source model based iterative algorithm for EEG source imaging. Comput Biol Med, 2009, 39: 978-988.
    [130] Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, Henson R, et al. Multiple sparse priors for the M/EEG inverse problem. Neuroimage, 2008, 39: 1104-1120.
    [131] Dale AM, Sereno MI. Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. J Cognitive Neurosci, 1993, 5: 162-176.
    [132] Yao D. Electric potential produced by a dipole in a homogeneous conducting sphere. IEEE Trans Biomed Eng, 2000, 47: 964-966.
    [133] Henson RN, Mattout J, Phillips C, Friston KJ. Selecting forward models for MEG source-reconstruction using model-evidence. Neuroimage, 2009, 46: 168-176.
    [134] Hagler DJ, Jr., Halgren E, Martinez A, Huang M, Hillyard SA, Dale AM. Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopically-mapped stimulus locations. Hum Brain Mapp, 2009, 30: 1290-1309.
    [135] Ashburner J, Friston KJ. Unified segmentation. Neuroimage, 2005, 26: 839-851.
    [136] Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging: Germany: Thieme, Stuttgart. 122 p., 1988.
    [137] Litvak V, Friston K. Electromagnetic source reconstruction for group studies. Neuroimage, 2008, 42: 1490-1498.
    [138] Mattout J, Henson RN, Friston KJ. Canonical Source Reconstruction for MEG. Comput Intell Neurosci, 2007: 67613.
    [139] Groening K, Brodbeck V, Moeller F, Wolff S, van Baalen A, Michel CM, Jansen O, et al. Combination of EEG-fMRI and EEG source analysis improves interpretation of spike-associated activation networks in paediatric pharmacoresistant focal epilepsies. Neuroimage, 2009, 46: 827-833.
    [140] Lange N, Zeger SL. Non-linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1997, 46: 1-29.
    [141] Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K. EEG-correlated fMRI of human alpha activity. Neuroimage, 2003, 19: 1463-1476.
    [142] Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR. Functional magnetic resonance imaging of human absence seizures. Ann Neurol, 2003, 53: 663-667.
    [143] Aguirre GK, Zarahn E, D'Esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage, 1998, 8: 360-369.
    [144] Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage, 2000, 11: 735-759.
    [145] Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia, 2008, 49 Suppl 3: 42-51.
    [146] LeVan P, Tyvaert L, Gotman J. Modulation by EEG features of BOLD responses to interictalepileptiform discharges. Neuroimage, 2010, 50: 15-26.
    [147] Masterton RAJ, Harvey AS, Archer JS, Lillywhite LM, Abbott DF, Scheffer IE, Jackson GD. Focal epileptiform spikes do not show a canonical BOLD response in patients with benign rolandic epilepsy (BECTS). Neuroimage, 2010, 51: 252-260.
    [148] Benar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F, Gotman J. The BOLD response to interictal epileptiform discharges. Neuroimage, 2002, 17: 1182-1192.
    [149] Sturzbecher MJ, Tedeschi W, Cabella BC, Baffa O, Neves UP, de Araujo DB. Non-extensive entropy and the extraction of BOLD spatial information in event-related functional MRI. Phys Med Biol, 2009, 54: 161-174.
    [150] Sato JR, Rondinoni C, Sturzbecher M, de Araujo DB, Amaro E, Jr. From EEG to BOLD: Brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions. Neuroimage, 2010, 50: 1416-1426.
    [151] Lei X, Yang P, Yao D. An empirical bayesian framework for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2009, 17: 521-529.
    [152] Quiros A, Diez RM, Wilson SP. Bayesian spatiotemporal model of fMRI data using transfer functions. Neuroimage, 2010, 49: 442-456.
    [153] Marrelec G, Benali H. Non-parametric Bayesian deconvolution of fMRI hemodynamic response function using smoothing prior. Neuroimage, 2001, 13: 194-194.
    [154] Rosa MJ, Kilner J, Blankenburg F, Josephs O, Penny W. Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage, 2010, 49: 1496-1509.
    [155] de Munck JC, Goncalves SI, Huijboom L, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH. The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage, 2007, 35: 1142-1151.
    [156] Eichele T, Calhoun VD, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, et al. Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol, 2008, 67: 222-234.
    [157] Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas, 2001, 22: 693-711.
    [158] Qin Y, Xu P, Yao D. A comparative study of different references for EEG default mode network: The use of the infinity reference. Clinical Neurophysiology, 2010, 121: 1981-1991.
    [159] Kiebel SJ, Garrido MI, Friston KJ. Dynamic causal modelling of evoked responses: the role of intrinsic connections. Neuroimage, 2007, 36: 332-345.
    [160] Eichele T, Calhoun VD, Debener S. Mining EEG-fMRI using independent component analysis. Int J Psychophysiol, 2009, 73: 53-61.
    [161] Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci, 2005, 25: 11730-11737.
    [162] Goldman RI, Wei CY, Philiastides MG, Gerson AD, Friedman D, Brown TR, Sajda P. Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task. Neuroimage, 2009, 47: 136-147.
    [163] Daunizeau J, Laufs H, Friston K. EEG–fMRI Information Fusion: Biophysics and Data Analysis. EEG-fMRI, 2010: 511-526.
    [164] Lei X, Yao D. EEG-fMRI fusion: past, present, and future. 2011, Submitted, Under review.
    [165] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8: 700-711.
    [166] Disbrow EA, Slutsky DA, Roberts TP, Krubitzer LA. Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. Proc Natl Acad Sci U S A, 2000, 97: 9718-9723.
    [167] Whittingstall K, Stroink G, Schmidt M. Evaluating the spatial relationship of event-related potential and functional MRI sources in the primary visual cortex. Hum Brain Mapp, 2007, 28: 134-142.
    [168] Gerloff C, Grodd W, Altenmuller E, Kolb R, Naegele T, Klose U, Voigt K, et al. Coregistration of EEG and fMRI in a simple motor task. Hum Brain Mapp, 1996, 4: 199-209.
    [169] Dale AM, Halgren E. Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol, 2001, 11: 202-208.
    [170] Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD. Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation. Int J Psychophysiol, 2008, 67: 212-221.
    [171] Mantini D, Corbetta M, Perrucci MG, Romani GL, Del Gratta C. Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage, 2009, 44: 265-274.
    [172] Jacobs J, Hawco C, Kobayashi E, Boor R, LeVan P, Stephani U, Siniatchkin M, et al. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. Neuroimage, 2008, 40: 601-614.
    [173] Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MCM. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 2009, 44: 1224-1238.
    [174] Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. Classical and Bayesian inference in neuroimaging: theory. Neuroimage, 2002, 16: 465-483.
    [175] Phillips C, Rugg MD, Fristont KJ. Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage, 2002, 17: 287-301.
    [176] Phillips C, Mattout J, Rugg MD, Maquet P, Friston KJ. An empirical Bayesian solution to the source reconstruction problem in EEG. Neuroimage, 2005, 24: 997-1011.
    [177] Chen H, Yao D. Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis. Magn Reson Imaging, 2004, 22: 827-833.
    [178] Beckmann CF, Smith SM. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage, 2005, 25: 294-311.
    [179] Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 2009, 45: S163-172.
    [180] Tikhonov A, Arsenin V, John F. Solutions of ill-posed problems: Vh Winston Washington, DC, 1977.
    [181] Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol, 2002, 24 Suppl D: 5-12.
    [182] Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ. MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage, 2006, 30: 753-767.
    [183] Wipf D, Nagarajan S. A unified Bayesian framework for MEG/EEG source imaging. Neuroimage, 2009, 44: 947-966.
    [184] Harrison LM, Penny W, Ashburner J, Trujillo-Barreto N, Friston KJ. Diffusion-based spatial priors for imaging. Neuroimage, 2007, 38: 677-695.
    [185] D'Argembeau A, Collette F, Van der Linden M, Laureys S, Del Fiore G, Degueldre C, Luxen A, et al. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage, 2005, 25: 616-624.
    [186] McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp, 1998, 6: 160-188.
    [187] Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy andthe Laplace approximation. Neuroimage, 2007, 34: 220-234.
    [188] Calhoun VD, Adali T, McGinty VB, Pekar JJ, Watson TD, Pearlson GD. fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis. Neuroimage, 2001, 14: 1080-1088.
    [189] Hu D, Yan L, Liu Y, Zhou Z, Friston KJ, Tan C, Wu D. Unified SPM-ICA for fMRI analysis. Neuroimage, 2005, 25: 746-755.
    [190] Henson RN, Goshen-Gottstein Y, Ganel T, Otten LJ, Quayle A, Rugg MD. Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cereb Cortex, 2003, 13: 793-805.
    [191] Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98: 676-682.
    [192] Engel J, Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42: 796-803.
    [193] Daunizeau J, Grova C, Mattout J, Marrelec G, Clonda D, Goulard B, Pelegrini-Issac M, et al. Assessing the relevance of fMRI-based prior in the EEG inverse problem: a Bayesian model comparison approach. IEEE Transactions on Signal Processing, 2005, 53: 3461-3472.
    [194] Ebersole JS, Pacia SV. Localization of temporal lobe foci by ictal EEG patterns. Epilepsia, 1996, 37: 386-399.
    [195] Neal R. Bayesian learning for neural networks: Springer Verlag, 1996.
    [196] Hampson M, Olson IR, Leung HC, Skudlarski P, Gore JC. Changes in functional connectivity of human MT/V5 with visual motion input. Neuroreport, 2004, 15: 1315-1319.
    [197] Xu P, Tian Y, Lei X, Hu X, Yao D. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization. Ann Biomed Eng, 2008, 36: 2051-2067.
    [198] Heeger DJ, Huk AC, Geisler WS, Albrecht DG. Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci, 2000, 3: 631-633.
    [199] Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalography and Clinical Neurophysiology, 1995, 94: 251-264.
    [200] Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci, 2004, 8: 204-210.
    [201] Calhoun VD, Adali T. Unmixing fMRI with independent component analysis. IEEE Eng MedBiol Mag, 2006, 25: 79-90.
    [202] Beckmann C, Smith S. Probabilistic independent component analysis for functional magnetic resonance imaging. Medical Imaging, IEEE Transactions on, 2004, 23: 137-152.
    [203] Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412: 150-157.
    [204] Nunez P. Neocortical Dynamics and Human EEG Rhythms. In: Oxford University Press, Oxford; 1995.
    [205] Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 1995, 2: 189-210.
    [206] Yao D, Wang L, Oostenveld R, Nielsen KD, Arendt-Nielsen L, Chen AC. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol Meas, 2005, 26: 173-184.
    [207] Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp, 2007, 28: 1251-1266.
    [208] Hyv?rinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural computation, 1997, 9: 1483-1492.
    [209] Rubner Y, Tomasi C, Guibas LJ. The Earth Mover's Distance as a Metric for Image Retrieval. International Journal of Computer Vision, 2000, 40: 99-121.
    [210] Schmithorst VJ, Holland SK. Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. J Magn Reson Imaging, 2004, 19: 365-368.
    [211] Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage, 2008, 42: 332-342.
    [212] Langers DR. Unbiased group-level statistical assessment of independent component maps by means of automated retrospective matching. Hum Brain Mapp, 2010, 31: 727-742.
    [213] Kiebel SJ, David O, Friston KJ. Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage, 2006, 30: 1273-1284.
    [214] Garrido MI, Kilner JM, Kiebel SJ, Friston KJ. Evoked brain responses are generated by feedback loops. Proc Natl Acad Sci U S A, 2007, 104: 20961-20966.
    [215] Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci U S A, 2009, 106: 10302-10307.
    [216] Marques JP, Rebola J, Figueiredo P, Pinto A, Sales F, Castelo-Branco M. ICA decomposition of EEG signal for fMRI processing in epilepsy. Hum Brain Mapp, 2009, 30: 2986-2996.
    [217] Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A, 2006, 103: 13848-13853.
    [218] Hoffmann A, Jager L, Werhahn KJ, Jaschke M, Noachtar S, Reiser M. Electroencephalography during functional echo-planar imaging: detection of epileptic spikes using post-processing methods. Magn Reson Med, 2000, 44: 791-798.
    [219] LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage, 2010, 49: 366-378.
    [220] Rathakrishnan R, Moeller F, Levan P, Dubeau F, Gotman J. BOLD signal changes preceding negative responses in EEG-fMRI in patients with focal epilepsy. Epilepsia, 2010, 51: 1837-1845.
    [221] Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, et al. Hemodynamic correlates of epileptiform discharges: An EEG-fMRI study of 63 patients with focal epilepsy. Brain Research, 2006, 1088: 148-166.
    [222] Wan X, Riera J, Iwata K, Takahashi M, Wakabayashi T, Kawashima R. The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. Neuroimage, 2006, 32: 616-625.
    [223] Arthurs OJ, Boniface SJ. What aspect of the fMRI BOLD signal best reflects the underlying electrophysiology in human somatosensory cortex? Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 2003, 114: 1203-1209.
    [224] Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab, 2004, 24: 972-985.
    [225] Lauritzen M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci, 2005, 6: 77-85.
    [226] Kida I, Hyder F, Behar KL. Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent. J Cereb Blood Flow Metab, 2001, 21: 585-591.
    [227] Makeig S, Jung T-P, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent?components. P Natl Acad Sci USA, 1997, 94:10979-10984.
    [228] Brookings T, Ortigue S, Grafton S, Carlson J. Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. Neuroimage, 2009, 44: 411-420.
    [229] Calhoun VD, Adali T. Feature-based fusion of medical imaging data. IEEE Trans Inf Technol Biomed, 2009, 13: 711-720.
    [230] Calhoun VD, Adali T, Kiehl KA, Astur R, Pekar JJ, Pearlson GD. A method for multitask fMRI data fusion applied to schizophrenia. Hum Brain Mapp, 2006, 27: 598-610.
    [231] Scheeringa R, Bastiaansen MC, Petersson KM, Oostenveld R, Norris DG, Hagoort P. Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int J Psychophysiol, 2008, 67: 242-251.
    [232] Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage, 2009, 45: S173-186.
    [233] Beal M. Variational algorithms for approximate Bayesian inference: Citeseer, 2003.
    [234] Brown KS, Ortigue S, Grafton ST, Carlson JM. Improving human brain mapping via joint inversion of brain electrodynamics and the BOLD signal. Neuroimage, 2010, 49: 2401-2415.
    [235] Friston KJ. Modalities, modes, and models in functional neuroimaging. Science, 2009, 326: 399-403.
    [236] Roebroeck A, Formisano E, Goebel R. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage, 2009.
    [237] Kilner JM, Mattout J, Henson R, Friston KJ. Hemodynamic correlates of EEG: a heuristic. Neuroimage, 2005, 28: 280-286.
    [238] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 2009, 10: 186-198.
    [239] Tyvaert L, LeVan P, Dubeau F, Gotman J. Noninvasive dynamic imaging of seizures in epileptic patients. Hum Brain Mapp, 2009, 30: 3993-4011.
    [240] Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 2008, 39: 1666-1681.
    [241] Demirci O, Stevens MC, Andreasen NC, Michael A, Liu J, White T, Pearlson GD, et al. Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients andhealthy controls. Neuroimage, 2009, 46: 419-431.
    [242] Stevens MC, Pearlson GD, Calhoun VD. Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp, 2009, 30: 2356-2366.
    [243] Porcaro C, Zappasodi F, Rossini PM, Tecchio F. Choice of multivariate autoregressive model order affecting real network functional connectivity estimate. Clin Neurophysiol, 2009, 120: 436-448.
    [244] David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol, 2008, 6: 2683-2697.
    [245] Lei X, Ostwald D, Hu J, Qiu C, Porcaro C, Bagshaw AP, Yao D. Multimodal functional network connectivity: An EEG-fMRI fusion in the network space. Plos One, 2011, In revision.
    [246] Calhoun VD, Eichele T, Pearlson G. Functional brain networks in schizophrenia: a review. Front Hum Neurosci, 2009, 3: 17.
    [247] Groves AR, Beckmann CF, Smith SM, Woolrich MW. Linked independent component analysis for multimodal data fusion. Neuroimage , 2011, 54: 2198-2217.
    [248] Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A, 2003, 100: 11053-11058.
    [249] Chen AC, Feng W, Zhao H, Yin Y, Wang P. EEG default mode network in the human brain: spectral regional field powers. Neuroimage, 2008, 41: 561-574.
    [250] Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage, 2010, 52: 1162-1170.
    [251] Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. Neuroimage, 2010, 52: 1149-1161.
    [252] Van De Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proceedings of the National Academy of Sciences, 2010, 107: 18179-18184.
    [253] Cox RW, Jesmanowicz A, Hyde JS. Real-time functional magnetic resonance imaging. Magn Reson Med, 1995, 33: 230-236.
    [254] Garreffa G, Carni M, Gualniera G, Ricci GB, Bozzao L, De Carli D, Morasso P, et al.Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging, 2003, 21: 1175-1189.
    [255] Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng, 2004, 51: 966-970.
    [256] Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R. Intersubject synchronization of cortical activity during natural vision. Science, 2004, 303: 1634-1640.
    [257] Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD. Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp, 2002, 16: 158-167.
    [258] Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci U S A, 2009, 106: 11376-11381.
    [259] Sajda P, Philiastides MG, Parra LC. Single-Trial Analysis of Neuroimaging Data: Inferring Neural Networks Underlying Perceptual Decision-Making in the Human Brain. Biomedical Engineering, IEEE Reviews in, 2009, 2: 97-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700