用户名: 密码: 验证码:
河南嵩县祁雨沟金矿成矿流体及成矿机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祁雨沟金矿地处河南省嵩县城关镇境内,距县城18公里处,大地构造位置位于华北地块南缘熊耳地体东北缘。熊耳山—外方山地区是重要的Au、Mo、W和Ag-Pb-Zn的成矿区,祁雨沟金矿是熊耳山地区典型的角砾岩型金矿。
     矿区内每个角砾岩体产出距离相距不远,但是各个角砾岩体矿化类型具有一定的差异:J2以Au矿化为主,J4以Au-Cu矿化为主,J5以Au矿化为主,J7则以Mo-Au为主。
     本次研究根据露头及坑道中脉体之间的穿插关系以及矿物组合,将热液期划分为四个阶段:(Ⅰ)钾长石—石英阶段(Ⅱ)石英—黄铁矿阶段(Ⅲ)金-多金属硫化物阶段(Ⅳ)石英-碳酸盐阶段,其中Ⅱ、Ⅲ阶段为主成矿阶段,金主要在第Ⅲ成矿阶段富集。金属矿物主要有黄铁矿、黄铜矿、自然金、银金矿,次要的有方铅矿,闪锌矿、褐铁矿、赤铁矿等;非金属矿物主要有石英、长石、方解石、绿帘石、绢云母,次要矿物有黑云母、白云母、钠长石、白云石、高岭石、萤石;微量矿物有榍石、锆石、磷灰石、独居石等。主要的蚀变类型有硅化、钾化、绢云母化、绿泥石化和碳酸盐化,其中硅化出现在成矿的四个阶段。
     矿石构造主要有角砾状构造、块状构造、浸染状构造、脉状构造、细脉状构造、网脉状构造等。矿石结构主要分为结晶结构、变形结构和交代结构三类,其中结晶结构包括自形粒状结构、半自形粒状结构、他形粒状结构、解理结构、填隙结构、包含结构;变形结构包括揉皱结构、压碎结构;交代结构包括交代残余结构、骸晶结构、镶边结构和脉状结构。
     包裹体岩相学显示,含矿石英脉以及各种角砾之间的含矿胶结物中发育了气液两相包裹体(L+V型)、子矿物多相包裹体(s型)、纯气相包裹体(V型)、纯液相包裹体(L型)以及含CO2三相包裹体(C型),这些包裹体成群成带分布,少数呈孤立分布,包裹体大小从<1μ-35μ不等,包裹体形状一般为近圆形、椭圆形、负晶形和不规则形。结合各成矿阶段矿石矿物特征和流体包裹体研究发现:第1阶段流体包裹体以富液两相流体包裹体(L+V型)、子矿物多相(S型)的包裹体为主,可见少量气体包裹体(V型);第Ⅱ阶段和第Ⅲ阶段各种类型(L+V型,C型,V型,S型)的流体包裹体均有出现,以L+V型居多;第1V阶段流体包裹体主要以富液两相流体包裹体(L+V型)为主,可看到较多纯液相包裹体(L型)产出。祁雨沟金矿含有丰富的子矿物,子矿物出现在热液期的各个阶段,可以见到石盐、钾盐、赤铁矿、黄铜矿、黄铁矿和方解石的子矿物。
     包裹体显微测温和盐度数据显示:主成矿阶段(Ⅱ、Ⅲ)流体包裹体的均—温度集中于240~380°C之间,盐度集中于9~17 wt.%.NaCl之间。从第1阶段到第1V阶段,流体包裹体的均—温度集中范围依次为409.3~506.3℃(平均446.9℃)、303.6~442.8℃(平均370.0℃)、251.6~344.0℃(平均291.9℃)、121.8~254.6℃(平均192.3℃),呈现出逐渐降低的趋势;成矿流体的盐度范围分别为17.08~20.89wt.%(平均18.63wt.%)→6.16~20.07wt.%(平均12.24wt.%)→1.4~17.17wt.%(平均10.48wt.%)→1.4-12.85wt.%(平均5.04wt.%),同样呈现出逐渐降低的趋势。
     对祁雨沟J4岩筒中20件测温片的单个包裹体进行了气液相成分的激光拉曼探针分析,含矿石英脉中V+L型的包裹体液相成分以H2O为主;气相成分中除H2O外还有一定量的CO2(特征峰值为1280 cm-1和1384 cm-1)和少量N2(特征峰值为2325cm-1)。对祁雨沟矿区单矿物群体流体包裹体进行成分测定显示,成矿流体气相成分主要的气体成分为H20,CO2,02, N2,少量CH4等;液相成分阳离子主要有Na+和K+,其次为Ca2+,Mg2+微量;阴离子主要为C1-,SO42次之,F-和NO3-微量。矿化较QYG-155,QYG-157,QYG-166,QYG-122都显示出较高的Cl-浓度,可以推测Cl-离子可能是把萃取金属成分的最好介质,同时表明Au的氯络合物可能是其主要的迁移形式。
     本次研究通过锆石U-Pb定年测得环绕J4角砾岩体的花岗斑岩年龄153.6±2.4Ma。通过同位素研究发现,祁雨沟的成矿物质主要来自于岩浆并且与区内的斑岩有同源的关系,后期受到地壳浅源物质(包括地层碳)的混合。祁雨沟金矿成矿流体主要与岩浆系统有关,而作为主要成矿流体的临界-超临界流体应该来自富含挥发份的高氧化状态的岩浆出溶作用形成。临界-超临界包裹体集中出现在第Ⅱ成矿阶段,在第Ⅰ成矿阶段也有少量出现。通过单个流体包裹体的激光拉曼光谱分析表明临界均一的包裹体均含有CO2。估算祁雨沟金矿的成矿压力为24MPa-37MPa。
     综上所述,本次研究发现的祁雨沟矿床中的部分流体包裹体具有临界均一的特征,这些包裹体能够反映临界-超临界流体的特征。研究本类包裹体对于完善成矿流体演化具有重要意义。祁雨沟金矿的成矿机制可以概括为:矿区高温高氧逸度的岩浆侵位,在封闭的岩浆房内出溶作用形成临界-超临界包裹体。当临界-超临界包裹体不断聚集,内压高于外压时,发生隐爆,形成角砾岩体及其外围和顶部的裂隙带。隐爆发生后,压力和温度降低,临界-超临界流体发生减压沸腾,促使包裹体发生相分离,即把NaCl-H2O-CO2流体变成两个流体相:H2O-NaCl和CO2-H2O。Au的沉淀是在这种相分离的过程中发生的,流体的减压沸腾是Au沉淀的原因之一。由于角砾岩体的隐爆、流体减压沸腾及古大气水的混入,热液中的金被沉淀成矿,形成胶结物型和脉型金矿化。热液进入在角砾岩体间和外围裂隙带中并和围岩发生物质交换,发生硅化、黄铁矿化、绢云母化、绿泥石化和绿帘石化等,从而造成成矿物质的大量富集。随着地下水和雨水的加入,成矿流体逐渐转变为以H20为主要成分的低盐度富液相包裹体或者纯液相包裹体。
The Qiyugou Au deposit is 18 kilometers from the county, which located in the Xiong'er shan area, southern margin of the North China Craton. This mineral deposit is a typical of breccia hosted Au deposit. Xiongershan-Waifangshan region is an important gold mineralization region where assemble numerous Au, Mo, W, and Ag-Pb-Zn deposits.
     Every breccias of the Qiyugou Au deposit is not far from each other, actually, mineralization situation of every breccias are different:J2 breccia has gold ore, J4 breccia has copper and gold ore, J2 breccia has gold ore, J7 breccia has molybdenum and gold ore.
     On the basis of the field work and microscopic observations, four stages of mineralization have been recognized:the Quartz-Potash Feldspar stage (Ⅰ), the Quartz-Pyrite stage (Ⅱ), the Gold-Complex sulfide stage (Ⅲ), and the Quartz-Carbonate stage (Ⅳ).The mineralization mainly occurred in phaseⅡandⅢand gold mostly enriched in the late paragenesis of stage III. The ore minerals consist mainly of pyrite, chalcopyrite, electrum and gold, less significantly, galena, sphalerite, magnetite and hematite. The dominate gangue minerals are quartz, sericite, epidote, clacite, chlorite, biotite, plagioclase and amphibole.Hydrothermal alteration is well developed,such as silicification, sericitization, chloritization, and carbonatization, in addition,silicification being closely related to mineralization.
     The mineral stone structure include mainly of massive structure, disseminated structure, brecciated structure, mesh-vein structure and vein structure. The textures of ores consist mainly of crystal structure, deformational texture and replacement texture.
     Fluid inclusions study of calcite and quartz has revealed that liquid rich two-phase fluid inclusions, daughter minerals bearing inclusions and CO2-rich three-phase inclusions are dominate all mineralization stages. The primary fluid inclusions are grouped close together, and minority primary fluid inclusions appear in isolation. The shapes of fluid inclusions are round, oval, negative form and irregular.The size of fluid inclusions is from11μto 35μ. The experimental results indicate that:Daughter minerals bearing inclusions(S type), gaseous fluid inclusions (V type) and two-phase fluid inclusions(L+V type) are locally present in minerals of stageⅠ. Every types of fluid inclusions(S type, L+V type, C type, V type) are locally present in minerals of stageⅡ,Ⅲ.Two-phase fluid inclusions (L+V type) and pure liquid fluid inclusions are locally present in minerals of stageⅠ. Daughter minerals bearing inclusions(S type) appeared in all phases of hydrothermal period. Daughter minerals include Hematite, chalcopyrite, pyrite and calcite.
     The fluid inclusions in several types of rocks in the Qiyugou were systematically investigated in the aspects of petrography and temperature of phase change show that the homogeneous temperatures of the inclusions from stageⅠto stageⅣare 409.3~506.3℃, 303.6~442.8℃,251.6~344.0℃, and 121.8~254.6℃, respectively, while the calculated salinities of the ore fluids are17.08~20.89 wt.% NaCl equiv.,6.16~20.07 wt.% NaCl equiv.,1.4~17.17 wt.% NaCl equiv., and1.4-12.85wt.% NaCl equiv., respectively. Both homogenization temperatures and salinities are progressively decreasing from stageⅠto stageⅣ
     Laser Raman spectrometer is applied to the identification of single fluid inclusion.20 samples come from J4 breccia to test. Liquid ingredients of V+L type is H2O, moreover, gas is CO2 and N2. By analyzing the data of group fluid inclusion, gas are H2O, CO2, O2, N2 and CH4.Furthermore, Na+, K+, Ca2+, Mg2+, Cl-, SO42-, F-and NO3-are existence.QYG-155, QYG-157, QYG-166 and QYG-122 had obvious mineralization, which also had abundant Cl-. So there is the possibility, Cl- is a great media of extract metallogenic material, in other words, migration of Au depend on chloric complex.
     The granite porphyry is dated to be 153.6±2.4Ma by LA-ICPMS zircon U-Pb, which surround J4 breccia. The contents of trace element in ore are complex.The characteristics of rare earth elements and sulfur, hydrogen and oxygen isotope indicate that gold mineralization are closely related with granites. The comibined fluid inclusion and stable isotope data support previous proposals for a genetic relationship between the Qiyugou ores and magmatic fluids. The ore-forming-fluid, which derive from magma, is near-saturated supercritical fluid and came from the magmatic exsolution with rich volatile constituent. Supercritical fluid is rich in CO2 and focus appearance in stageⅡ.It seldom the number of appearance in stageⅠ. Estimate for metallogenic pressure was 24MPa-37MPa.
     There is minerogenic mechanism of the Qiyugou deposit:Emplacement of granite magma was high oxygen fugacity.In Magma chamber, near-saturated supercritical fluid was gathering more and more so that stresses inside was increases. As the pressure inside higher than increases exterior pressures, crypto-explosion was happen. Then Ore-forming material transport and produce breccias. With the reduce of temperature and pressure, the supercritical fluid was Change to vapor phase with low salinity (CO2-H2O System) and liquid phase with high salinity (H2O-NaCl System).Cryptical blasting, fluid-boiling and meteoric water-mixing are reasons of gold deposition in the deposit, forming cement type and vein type mineralization. It has been found that the mineralization and enrichment by hydrothermally altered. Then the meteoric water-mixing change the fluid inclusion into liquid phase with low salinity
引文
[1]Bodnar R J.2003. Introduction to fluid inclusions [C] Fluid inclusions Analysis and interpretation. Mineralogical Association of Canada, Short Course Series,32:1-8.
    [2]Bodnar R.J.2008. Application of Fluid Inclusions in Mineral Exploration [J]. Geochimica et Cosmochimica Acta,57:683-684.
    [3]Bouzari F and Clark AH.2006. Prograde Evolution and Geothermal Affinities of a Major Porphyry Copper Deposit; The Cerro Colorado Hypogene Protore, ⅠRegin, Northern Chile. Economic Geology,101:95-134
    [4]Chen Y J, Pirajno F, Li N, et al.,2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: Implications for ore genesis. Ore Geology Reviews,35(2):245-261.
    [5]Chi Guoxiang, Lu Huangzhang.2008. Validation and representation of fluid inclusion microthermom etic data using the fluid inclusion assemblage (FIA) concept [J]. Acta Petrologica Sinica,24(9):1945-1953.
    [6]Cooke DR and Davies AGS.2005. Breccias in epithermal and porphyry deposits:The birth and death of magmatic hydrothermal system.8th SGA Meeting, Beijing.
    [7]Druitt TH.1995. Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcano. and Geotherm. Res.65:27-39
    [8]Fan Hongrui, XieYihan, ZhengXuezheng, WangYinglan.2000. Ore-fotming fluids in hydrothetrnal breccia-related gold mineralization in Qiyugou, Henan Province Acta Petrologica Sinica,16 (4):559563
    [9]Goldstein R H, Reynolds T J.1994. Systematics of fluid inclusions in diagenetic minerals[J]. Socity for Sedimentary Geology Short Course,31:199.
    [10]Goldstein R H.2003. Petrographic analysis of fluid inclusions Fluid inclusions analysis and interpretation[J]. Mineralogical Association of Canada, Short Course Series,32:9-53.
    [11]Guillou-Frottier, L Burov E.2003. The development and fracturing of plutonic apexes: Implications for porphyry ore deposits. Earth and Planetary Science Letters,214,341-356.
    [12]Hedenyuist JW, Arrihas A, Jr and Reynolds TJ.1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyty and epithermal Cu-Au deposits,Philippines. Econmic Geology,93:373-404.
    [13]Heinrich C A, Pettke T, Halter W E, at al.,2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry [J] Geochimica et CosmochimicaActa,67(18):3473-3496.
    [14]Hollister VF.1978. Geology of the porphyry copper deposits of the western hemisphere: New York, Am. Inst. Mining Metall. Petroleum Engineers,219.
    [15]Jebrak M.1997. Hydrothermal breccias in vein-type ore deposits:A review of mechanisms, morphology and size distribution. Ore Geology Reviews,111-133
    [16]Kulis J.1999. Trace Element Control on Near-infrared Transparency of pyrite [M]. Unpublished m thesis, Socorro, New Mexico Institute of Mining and Technology,271.
    [17]Laznicka P.1988. Breccias and coarse fragrnentities-petrology, environments, associations, ores, Elsevier Science Publishers B.V.
    [18]Linnen R L, Keppler H, Stemer S M.2004. In situ measurements of the H2O:CO2 ratio in fluid inclusions by infrared spectroscopy [J]. The Canadian mineralogist,42:1275-1281.
    [19]Lu Huanzhang, Fan Hongrui, Ni Pei, et al.,2004. Fluid Inclusions [M]. Beijing Science Press.
    [20]Ltiders V, Reutel C.1996. Possibilities and limits of infrared microscopy applied to studies of fluid inclusions in sulfides and other opaque minerals [C] Pan-American Conference on Research on fluid Inclusions (PACROFI) VI, Madison, Wisconsin, Program and Abstracts, 78-80.
    [21]Mao J W, Xie G Q, Pirajno F, et al.,2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China:SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences:An International Geoscience Journal of the Geological Society of Australia,57(1):51-78.
    [22]Motitz R.2006. Fluid salinites obtained by infared microthemometry of opaque minerals Implications for ore deposit modeling—A note of caution [J]. Journal of Geochemical Exploration.89,284-284.
    [23]Moriz R, Kouzmanov K, Perrunov R.2004. Late Cretaceous Cu-Au epithermal deposits of the Panagyurishte district, Srednogorie zone, Bulgaria [J]. Swiss Bulletin of Mineralogy and petrology,84:79-99.
    [24]Peng P, Zhai M G, Ernst R E, et al.,2008. A 1.78 Ga large igneous province in the North China craton:The Xiong'er volcanic province and the North China dyke Swarm. Lithos, 101(3-4):260-280.
    [25]Pierfranco Lattanzi.1991. Applications of fluid inclusions in the study and exploration of mineral deposits [J].Eur.J.Mineral,3:689-701.
    [26]Pirajno F.1992. Hydrothermal mineral deposits:Principles and fundamental concepts for the exploration geologist:Springer-Verlag, Berlin,709.
    [27]Roedder E.1984. Fluid inclusions[J]. Rev. Mineralogy,12:644.
    [28]Ross, PS, Jebrak M, Walker BM.2002. Disch of hydrothermal fluids from a magma chamber and Concomitant Formation of a stratifyied breccia zone at the Questa Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences,44:373-388
    [29]Shannon E, Lindaas J K, Campbell A R.2002, Near-infrared observation and microthermometry of pyrite-Hosted fluid inclusions [J]. Economic Geology,97:603-618.
    [30]Sibson RH.1977. Fault rocks and Faults mechanisms, Jounral of Journal of Geological Society, London,133(1):191-213.
    [31]Sibson RH.2000. Fluid involvementin nomral faulting. Journal of Geodynamaics,29: 469-499
    [32]Sillitoe RH.1985. Ore-related breccias in volcanoplutonic arcs. Economic Geology.80(6): 1467-1514
    [33]Sun WD Arculus RJ, Kamenetskv VS, Binns R.2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature,431:975-978
    [34]Wang Weixing, Deng Jun, Gong Qingjie, Han Zhiwei, Wu Fafu, Zhang Gaixia.2010. Relationship of Wuzhangshan,Huashan and Heyu granite rockmass with gold mineralization, in Xiong ershan area,western Henan province. [J] Gold, (04)
    [35]Wilkinson J J.2001. Fluid inclusions in hydrothermal ore deposits. Lithos,55(1-4): 229-272.
    [36]Xie YL, Yi LS, Xu JH, Li GM, Yang ZM, Yin SP.2006. Characteristics of ore-forming fluids and their evolution for Chongjiang copper deposit in Gangdise porphyry copper belt, Tibet:Evidence from fluid inclusions. Actor Petrologica Sinica,22(4):1023-1030
    [37]Yang K, Bodnar R.1.2004. Orthomagmatic origin for the llkwang Cu-W breccia pipe deposit, southeastern Kyongsang Basin, South Korea. Journal of Asian Earth Sciences. 24(2):259-270.
    [38]Zhang YH, Zhang SH, Pirajn F.2007. Fluidization:An important process in the formation of the Qiyugou Au-bearing breccia pipes in central China, ACTA GEOLOGICA SINICA-ENGLISH EDITION,81(2) 226-238
    [39]Zhao T P, Zhou M F, Zhai M, et al.,2002. Paleoproterozoic Rift-Related Volcanism of the Xiong'er Group, North China Craton:Implications for the Breakup of Columbia. International Geology Review,44(4):336-351.
    [40]曹益富,李世华.1999.爆破角砾岩体型金矿床成矿特点.黄金,20(9):12-16.
    [41]陈衍景.2001.碰撞造山体制的流体作用及其成矿效应—东秦岭金矿床成矿流体研究的意义.大陆动力学与成矿作用,地震出版社,133-147.
    [42]陈衍景,富士谷.1992.豫西金矿成矿规律.北京:地震出版社.
    [43]陈衍景,隋颖慧.2003.CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学.岩石学报,19(003):551-568.
    [44]池国祥,卢焕章.2008.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报,(09).
    [45]范宏瑞,胡芳芳,杨奎锋,金成伟.2009.豫西祁雨沟金矿床成矿流体岩浆来源的流体包裹体和稳定同位素证据(英文)[J].矿物学报,(S1).212
    [46]范宏瑞,谢奕汉,郑学正,王英兰.河南祁雨沟热液角砾岩体型金矿床成矿流体研究[J].岩石学报,16(4):559 563
    [47]河南省地质矿产局.1989.河南区域地质志.北京,地质出版社.
    [48]高永丰,栾文楼,魏瑞华.1994.祁雨沟地区金矿床稳定同位素研究[J].矿床地质,(4).
    [49]高永丰,栾文楼,魏瑞华,李院生.1995.河南祁雨沟金矿流体包裹体研究[J].地球化学,(S1).
    [50]郭保健.2006.东秦岭中生代金属矿床组合与成矿规律研究,中国地质大学(北京).
    [51]郭保健,李永峰,王志光等.2005.熊耳山Au-Ag-Pb-Mo矿集区成矿模式与找矿方向.地质与勘探,41(005):43-47.
    [52]郭保健,戴塔根.1997.熊耳山北坡拆离断层带地球化学特征及其与金银矿化的关系.矿产与地质,11(001):20-25.
    [53]金伟,刘福.1994.祁雨沟金矿田S、O、C、Pb同位素组成及成矿物质来源[J].现代地质,(2).
    [54]李金祥,秦克章,李光明.2006.富金斑岩铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆—流体演化.岩石学报,22(3):678-688
    [55]李诺,赖勇,鲁颖淮,郭东升.2008.河南祁雨沟金矿流体包裹体及矿床成因类型研究[J].中国地质,(6).
    [56]李永峰,毛景文,郭保健,胡华斌,白凤军.2004.豫西公峪金矿床地质地球化学特征及成因探讨[J],矿床地质,(01)
    [57]李永峰.2005.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用,博士学位论文,中国地质大学(北京).
    [58]李永峰,毛景文,刘敦一等.2006.豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义.地质论评,52(001):122-131.
    [59]李永峰,毛景文,胡华斌等.2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质,(03).
    [60]李胜荣,邵克忠.1991.河南嵩县祁雨沟金矿床石英流体包裹体标型[J].现代地质,(4).
    [61]刘斌,沈昆.1999.流体包裹体热力学[M].北京:地质出版社,290.
    [62]卢焕章,范宏瑞,倪培等.2004.流体包裹体[M].北京:科技出版社.
    [63]卢焕章,李秉伦,沈昆等.1990.包裹体地球化学[M].北京:地质出版社,242.
    [64]卢欣祥,董有,尉向东,于在平,叶安旺.小秦岭—熊耳山地区金矿成矿的临界—超临界流体[J].黄金地质.8(3).
    [65]卢欣祥,尉向东,于在平等.2003.小秦岭-熊耳山地区金矿的成矿流体特征.矿床地质,22(004):377-385.
    [66]罗铭玖,黎世美,卢欣祥.2000.河南省主要矿产的成矿作用及矿床成矿系列.北京,地质出版社.
    [67]罗铭玖,黎世美,卢欣祥.2000.河南省主要矿产的成矿作用及矿床成矿系列.北京,地质出版社
    [68]罗镇宽,关康.1995.河南祁雨沟金矿床地质地球化学特征和矿床成因讨论[J].地质与资源,(1).
    [69]毛景文,谢桂青,张作衡等.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188.
    [70]毛景文,郑榕芬,叶会寿等.2006.豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义.矿床地质,25(004):359-368.
    [71]齐金忠.河南省祁雨沟金矿床成矿规律研究[D].北京:中国地质大学,1-123.
    [72]齐金忠,马占荣,李莉.2001.河南祁雨沟金矿床成矿流体演化特征[J].黄金地质,2004,(4).
    [73]齐金忠,马占荣,李莉.2004.河南祁雨沟金矿床成矿流体演化特征[J].黄金地质,(4).
    [74]齐金忠等.2005.祁雨沟隐爆角砾岩型金矿床构造应力、成矿流体及元素地球化学.[M].地质出版社.
    [75]任富根,李维明,李增慧等.1996.熊耳山—崤山地区金矿成矿地质条件和找矿综合评价.地质出版社
    [76]邵克忠.1993.河南祁雨沟地区金矿床特征及找矿方向,秦巴金矿论文集,北京:地质出版社,84-95
    [77]邵克忠,栾文楼.1989.Bi—硫盐、Bi—碲化物——祁雨沟爆发—坍塌角砾岩型金矿床成因及找矿标志[J].石家庄经济学院学报,(3).299-305
    [78]邵克忠,栾文楼,杨竹森.1989.河南祁雨沟金矿床自然金{110}自形晶的发现及其成矿意义[J].石家庄经济学院学报,(1).
    [79]邵克忠,王宝德,吴新国等.1992.祁雨沟地区爆发角砾岩型金矿成矿地质条件及找矿方向研究.河北地质学院学报,15(2):105-194.
    [80]邵世才.1995.爆破角砾岩型金矿的成因及其定位机制—以河南祁雨沟金矿为例.矿物学报,15(2):230-235.
    [81]施立达.1987.论矿物中的临界包裹体及超临界流体的成矿地质作用,地质与勘探,(12)
    [82]田宏伟,吴少魁.2009.祁雨沟J5隐爆角砾岩型金矿床隐爆机制研究[J].采矿技术,(5).
    [83]田宏伟,张宝仁.2009.祁雨沟J6角砾岩金矿床地质特征及找矿方向[J].采矿技术,(6).
    [84]王卫星,邓军,龚庆杰,韩志伟,吴发富,张改侠.2010.豫西熊耳山五丈山、花山、合峪花岗岩体与金成矿关系,[J]黄金,(04)
    [85]王义天,毛景文,卢欣样.2001.嵩县祁雨沟金矿成矿时代的(40)Ar—(39)Ar年代学证据.地质论评,47(5):551-555.
    [86]王志光,崔毫,徐孟罗等.1997.华北地块南缘地质构造演化与成矿[M].北京:冶金工业出版社,310.
    [87]王志光,张录星.1999.熊耳山变质核杂岩构造研究及找矿进展.有色金属矿产与勘查,8(006):388-392.
    [88]谢奕汉,范宏瑞,李若梅,王英兰.1991.河南祁雨沟爆破角砾岩型金矿床包裹体研究[J].矿物学报,(4).
    [89]谢玉玲衣龙升徐九华等.冈底斯斑岩铜矿带冲江铜矿含矿流体的形成和演化:来自流体包裹体的证据,岩石学报22(4):1023-1030
    [90]许令兵,秦臻,王文达,刘国华,王忠.2010.祁雨沟J4号爆破角砾岩型金矿床矿体定位规律[J].华南地质与矿产,(1).
    [91]许令兵,王文达,秦臻,刘国华,王忠.2010.祁雨沟角砾岩型金矿成矿物质来源探讨[J].矿产勘查,(1).
    [92]燕建设.2005.马超营断裂带流体系统地球化学特征.物探与化探,29(006):487-492.
    [93]燕建设,王铭生,杨建朝等.2000.豫西马超营断裂带的构造演化及其与金等成矿的关系. 中国区域地质,19(2):166-171.
    [94]闫文生,朱超群,付彩云.2010.祁雨沟J6隐爆角砾岩型金矿床深部成矿预测[J].中国西部科技,(31).
    [95]叶会寿.2006.华北陆块南缘中生代构造演化与铅锌银成矿作用,博士学位论文,中国地质科学院.
    [96]张瑜麟,张林.2003.熊耳山西段银铅矿找矿地球物理标志研究.矿产与地质,17(z1).
    [97]张元厚,张世红,韩以贵等.2006.华熊地块马超营断裂走滑特征及演化.吉林大学学报(地球科学版),36(2):169-176.
    [98]张元厚,张世红,韩以贵等.2006.祁雨沟含金角砾岩筒中的冰长石—方解石组合及其矿床地质意义.岩石矿物学杂志,25(1):77-84.
    [99]赵珊茸,边秋娟,凌其聪.2004.结晶学及矿物学.北京,高等教育出版社.
    [100]周云,江雄武,陈兵,秦志鹏,侯林,张欣,彭慧娟,赵岩.2009.流体包裹体在深部找矿中的应用[J].矿物学报,29(S1),274-275.
    [101]朱超群,闫文生,付彩云.2010.祁雨沟J5隐爆角砾岩型矿床控矿地质条件及找矿方向浅析[J].中国西部科技,(30).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700