用户名: 密码: 验证码:
大鼠感觉神经元特异性受体在CFA炎症性疼痛中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化氮(nitro oxide, NO)、c-Fos蛋白、内源性阿片肽都表达于神经系统内,参与机体炎性疼痛的病理过程。大鼠感觉神经元特异性受体(rat Sensory neuron-specific receptors 1, rSNSRl)在完全弗氏佐剂(complete Freund's adjuvant, CFA)炎症性疼痛中起镇痛作用。本实验应用rSNSRl受体的激动剂通过蛋白质印迹、免疫组织化学等实验方法,研究rSNSRl受体在CFA慢性炎症痛中的作用机制。
     研究发现在CFA炎性痛模型中,鞘内激活rSNSRl,导致脊髓神经元型一氧化氮合酶(neuronal nitric oxide synthesis, nNOS)、c-Fos蛋白表达下调。同时,鞘内注射CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2)减轻了rSNSR1的抗伤害作用。另外,在CFA炎性痛模型中,鞘内激活rSNSR1,背根神经节(Dorsal root ganglion, DRG)及炎症组织内,β-内啡肽(β-endorphin,β-EP)的表达基本不受影响。
     以上结果表明在CFA炎性痛模型中,鞘内激活rSNSR1产生的镇痛作用,可能是通过激活内源性阿片、抑制一氧化氮、c-Fos信号通路实现的,但与内源性阿片中的p-EP通路是否相关有待进一步研究。
Nitro oxide (NO)、c-Fos protein and endogenous opioid peptide are present in the nervous system and involved in the pathological process of inflammatory pain. It has been demonstrated that rSNSR1 alleviates CFA-evoked inflammatory pain. The present study was designed to investigate the mechanisms of the analgesia effect of intrathecal activation of rSNSR1 on CFA-evoked inflammatory pain.
     This study was conducted by using behavioral、immunohistochemical and Western blot techniques. We found that: intrathecal injection of CTAP, inhibited the analgesia effect of intrathecal activation of rSNSR1 on CFA-evoked inflammatory pain; intrathecal activation of rSNSR1 produced an decrease in the expression of nruronal nitric oxide synthase(nNOS),and c-fos protein in the spinal cord dorsal horn, but P-endorphin is not changed in DRG and inflamed tissue.
     This study shows that the mechanisms of the analgesia effect of intrathecal activation of rSNSR1 on CFA-evoked inflammatory pain may be related to endogenous opioid peptide、NO and c-Fos signaling pathways, but if related toβ-EP signaling pathway has to be researched more.
引文
1. Lembo, P.M., et al., Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs. Nat Neurosci,2002.5(3):201-9.
    2. Breit, A., et al., Simultaneous activation of the delta opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits deltaOR signaling. Mol Pharmacol,2006.70(2):686-96.
    3. Woolf, C.J. and Q. Ma, Nociceptors--noxious stimulus detectors. Neuron,2007. 55(3):353-64.
    4. Haddad, J.J., On the enigma of pain and hyperalgesia:A molecular perspective. Biochem Biophys Res Commun,2007.353(2):217-24.
    5. Bendele, A., et al., Animal models of arthritis:relevance to human disease. Toxicol Pathol,1999.27(1):134-42.
    6. Hylden, J.L., F. Anton, and R.L. Nahin, Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience, 1989.28(1):27-37.
    7. Dong, X., et al., A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell,2001.106(5):619-32.
    8. Zylka, M J., et al., Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A,2003.100(17): 10043-8.
    9. Dong, X., et al., A Diverse Family of GPCRs Expressed in Specific Subsets of Nociceptive Sensory Neurons. Cell,2001.106(5):619-632.
    10. Liu, Y., et al., Mechanisms of compartmentalized expression of Mrg class G-protein-coupled sensory receptors. J Neurosci,2008.28(1):125-32.
    11. Grazzini, E., et al., Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci U S A,2004.101(18): 7175-80.
    12. Chen, H. and S.R. Ikeda, Modulation of ion channels and synaptic transmission by a human sensory neuron-specific G-protein-coupled receptor, SNSR4/mrgXl, heterologously expressed in cultured rat neurons. J Neurosci,2004.24(21): 5044-53.
    13. Guan, Y., et al., Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci U S A,2010.107(36):15933-8.
    14. Hong, Y, et al., Dual effects of intrathecal BAM22 on nociceptive responses in acute and persistent pain--potential function of a novel receptor. Br J Pharmacol, 2004.141(3):423-30.
    15. Heitzer, T., et al., Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease:evidence for antioxidant and antiinflammatory effects. Arterioscler Thromb Vasc Biol,2006.26(7): 1648-52.
    16. Alessandri-Haber, N., et al., TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci, 2009.29(19):6217-28.
    17. Omote, K., et al., Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res,2001.912(2):171-5.
    18. MacMicking, J., Q.W. Xie, and C. Nathan, Nitric oxide and macrophage function. Annu Rev Immunol,1997.15:323-50.
    19. Lacza, Z., et al., Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res,2006.40(4):369-78.
    20. Elfering, S.L., T.M. Sarkela, and C. Giulivi, Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem,2002.277(41):38079-86.
    21. Boissel, J.P., P.M. Schwarz, and U. Forstermann, Neuronal-type NO synthase: transcript diversity and expressional regulation. Nitric Oxide,1998.2(5):337-49.
    22. Saini, R., et al., Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies. J Leukoc Biol,2006. 79(3):519-28.
    23. Korzhevskii, D.E., et al., [Immunocytochemical demonstration of neuronal NO-synthase in rat brain cells]. Morfologiia,2007.132(4):77-80.
    24. Kavya, R., et al., Nitric oxide synthase regulation and diversity: implications in Parkinson's disease. Nitric Oxide,2006.15(4):280-94.
    25. Guhring, H., et al., Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early thermal hyperalgesia in iNOS-deficient mice. J Neurosci,2000.20(17):6714-20.
    26. Wu, J., et al., Nitric oxide synthase in spinal cord central sensitization following intradermal injection of capsaicin. Pain,2001.94(1):47-58.
    27. Wu, J., et al., Fos expression is induced by increased nitric oxide release in rat spinal cord dorsal horn. Neuroscience,2000.96(2):351-7.
    28. Chu, Y.C., et al., Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain. Pain,2005.119(1-3):113-23.
    29. Mabuchi, T., et al., Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production. Eur J Neurosci,2003.17(7):1384-92.
    30. Lui, P.W. and C.H. Lee, Preemptive effects of intrathecal cyclooxygenase inhibitor or nitric oxide synthase inhibitor on thermal hyper sensitivity following peripheral nerve injury. Life Sci,2004.75(21):2527-38.
    31. Guan, Y., et al., Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol Pain,2007.3:29.
    32. Boettger, M.K., et al., Differences in inflammatory pain in nNOS-, iNOS-and eNOS-deficient mice. Eur J Pain,2007.11(7):810-8.
    33. De Alba, J., et al., GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain,2006.120(1-2):170-81.
    34. LaBuda, C.J., et al., Antinociceptive activity of the selective iNOS inhibitor AR-C 102222 in rodent models of inflammatory, neuropathic and post-operative pain. Eur J Pain,2006.10(6):505-12.
    35. Tanabe, M., et al., Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacology,2009.56(3):702-8.
    36. Levy, D., et al., Transient action of the endothelial constitutive nitric oxide synthase (ecNOS) mediates the development of thermal hypersensitivity following peripheral nerve injury. Eur J Neurosci,2000.12(7):2323-32.
    37. Tao, F., et al., Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience,2004. 128(2):421-30.
    38. Tao, F., et al., Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience,2003.120(3):847-54.
    39. Kieffer, B.L. and C. Gaveriaux-Ruff, Exploring the opioid system by gene knockout. Prog Neurobiol,2002.66(5):285-306.
    40. Pare, M., et al., The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J Neurosci,2001. 21(18):7236-46.
    41. Stein, C., M. Schafer, and H. Machelska, Attacking pain at its source:new perspectives on opioids. Nat Med,2003.9(8):1003-8.
    42. Rau, K.K., et al., Diverse immunocytochemical expression of opioid receptors in electrophysiologically defined cells of rat dorsal root ganglia. J Chem Neuroanat, 2005.29(4):255-64.
    43. Hamm, H.E. and A. Gilchrist, Heterotrimeric G proteins. Curr Opin Cell Biol, 1996.8(2):189-96.
    44. Galeotti, N., C. Ghelardini, and A. Bartolini, Antihistamine antinociception is mediated by Gi-protein activation. Neuroscience,2002.109(4):811-8.
    45. Matousek, P., et al., Agonist-induced tyrosine phosphorylation of Gq/G11 alpha requires the intact structure of membrane domains. Biochem Biophys Res Commun,2005.328(2):526-32.
    46. Mostany, R., et al., Supersensitivity to mu-opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant Galpha protein submits. Neuropharmacology,2008.54(6):989-97.
    47. Largent-Milnes, T.M., et al., Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling. J Pain,2008. 9(8):700-13.
    48. Yin, D.L., et al., Etorphine inhibits cell growth and induces apoptosis in SK-N-SH cells: involvement of pertussis toxin-sensitive G proteins. Neurosci Res,1997. 29(2):121-7.
    49. Millan, M.J., Descending control of pain. Prog Neurobiol,2002.66(6):355-474.
    50. Luo, C., et al., Nociceptin inhibits excitatory but not inhibitory transmission to substantia gelatinosa neurones of adult rat spinal cord. Neuroscience,2002. 109(2):349-58.
    51. Kohno, T., et al., Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol,1999.518 (Pt 3):803-13.
    52. Wu, S.Y., et al., Endomorphin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons in vitro. Neuroscience,1999.89(2): 317-21.
    53. Luo, C., et al., Nociceptin-induced outward current in substantia gelatinosa neurones of the adult rat spinal cord. Neuroscience,2001.108(2):323-30.
    54. Jeftinija, S., Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting at mu-opioid receptor sites. Brain Res,1988. 460(2):260-8.
    55. Hunt, S.P., A. Pini, and G. Evan, Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature,1987.328(6131):632-4.
    56. Hou, W.Y., et al., Intrathecally administered c-fos antisense oligodeoxynucleotide decreases formalin-induced nociceptive behavior in adult rats. Eur J Pharmacol, 1997.329(1):17-26.
    57. Whitmarsh, A.J. and R.J. Davis, Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med,1996. 74(10):589-607.
    58. Chen, T., et al., Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22. Neuropharmacology,2008. 54(5):796-803.
    59. Chen, T., Q. Cai, and Y. Hong, Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (Tyr6)-gamma2-MSH-6-12 inhibit formalin-evoked nociception and neuronal Fos-like immunoreactivity in the spinal cord of the rat. Neuroscience,2006.141(2):965-75.
    60. Mousa, S.A., et al., Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain. J Neuroimmunol,2002.126(1-2):5-15.
    61. Takano, Y, et al., [Hyperalgesia induced by intrathecal administration of nitroglycerin involves NMDA receptor activation in the spinal cord]. Masui,1997. 46(10):1354-61.
    62. Bazzara, L.G., et al., Nitric oxide/cGMP signaling inhibits TSH-stimulated iodide uptake and expression of thyroid peroxidase and thyroglobulin mRNA in FRTL-5 thyroid cells. Thyroid,2007.17(8):717-27.
    63. Tao, Y.X., et al., Expression and action of cyclic GMP-dependent protein kinase Ialpha in inflammatory hyperalgesia in rat spinal cord. Neuroscience,2000.95(2): 525-33.
    64. Tegeder, I., et al., Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc Natl Acad Sci U S A,2004.101(9):3253-7.
    65. Hains, L.E., et al., Pain intensity and duration can be enhanced by prior challenge: initial evidence suggestive of a role of microglial priming. J Pain,2010.11(10): 1004-14.
    66. Chacur, M., et al., Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration:involvement of spinal cord glia, proinflammatory cytokines and nitric oxide. Pain,2004.108(1-2):180-91.
    67. Watkins, L.R., E.D. Milligan, and S.F. Maier, Spinal cord glia: new players in pain. Pain,2001.93(3):201-5.
    68. Holmes, G.M., et al., Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Res,2004.1025(1-2):210-9.
    69. Holguin, A., et al., HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain,2004. 110(3):517-30.
    70. Vetter, G., G. Geisslinger, and I. Tegeder, Release of glutamate, nitric oxide and prostaglandin E2 and metabolic activity in the spinal cord of rats following peripheral nociceptive stimulation. Pain,2001.92(1-2):213-8.
    71. Skyba, D.A., T.L. Lisi, and K.A. Sluka, Excitatory amino acid concentrations increase in the spinal cord dorsal horn after repeated intramuscular injection of acidic saline. Pain,2005.119(1-3):142-9.
    72. Garry, M.G., L.P. Walton, and M.A. Davis, Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res,2000.861(2):208-19.
    73. Del-Bel, E.A., et al., Induction of Fos protein immunoreactivity by spinal cord contusion. Braz J Med Biol Res,2000.33(5):521-8.
    74. Munglani, R. and S.P. Hunt, Molecular biology of pain. Br J Anaesth,1995.75(2): 186-92.
    75. Hunter, T., The proteins of oncogenes. Sci Am,1984.251 (2):70-9.
    76. Chapman, V., et al.,7-Nitro-indazole, a selective inhibitor of neuronal nitric oxide synthase, reduces formalin evoked c-Fos expression in dorsal horn neurons of the rat spinal cord. Brain Res,1995.697(1-2):258-61.
    77. Nunez, S., et al., Role of peripheral mu-opioid receptors in inflammatory orofacial muscle pain. Neuroscience,2007.146(3):1346-54.
    78. Puehler, W., et al., Rapid upregulation of mu opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction. Neuroscience,2004.129(2):473-9.
    79. Cabot, P.J., et al., Methionine-enkephalin-and Dynorphin A-release from immune cells and control of inflammatory pain. Pain,2001.93(3):207-12.
    80. Mousa, S.A., et al., beta-Endorphin-containing memory-cells and mu-opioid receptors undergo transport to peripheral inflamed tissue. J Neuroimmunol,2001. 115(1-2):71-8.
    81. Kamphuis, S., et al., Role of endogenous pro-enkephalin A-derived peptides in human T cell proliferation and monocyte IL-6 production. J Neuroimmunol,1998. 84(1):53-60.
    82. Binder, W., et al., Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue. Eur J Neurosci,2004.20(1):92-100.
    83. Mousa, S.A., et al., Subcellularpathways of beta-endorphin synthesis, processing, and release from immunocytes in inflammatory pain. Endocrinology,2004.145(3): 1331-41.
    84. Puehler, W., et al., Interleukin-1 beta contributes to the upregulation of kappa opioid receptor mrna in dorsal root ganglia in response to peripheral inflammation. Neuroscience,2006.141(2):989-98.
    85. Stein, C., M. Schafer, and A.H. Hassan, Peripheral opioid receptors. Ann Med, 1995.27(2):219-21.
    86. Antonijevic, I., et al., Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci,1995.15(1 Pt 1):165-72.
    87. Labuz, D., et al., Immune cell-derived opioids protect against neuropathic pain in mice. J Clin Invest,2009.119(2):278-86.
    88. Kabli, N. and C.M. Cahill, Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain,2007.127(1-2):84-93.
    89. Walczak, J.S., et al., Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience,2005.132(4):1093-102.
    90. Khasabova, I.A., et al., Differential effects of CB1 and opioid agonists on two populations of adult rat dorsal root ganglion neurons. J Neurosci,2004.24(7): 1744-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700