用户名: 密码: 验证码:
纳米水合二氧化锰氧化水中典型有机污染物的效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰元素是自然界中丰度较高的金属元素之一,它的氧化物不仅参与了自然环境中许多有机、无机成分的迁移转化,还在水质净化过程中发挥着重要作用。在水处理中,二氧化锰一般通过高锰酸盐的氧化还原原位产生,它不仅对高锰酸盐的氧化具有重要意义,自身还具有许多重要的除污染特性。磺胺和溴酚类化合物在水体中频繁检出,两类化合物与二氧化锰反应的特征官能团不同,分别为芳胺基和酚羟基。本文通过硫代硫酸钠还原高锰酸钾制得纳米水合二氧化锰(nHMO),模拟水处理中原位产生的二氧化锰,进而研究其对目标物的催化氧化特性。
     本文中制得的nHMO粒径分布在24.4~91.2nm之间,能够稳定存在40天以上。不同制备浓度、温度和混合方式对产生的nHMO的粒径均有影响,从而影响它的氧化活性。对混方式制得的nHMO比滴加方式制得的nHMO平均粒径小18.41nm。当pH为7.3时,前者氧化SMZ的效率要高出后者28%。制备液浓度越低、温度越高,制得的nHMO的平均粒径越小,它的氧化活性越高。
     为了考察nHMO的氧化活性,本文选取了磺胺二甲嘧啶(SMZ)、磺胺甲噻唑(SMZO)、磺胺甲噁唑(SMX)三种具有芳胺结构的药物进行研究。nHMO氧化三种磺胺的能力依次为:SMZ>SMX>SMZO。相比其它常见的二价阳离子,锰离子对nHMO的氧化抑制最明显,当pH为6.0时,5μM锰离子就使SMZ的去除率下降22%。低浓度的磷酸根对SMZ的去除率影响较小,但是腐殖酸以及高浓度的磷酸根都表现出一定的抑制作用。nHMO氧化三种有机物的动力学曲线均不符合假一级动力学,反应后期存在明显的自抑制现象。本文通过引入两个动力学参数Sr和k,分别表示二氧化锰氧化有机物的活性位点数和基于该值的反应速率常数,建立了nHMO氧化SMZ的动力学模型。该模型能够很好的拟合整个氧化过程,其中,随着SMZ初始浓度的增加,Sr值增加,k值减小;随着nHMO浓度的增加,Sr值增加,k值增加;pH值的增加导致Sr值和k值均降低。
     为了研究nHMO氧化卤代酚类有机物过程中的脱卤现象,本文选取了三种溴酚进行了研究。nHMO氧化三种溴酚的能力依次为:4-溴酚(4-BrP)>2-溴酚(2-BrP)>3-溴酚(3-BrP),氧化过程中的脱溴能力也遵循相同的次序。假一级条件下,nHMO氧化4-BrP的反应速率常数随着溴酚浓度的增加保持不变,表明表面络合物的电子转移是该氧化过程中的速控步骤。nHMO氧化溴酚过程中的脱溴指数(DN)随着pH的升高而逐渐减小,表明nHMO氧化溴酚的过程不仅仅遵循有机自由基耦合的机理。氮气曝气对溴酚的氧化及溴离子的释放均有一定的抑制作用,且pH5.0时的抑制效果比pH4.0时更明显。nHMO氧化溴酚的过程中,nHMO颗粒粒径不断增大,溴酚和nHMO初始浓度越大、pH越低,颗粒粒径增大的幅度越大。氧化过程中产生的锰离子大部分吸附在二氧化锰表面,溶液中锰离子浓度很低。
     鉴于nHMO的氧化活性和它的纳米粒径相关,本文还研究了nHMO氧化过程中的凝聚现象。锰离子引发的nHMO凝聚具有较低的临界浓度,在10-5M级别。随着pH值的升高,相同锰离子浓度引起的凝聚速率增大,因而引起扩散凝聚的临界浓度降低。nHMO氧化有机物过程中的凝聚速率主要取决于与有机物的反应速率,pH值升高,氧化速率降低,凝聚速率减慢。nHMO的氧化凝聚对氧化效能的影响很大,投加少量高锰酸钾可以有效控制nHMO氧化过程中的凝聚。nHMO/少量高锰酸钾组合体系氧化初始浓度为2.5~16.8μM的双酚A(BPA)时,自抑制现象消失,其假一级速率常数分别与nHMO单独氧化时初始阶段的速率常数一致,表明高锰酸钾在该体系中主要起氧化锰离子和维持nHMO纳米粒径的作用;而在氧化4-硝基酚(4-NP)时,高锰酸钾主要参与表面络合物的电子转移过程,从而强化4-NP的氧化去除,该组合体系主要表现为二氧化锰催化高锰酸钾氧化4-NP。
     二氧化锰对高锰酸钾氧化除污染具有非常重要的催化作用,本文选取了双键类污染物卡马西平(CMZ)以及酚类污染物双酚A(BPA)、苯酚(Phen)、2-氯酚(2-CP)、2,4-二氯酚(2,4-DCP)、2,4,6-三氯酚(2,4,6-TCP)等目标物,研究了高锰酸钾氧化以两种有机物形成的复合污染过程中nHMO和其它中间态锰物种的重要作用。在弱酸性条件下,CMZ能够促进Phen的氧化去除而自身不受影响;酚类化合物的氧化去除则表现为互相促进,且反应慢的酚的氧化去除受到的促进更大,nHMO的催化作用是造成这些现象的主导原因。弱碱性条件下,CMZ和Phen复合时,二者的氧化去除均不受影响;酚类污染物之间复合时,表现为与高锰酸钾反应速率常数较低的酚的氧化去除受到抑制,而反应速率常数较大的酚的氧化去除受到的影响很小。竞争动力学的研究表明,这种抑制作用主要是两种酚类污染物竞争了体系中除高锰酸钾及nHMO以外的其它氧化活性物种所致。由于CMZ的氧化机制和Phen不同,二者不存在竞争作用,因而二者的共存对各自的氧化均不构成影响。
Manganese is one of the most abundant elements in the nature. Its oxide not onlyparticipates in the migration and transformation of organic and inorganic compounds inthe environment,but also plays an important role on water purification. In watertreatment processes, manganese dioxide is usually in situ generated by thepermanganate oxidation, which is significant to the oxidation. Furthermore, it alsoshows an excellent performance on the removal of pollutants. Sulfonamides andbromophenols frequently occur in natural waters whose reactive functional groupstoward manganese dioxide are aromatic amine and phenolic hydroxyl group,respectively. In this paper, nanoscale hydrous manganese dioxide (nHMO) is generatedby the reduction of permanganate by thiosulfate to mimic the in situ generated one, andthe oxidative or catalytic behaviors are investigated.
     The particle size of nHMO is distributed between24.4-91.2nm, and its reactivitykeeps almost the same for40days. The preparation concentration, temperature andmixing approach can affect the particle size of nHMO, and thus change its reactivity.The average size of nHMO formed by mixing two reactants instantaneously is18.41nmsmaller than by titrating thiosulfate into permanganate. The removal efficiency of SMZat pH7.3by the former one is higher than that by the latter one by28%. Both lowpreparation concentration and high temperature facilitate the small particle size and highoxidative reactivity of nHMO.
     Sulfamethazine (SMZ), sulfamethizole (SMZO) and sulfamethoxazole (SMX) areemployed to study the oxidative reactivity of nHMO. The reactivity of nHMO towardthree compounds is in the order of SMZ> SMX> SMZO. The inhibition of manganeseion on the oxidation by nHMO is more significant than other common divalent ions, sothat the removal of SMZ decreases by22%in the presence of5μM manganese ion atpH6.0. Both phosphate in high concentration and humic acid inhibit the oxidationprocess, but phosphate in low concentration has little effect on it. Oxidative kinetics ofthree compounds deviates from the pseudo first-order kinetic curve, with a plateau inthe later stage. Two kinetic parameters Srand k, which represent the number of reactivesites of nHMO and the reaction rate constant based on the reactive sites, respectively,are introduced to fit the whole oxidation curve of SMZ. Increasing the initial concentration of SMZ, the value of Srincreases, while the value of k decreases. Both thevalues of Srand k increase when increasing the initial concentration of nHMO, butdecrease when increasing the solution pH.
     Three bromophenols are selected to study the dehalogenation during the reactionbetween nHMO and halophenols. Both the oxidative reactivity and debrominationcapability are in the order of4-bromophenol (4-BrP)>2-bromophenol (2-BrP)>3-bromophenol (3-BrP). The pseudo first-order rate constants are almost the same fordifferent initial concentration of4-BrP, which indicates the rate-determining step of thereaction between nHMO and4-bromophenol (4-BrP) is electron transfer of surfacecomplex. The debromination number (DN) decreases while pH increases, whichindicates there are still other pathways in addition to the mechanism of oxidativecoupling during the oxidation of bromophenols by nHMO. The reaction rate anddebromination capability decrease under nigrogen atomosphere, and the inhibition at pH5.0is larger than pH4.0. During the oxidation of4-BrP, the particle size of nHMOkeeps increasing. Both high initial concentration of the reactants and low pH facilitatethe particle growth. The concentration of manganese ion released to the solution is verylow compared with the removal of bromophenols, which indicates that most ofmanganese ion adsorbs on to the surface of manganese dioxide.
     In view of the relationship between the reactivity and particle size of nHMO, theaggregation of nHMO during the oxidation has been studied. The critical coagulationconcentration of manganese ion is relatively low for aggregation of nHMO, which is inthe order of magnitude of10-5M. Higher pH leads to the higher aggregation rate andlower critical coagulation concentration. Aggregation rate induced by the oxidation oforganic compounds depends on its oxidation rate. The increase of pH decreasesoxidation rate of organic compounds, and hence decreases the aggregation rate ofnHMO. Since oxidative aggregation strongly affects the oxidation efficiency,permanganate is employed to effectively maintain the particle size of nHMO andalleviate the aggregation. When oxidizing bisphenol A (BPA) by nHMO and tracepermanganate together, the pseudo first-order rate constant is the same with that at theinitial phase of the oxidation by nHMO, which indicates that the important role ofpermanganate is to oxidize the manganese ion and keep the particle size of nHMOconstant. When oxidizing4-nitrophenol (4-NP) by the same system, the removal of4-NP is improved due to the participation of permanganate in the electron transfer of the surface complex. In this case, nHMO exhibits the catalytic capability towardspermanganate.
     Because of the catalytic effect of manganese oxide on permanganate oxidation,carbamazepine (CMZ) with double bond and phenols like bisphenol A (BPA), phenol(Phen),2-chlorophenol (2-CP),2,4-dichlorophenol (2,4-DCP) and2,4,6-trichlorophenol(2,4,6-TCP) are chosen to study the role of nHMO and other reactive manganeseintermediates during the simultaneous oxidation of two pollutants by permanganate.Under weakly acidic conditions, CMZ can accelerate the oxidation of Phen while theoxidation of itself keeps unchanged. Phenols can enhance their oxidation mutually, andthe oxidation of the pollutant with a smaller reaction constant is accelerated more. Thecatalytic effect of nHMO is the main reason for the phenomena under weakly acidicconditions. Under weakly alkaline conditions, the coexistence of CMZ and Phen haslittle effect on the oxidation of each other, while the coexsitence of phenols exhibitsdifferent that the oxidation of phenolic pollutant with smaller rate constant is inhibitedbut almost unchanged for the other. The competitive kinetics shows that two phenolicpollutants may compete for a new reactive intermediate in the oxidation rather thanpermanganate and manganese dioxide. Since the mechanism of the oxidation of CMZ isdifferent with that of Phen, CMZ and Phen do not compete for the same reactiveintermediate so that oxidation of Phen is not inhibited.
引文
[1] Bargar J R, Fuller C C, Marcus M A, et al. Structural Characterization ofTerrestrial Microbial Mn Oxides from Pinal Creek, AZ[J]. Geochimica EtCosmochimica Acta,2009,73(4):889-910.
    [2] Webb S M, Tebo B M, Bargar J R. Structural Influences of Sodium and CalciumIons on the Biogenic Manganese Oxides Produced by The Marine Bacillus Sp.,Strain SG-1[J]. Geomicrobiology Journal,2005,22(3-4):181-193.
    [3] Villalobos M, Lanson B, Manceau A, et al. Structural Model for the Biogenic MnOxide Produced by Pseudomonas Putida[J]. American Mineralogist,2006,91(4):489-502.
    [4] Morgan J J. Kinetics of Reaction between O2and Mn(II) Species in AqueousSolutions[J]. Geochimica Et Cosmochimica Acta,2005,69(1):35-48.
    [5] Nico P S, Zasoski R J, Anastasio C. Rapid Photo-oxidation of Mn(II) Mediated byHumic Substances[J]. Geochimica Et Cosmochimica Acta,2002,66(23):4047-4056.
    [6] Webb S M, Dick G J, Bargar J R, et al. Evidence for the Presence of Mn(III)Intermediates in the Bacterial Oxidation of Mn(II)[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2005,102(15):5558-5563.
    [7] Trivedi P, Axe L, Tyson T A. XAS Studies of Ni and Zn Sorbed to HydrousManganese Oxide[J]. Environmental Science&Technology,2001,35(22):4515-4521.
    [8] Villalobos M, Bargar J, Sposito G. Mechanisms of Pb(II) Sorption on a BiogenicManganese Oxide[J]. Environmental Science&Technology,2005,39(2):569-576.
    [9] Kay J T, Conklin M H, Fuller C C, et al. Processes of Nickel and Cobalt Uptakeby a Manganese Oxide Forming Sediment in Pinal Creek, Globe Mining District,Arizona[J]. Environmental Science&Technology,2001,35(24):4719-4725.
    [10] Zhu M Q, Ginder-Vogel M, Sparks D L. Ni(II) Sorption on Biogenic Mn-oxideswith Varying Mn Octahedral Layer Structure[J]. Environmental Science&Technology,2010,44(12):4472-4478.
    [11] Driehaus W, Seith R, Jekel M. Oxidation of Arsenate(III) with Manganese Oxidesin Water-Treatment[J]. Water Research,1995,29(1):297-305.
    [12] Wang Z M, Lee S W, Catalano J G, et al. Adsorption of Uranium(VI) toManganese Oxides: X-ray Absorption Spectroscopy and Surface ComplexationModeling[J]. Environmental Science&Technology,2013,47(2):850-858.
    [13] Forrez I, Carballa M, Verbeken K, et al. Diclofenac Oxidation by BiogenicManganese Oxides[J]. Environmental Science&Technology,2010,44(9):3449-3454.
    [14] Forrez I, Carballa M, Fink G, et al. Biogenic Metals for the Oxidative andReductive Removal of Pharmaceuticals, Biocides and Iodinated Contrast Mediain a Polishing Membrane Bioreactor[J]. Water Research,2011,45(4):1763-1773.
    [15] Kim D G, Jiang S, Jeong K, et al. Removal of17alpha-Ethinylestradiol byBiogenic Manganese Oxides Produced by the Pseudomonas putida strainMnB1[J]. Water Air and Soil Pollution,2012,223(2):837-846.
    [16] Meerburg F, Hennebel T, Vanhaecke L, et al. Diclofenac and2-Anilinophenylacetate Degradation by Combined Activity of BiogenicManganese Oxides and Silver[J]. Microbial Biotechnology,2012,5(3):388-395.
    [17] Lu Z J, Lin K D, Gan J. Oxidation of Bisphenol F (BPF) by ManganeseDioxide[J]. Environmental Pollution,2011,159(10):2546-2551.
    [18] Lin K D, Liu W P, Gan J. Reaction of Tetrabromobisphenol A (TBBPA) withManganese Dioxide: Kinetics, Products, and Pathways[J]. Environmental Science&Technology,2009,43(12):4480-4486.
    [19]黄成.二氧化锰氧化降解典型环境雌激素的行为研究[D].杭州:浙江工业大学环境工程学科硕士学位论文,2009:41-46.
    [20] Zhao L, Yu Z Q, Peng P A, et al. Oxidative Transformation of Tetrachlorophenolsand Trichlorophenols by Manganese Dioxide[J]. Environmental Toxicology andChemistry,2009,28(6):1120-1129.
    [21] Zhang H, Huang C H. Oxidative Transformation of Triclosan and Chlorophene byManganese Oxides[J]. Environmental Science&Technology,2003,37(11):2421-2430.
    [22] Chen W R, Huang C H. Transformation Kinetics and Pathways of TetracyclineAntibiotics with Manganese Oxide[J]. Environmental Pollution,2011,159(5):1092-1100.
    [23] Rubert, Pedersen J A. Kinetics of Oxytetracycline Reaction with a HydrousManganese Oxide[J]. Environmental Science&Technology,2006,40(23):7216-7221.
    [24] Chen W R, Ding Y, Johnston C T, et al. Reaction of Lincosamide Antibiotics withManganese Oxide in Aqueous Solution[J]. Environmental Science&Technology,2010,44(12):4486-4492.
    [25] Zhang H, Huang C H. Oxidative Transformation of Fluoroquinolone AntibacterialAgents and Structurally Related Amines by Manganese Oxide[J]. EnvironmentalScience&Technology,2005,39(12):4474-4483.
    [26] Zhang H, Huang C H. Reactivity and Transformation of Antibacterial N-Oxidesin the Presence of Manganese Oxide[J]. Environmental Science&Technology,2005,39(2):593-601.
    [27] Murray J W. The Surface Chemistry of Hydrous Manganese Dioxide[J]. Journalof Colloid and Interface Science,1974,46(3):357-371.
    [28] Klausen J, Haderlein S B, Schwarzenbach R P. Oxidation of Substituted Anilinesby Aqueous MnO2: Effect of Co-Solutes on Initial and Quasi-Steady-StateKinetics[J]. Environmental Science&Technology,1997,31(9):2642-2649.
    [29] Shin J Y, Cheney M A. Abiotic Dealkylation and Hydrolysis of Atrazine byBirnessite[J]. Environmental Toxicology and Chemistry,2005,24(6):1353-1360.
    [30] Yan Y E, Schwartz F W. Oxidative Degradation and Kinetics of ChlorinatedEthylenes by Potassium Permanganate[J]. Journal of Contaminant Hydrology,1999,37(3-4):343-365.
    [31]陈高,赵玲,董元华.二氧化锰氧化降解金霉素的动力学研究[J].环境科学,2009, v.30(09):2773-2778.
    [32]高娜,于志强,廖汝娥,等.二氧化锰氧化降解双酚a的动力学[J].生态环境学报,2009,(02):431-434.
    [33]张立珠.新生态二氧化锰对水中有机污染物的强化去除作用[D].哈尔滨:哈尔滨工业大学市政工程学科博士学位论文,2008:37-71.
    [34]赵玲,彭平安.二氧化锰氧化降解五氯酚的动力学模拟研究[J].环境科学,2008,(04):972-977.
    [35] Chen G, Zhao L, Dong Y H. Oxidative Degradation Kinetics and Products ofChlortetracycline by Manganese Dioxide[J]. Journal of Hazardous Materials,2011,193:128-138.
    [36] Zhang H, Chen W R, Huang C H. Kinetic Modeling of Oxidation of AntibacterialAgents by Manganese Oxide[J]. Environmental Science&Technology,2008,42(15):5548-5554.
    [37] Nico P S, Zasoski R J. Mn (III) Center Availability as a Rate Controlling Factor inthe Oxidation of Phenol and Sulfide on δ-MnO2[J]. Environmental Science&Technology,2001,35(16):3338-3343.
    [38]江进.高价态锰、铁氧化降解水中典型有机物的特性与机理研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士学位论文,2009:111-128.
    [39] Xu L, Xu C, Zhao M, et al. Oxidative Removal of Aqueous Steroid Estrogens byManganese Oxides[J]. Water Research,2008,42(20):5038-5044.
    [40] Shin J Y, Buzgo C M, Cheney M A. Mechanochemical Degradation of AtrazineAdsorbed on Four Synthetic Manganese Oxides[J]. Colloids And SurfacesA-Physicochemical and Engineering Aspects,2000,172(1-3):113-123.
    [41] Cheney M A, Shin J Y, Crowley D E, et al. Atrazine Dealkylation on a ManganeseOxide Surface[J]. Colloids and Surfaces A-Physicochemical and EngineeringAspects,1998,137(1-3):267-273.
    [42] Dec J, Bollag J M. Dehalogenation of Chlorinated Phenols during OxidativeCoupling[J]. Environmental Science&Technology,1994,28(3):484-490.
    [43] Fukuzumi S I, Ono Y, Keii T. ESR Studies on the Formation ofp-Benzosemiquinone Anions over Manganese Dioxide[J]. International Journal ofChemical Kinetics,1975,7(4):535-546.
    [44] Lin K, Liu W, Gan J. Oxidative Removal of Bisphenol A by Manganese Dioxide:Efficacy, Products, and Pathways[J]. Environmental Science&Technology,2009,43(10):3860-3864.
    [45] Laha S, Luthy R G. Oxidation of Aniline and Other Primary Aromatic-Amines byManganese-Dioxide[J]. Environmental Science&Technology,1990,24(3):363-373.
    [46] Gao J, Hedman C, Liu C, et al. Transformation of Sulfamethazine by ManganeseOxide in Aqueous Solution[J]. Environmental Science&Technology,2012,46(5):2642-2651.
    [47]刘灿波.新生态二氧化锰净水作用及机理研究[D].青岛:青岛理工大学环境工程学科硕士学位论文,2008:21-34.
    [48] Colthurst J M, Singer P C. Removing Trihalomethane Precursors byPermanganate Oxidation and Manganese Dioxide Adsorption[J]. Journal(American Water Works Association),1982:78-83.
    [49]马军.高锰酸钾去除与控制引用水中有机污染物的效能与机理[D].哈尔滨:哈尔滨建筑大学市政工程学科博士学位论文,1990:174-176.
    [50]高梅.新生态MnO2絮体粒度分布特征及强化混凝作用研究[D].哈尔滨:哈尔滨工业大学市政工工程学科硕士学位论文,2010:32-44.
    [51]杨磊三.水合二氧化锰除镉(II)效能及机理的试验研究[D].哈尔滨:哈尔滨工业大学市政工程学科硕士学位论文,2010:23-37.
    [52]徐俊.强化混凝与吸附去除水中微量重金属小试研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士学位论文,2007:35-63.
    [53]梁慧锋,马子川,刘占牛.新生态二氧化锰的性质及pH值影响除砷效果的研究[J].无机化学学报,2006,(04):743-747.
    [54] Ma J, Graham N J D. Preliminary Investigation of Manganese-CatalyzedOzonation for the Destruction of Atrazine[J]. Ozone-Science&Engineering,1997,19(3):227-240.
    [55] Ma J, Graham N J. Degradation of Atrazine by Manganese-Catalysed Ozonation:Influence of Humic Substances[J]. Water Research,1999,33(3):785-793.
    [56] Ma J, Graham N J. Degradation of Atrazine by Manganese-CatalysedOzonation—Influence of Radical Scavengers[J]. Water Research,2000,34(15):3822-3828.
    [57] Yabusaki S, Cantrell K, Sass B, et al. Multicomponent Reactive Transport in an insitu Zero-Valent Iron Cell[J]. Environmental Science&Technology,2001,35(7):1493-1503.
    [58] Morrison S. Performance Evaluation of a Permeable Reactive Barrier UsingReaction Products as Tracers[J]. Environmental Science&Technology,2003,37(10):2302-2309.
    [59] Liu H, Wang Q, Wang C, et al. Electron Efficiency of Zero-Valent Iron forGroundwater Remediation and Wastewater Treatment[J]. Chemical EngineeringJournal,2013,215:90-95.
    [60] Johnson R L, Nurmi J T, Johnson G S O, et al. Field-Scale Transport andTransformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron[J].Environmental Science&Technology,2013,47(3):1573-1580.
    [61] Zheng T, Zhan J, He J, et al. Reactivity Characteristics of Nanoscale ZerovalentIron--Silica Composites for Trichloroethylene Remediation[J]. EnvironmentalScience&Technology,2008,42(12):4494-4499.
    [62] Mackenzie K, Bleyl S, Georgi A, et al. Carbo-Iron-an Fe/AC composite-asAlternative to Nano-Iron for Groundwater Treatment[J]. Water Research,2012,46(12):3817-3826.
    [63] Chen J, Qiu X, Fang Z, et al. Removal Mechanism of Antibiotic Metronidazolefrom Aquatic Solutions by Using Nanoscale Zero-Valent Iron Particles[J].Chemical Engineering Journal,2012,181-182:113-119.
    [64] Hansson H, Kaczala F, Marques M, et al. Photo-Fenton and Fenton Oxidation ofRecalcitrant Industrial Wastewater Using Nanoscale Zero-Valent Iron[J].International Journal of Photoenergy,2012.
    [65] Greenlee L F, Torrey J D, Amaro R L, et al. Kinetics of Zero Valent IronNanoparticle Oxidation in Oxygenated Water[J]. Environmental Science&Technology,2012,46(23):12913-12920.
    [66] Lee C, Keenan C R, Sedlak D L. Polyoxometalate-Enhanced Oxidation ofOrganic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in thePresence of Oxygen[J]. Environmental Science&Technology,2008,42(13):4921-4926.
    [67] Liu L, Chen F, Yang F, et al. Photocatalytic Degradation of2,4-DichlorophenolUsing Nanoscale Fe/TiO2[J]. Chemical Engineering Journal,2012,181:189-195.
    [68] Yun D M, Cho H H, Jang J W, et al. Nano Zero-Valent Iron Impregnated onTitanium Dioxide Nanotube Array Film for Both Oxidation and Reduction ofMethyl Orange[J]. Water Research,2013,47(5):1858-1866.
    [69] Shariatmadari N, Weng C H, Daryaee H. Enhancement of Hexavalent ChromiumCr(VI) Remediation from Clayey Soils by Electrokinetics Coupled with aNano-Sized Zero-Valent Iron Barrier[J]. Environmental Engineering Science,2009,26(6):1071-1079.
    [70] Xi Y F, Mallavarapu M, Naidu R. Reduction and Adsorption of Pb2+in AqueousSolution by Nano-Zero-Valent iron-A SEM, TEM and XPS Study[J]. MaterialsResearch Bulletin,2010,45(10):1361-1367.
    [71] Huang Y Y, Liu D D, Li G R Adsorption Kinetics of As (III) from Groundwaterby Nanoscale Zero-Valent Iron[J]. Earth Science-Journal of China University ofGeosciences,2012,37(2):294-300.
    [72] Uzum C, Shahwan T, Eroglu A E, et al. Synthesis and Characterization ofKaolinite-Supported Zero-Valent Iron Nanoparticles and Their Application for theRemoval of Aqueous Cu2+and Co2+Ions[J]. Applied Clay Science,2009,43(2):172-181.
    [73] Mak M S H, Rao P H, Lo I M C. Effects of Hardness and Alkalinity on theRemoval of Arsenic(V) from Humic Acid-Deficient and Humic Acid-RichGroundwater by Zero-Valent Iron[J]. Water Research,2009,43(17):4296-4304.
    [74] Choi K, Lee W. Enhanced Degradation of Trichloroethylene in Nano-ScaleZero-Valent Iron Fenton System with Cu(II)[J]. Journal of Hazardous Materials,2012,211:146-153.
    [75] Chen W, Duan L, Wang L, et al. Adsorption of Hydroxyl-and Amino-SubstitutedAromatics to Carbon Nanotubes[J]. Environmental Science&Technology,2008,42(18):6862-6868.
    [76] Pan B, Xing B. Adsorption Mechanisms of Organic Chemicals on CarbonNanotubes[J]. Environmental Science&Technology,2008,42(24):9005-9013.
    [77] Yang K, Wu W, Jing Q, et al. Aqueous Adsorption of Aniline, Phenol, and TheirSubstitutes by Multi-Walled Carbon Nanotubes[J]. Environmental Science&Technology,2008,42(21):7931-7936.
    [78] Zhang S, Shao T, Bekaroglu S S K, et al. The Impacts of Aggregation and SurfaceChemistry of Carbon Nanotubes on the Adsorption of Synthetic OrganicCompounds[J]. Environmental Science&Technology,2009,43(15):5719-5725.
    [79] Lin D, Xing B. Adsorption of Phenolic Compounds by Carbon Nanotubes: Roleof Aromaticity and Substitution of Hydroxyl Groups[J]. Environmental Science&Technology,2008,42(19):7254-7259.
    [80] Lee C, Kim J Y, Lee W I, et al. Bactericidal Effect of Zero-Valent IronNanoparticles on Escherichia coli[J]. Environmental Science&Technology,2008,42(13):4927-4933.
    [81] Hsiao M T, Chen S F, Shieh D B, et al. One-Pot Synthesis of Hollow Au3Cu1Spherical-Like and Biomineral Botallackite Cu2(OH)3Cl Flowerlike ArchitecturesExhibiting Antimicrobial Activity[J]. Journal of Physical Chemistry B,2006,110(1):205-210.
    [82] Morones J R, Elechiguerra J L, Camacho A, et al. The Bactericidal Effect ofSilver Nanoparticles[J]. Nanotechnology,2005,16(10):2346-2353.
    [83] Sondi I, Salopek-Sondi B. Silver Nanoparticles as Antimicrobial Agent: A CaseStudy on E. Coli as a Model for Gram-Negative Bacteria[J]. Journal of Colloidand Interface Science,2004,275(1):177-182.
    [84] Panacek A, Kvitek L, Prucek R, et al. Silver Colloid Nanoparticles: Synthesis,Characterization, and Their Antibacterial Activity[J]. Journal of PhysicalChemistry B,2006,110(33):16248-16253.
    [85] Gogoi S K, Gopinath P, Paul A, et al. Green Fluorescent Protein-ExpressingEscherichia Coli as a Model System for Investigating the Antimicrobial Activitiesof Silver Nanoparticles[J]. Langmuir,2006,22(22):9322-9328.
    [86] Foss Hansen S, Larsen B H, Olsen S I, et al. Categorization Framework to AidHazard Identification of Nanomaterials[J]. Nanotoxicology,2007,1(3):243-250.
    [87] Donaldson K, Stone V, Tran C L, et al. Nanotoxicology[J]. Occupational AndEnvironmental Medicine,2004,61(9):727-728.
    [88] Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an EmergingDiscipline Evolving from Studies of Ultrafine Particles[J]. Environmental HealthPerspectives,2005,113(7):823-839.
    [89] Ma X, Gurung A, Deng Y. Phytotoxicity and Uptake of Nanoscale Zero-ValentIron (Nzvi) by Two Plant Species[J]. Science of The Total Environment,2013,443:844-849.
    [90] Carlson C, Hussain S M, Schrand A M, et al. Unique Cellular Interaction of SilverNanoparticles: Size-Dependent Generation of Reactive Oxygen Species[J].Journal of Physical Chemistry B,2008,112(43):13608-13619.
    [91] Auffan M, Rose J, Orsiere T, et al. CeO2Nanoparticles Induce DNA Damagetowards Human Dermal Fibroblasts In Vitro[J]. Nanotoxicology,2009,3(2):161-171.
    [92] Smith B, Yang J, Bitter J L, et al. Influence of Surface Oxygen on the Interactionsof Carbon Nanotubes with Natural Organic Matter[J]. Environmental Science&Technology,2012,46(23):12839-12847.
    [93] Murdock R C, Braydich-Stolle L, Schrand A M, et al. Characterization ofNanomaterial Dispersion in Solution Prior to In Vitro Exposure Using DynamicLight Scattering Technique[J]. Toxicological Sciences,2008,101(2):239-253.
    [94] Billinge S J, Levin I. The Problem with Determining Atomic Structure at theNanoscale[J]. Science,2007,316(5824):561-565.
    [95] Gentleman D J. Orders of Magnitude in Environmental Chemistry[J].Environmental Science&Technology,2011,45(8):3193-3193.
    [96] Auffan M, Rose J, Bottero J Y, et al. Towards a Definition of InorganicNanoparticles from an Environmental, Health and Safety Perspective[J]. NatureNanotechnology,2009,4(10):634-641.
    [97] Tang Z X, Sorensen C M, Klabunde K J, et al. Size-Dependent Curie Temperaturein Nanoscale MnFe2O4Particles[J]. Physical Review Letters,1991,67(25):3602-3605.
    [98] Lai S L, Guo J Y, Petrova V V, et al. Size-Dependent Melting Properties of SmallTin Particles: Nanocalorimetric Measurements[J]. Physical Review Letters,1996,77(1):99-102.
    [99] Campbell F W, Zhou Y G, Compton R G. Thallium Underpotential Deposition onSilver Nanoparticles: Size-Dependent Adsorption Behaviour[J]. New Journal ofChemistry,2010,34(2):187-189.
    [100] Petersen E J, Pinto R A, Shi X, et al. Impact of Size and Sorption on Degradationof Trichloroethylene and Polychlorinated Biphenyls by Nano-Scale ZerovalentIron[J]. Journal of Hazardous Materials,2012,243:73-79.
    [101] Barton L E, Grant K E, Kosel T, et al. Size-Dependent Pb Sorption toNanohematite in The Presence and Absence of A Microbial Siderophore[J].Environmental Science&Technology,2011,45(8):3231-3237.
    [102] Ayyub P, Palkar V R, Chattopadhyay S, et al. Effect of Crystal Size Reduction onLattice Symmetry and Cooperative Properties[J]. Physical Review B,1995,51(9):6135-6138.
    [103] Wang C C, Zhang Z, Ying J Y. Photocatalytic Decomposition of HalogenatedOrganics over Nanocrystalline Titania[J]. Nanostructured Materials,1997,9(1–8):583-586.
    [104] Almquist C B, Biswas P. Role of Synthesis Method and Particle Size ofNanostructured TiO2on its Photoactivity[J]. Journal of Catalysis,2002,212(2):145-156.
    [105] Yean S, Cong L, Yavuz C T, et al. Effect of Magnetite Particle Size on Adsorptionand Desorption of Arsenite and Arsenate[J]. Journal of Materials Research,2005,20(12):3255-3264.
    [106] Yokoyama A, Komiyama H, Inoue H, et al. The Hydrogenation of CarbonMonoxide by Amorphous Ribbons[J]. Journal of Catalysis,1981,68(2):355-361.
    [107] Nurmi J T, Tratnyek P G, Sarathy V, et al. Characterization and Properties ofMetallic Iron Nanoparticles:Spectroscopy, Electrochemistr y, and Kinetics[J].Environmental Science&Technology,2004,39(5):1221-1230.
    [108] Liu Y, Majetich S A, Tilton R D, et al. TCE Dechlorination Rates, Pathways, andEfficiency of Nanoscale Iron Particles with Different Properties[J].Environmental Science&Technology,2005,39(5):1338-1345.
    [109] Auffan M, Rose J, Wiesner M R, et al. Chemical Stability of MetallicNanoparticles: A Parameter Controlling Their Potential Cellular Toxicity InVitro[J]. Environmental Pollution,2009,157(4):1127-1133.
    [110] Brunner T J, Wick P, Manser P, et al. In Vitro Cytotoxicity of OxideNanoparticles: Comparison to Asbestos, Silica, and the Effect of ParticleSolubility[J]. Environmental Science&Technology,2006,40(14):4374-4381.
    [111] Jose Ruben M, Jose Luis E, Alejandra C, et al. The Bactericidal Effect of SilverNanoparticles[J]. Nanotechnology,2005,16(10):2346.
    [112] Hullmann A. Who is Winning the Global Nanorace?[J]. Nature Nanotechnology,2006,1(2):81-83.
    [113] Wiesner M R, Bottero J Y. A Risk Forecasting Process for NanostructuredMaterials, and Nanomanufacturing[J]. Comptes Rendus Physique,2011,12(7):659-668.
    [114] Mueller N C, Nowack B. Exposure Modeling of Engineered Nanoparticles in theEnvironment[J]. Environmental Science&Technology,2008,42(12):4447-4453.
    [115] Qiang Z M, Adams C. Potentiometric Determination of Acid DissociationConstants (pKa) for Human and Veterinary Antibiotics[J]. Water Research,2004,38(12):2874-2890.
    [116] Lee Y, Yoon J, von Gunten U. Kinetics of the Oxidation of Phenols and PhenolicEndocrine Disruptors during Water Treatment with Ferrate (Fe(VI))[J].Environmental Science&Technology,2005,39(22):8978-8984.
    [117] Perez-Benito J F, Arias C, Amat E. A Kinetic Study of the Reduction of ColloidalManganese Dioxide by Oxalic Acid[J]. Journal of Colloid and Interface Science,1996,177(2):288-297.
    [118] Pinkernell U, Nowack B, Gallard H, et al. Methods for the PhotometricDetermination of Reactive Bromine and Chlorine Species with ABTS[J]. WaterResearch,2000,34(18):4343-4350.
    [119] Lee Y, Yoon J, von Gunten U. Spectrophotometric Determination of Ferrate(Fe(Vl)) in Water by ABTS[J]. Water Research,2005,39(10):1946-1953.
    [120] Ingerslev F, Halling-Sorensen B. Biodegradability Properties of Sulfonamides inActivated Sludge[J]. Environmental Toxicology and Chemistry,2000,19(10):2467-2473.
    [121]陈涛,李彦文,莫测辉,等.广州污水厂磺胺和喹诺酮抗生素污染特征研究[J].环境科学与技术,2010,33(06):144-147-180.
    [122]徐维海,张干,邹世春,等.典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J].环境科学,2007,(08):1779-1783.
    [123]陈永山,章海波,骆永明,等.典型规模化养猪场废水中兽用抗生素污染特征与去除效率研究[J].环境科学学报,2010,(11):2205-2212.
    [124] Pedersen J A, Soliman M, Suffet I H. Human Pharmaceuticals, Hormones, andPersonal Care Product Ingredients in Runoff from Agricultural Fields Irrigatedwith Treated Wastewater[J]. Journal of Agricultural and Food Chemistry,2005,53(5):1625-1632.
    [125]常红,胡建英,王乐征,等.城市污水处理厂中磺胺类抗生素的调查研究[J].科学通报,2008,(02):159-164.
    [126]石为民,刘凯英,叶文婷,等.磺胺甲噁唑在给水处理系统中的迁移转化及去除研究[J].水处理技术,2011,(06):86-89.
    [127] Westerhoff P, Yoon Y, Snyder S, et al. Fate of Endocrine-Disruptor,Pharmaceutical, and Personal Care Product Chemicals during Simulated DrinkingWater Treatment Processes[J]. Environmental Science&Technology,2005,39(17):6649-6663.
    [128] Chamberlain E, Adams C. Oxidation of Sulfonamides, Macrolides, and Carbadoxwith Free Chlorine and Monochloramine[J]. Water Research,2006,40(13):2517-2526.
    [129] Dodd M C, Huang C H. Transformation of the Antibacterial AgentSulfamethoxazole in Reactions with Chlor inKe:inetics, Mechanisms, andPathways[J]. Environmental Science&Technology,2004,38(21):5607-5615.
    [130] Huber M M, Korhonen S, Ternes T A, et al. Oxidation of Pharmaceuticals duringWater Treatment with Chlorine Dioxide[J]. Water Research,2005,39(15):3607-3617.
    [131] Sharma V K, Mishra S K, Nesnas N. Oxidation of Sulfonamide Antimicrobials byFerrate(VI)[(FeIVO42-)][J]. Environmental Science&Technology,2006,40(23):7222-7227.
    [132] Garoma T, Umamaheshwar S K, Mumper A. Removal of Sulfadiazine,Sulfamethizole, Sulfamethoxazole, and Sulfathiazole from Aqueous Solution byOzonation[J]. Chemosphere,2010,79(8):814-820.
    [133] Perez-Benito J F. Coagulation of Colloidal Manganese Dioxide by DivalentCations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2003,225(1-3):145-152.
    [134] LaMer V K, Dinegar R H. Theory, Production and Mechanism of Formation ofMonodispersed Hydrosols[J]. Journal of the American Chemical Society,1950,72(11):4847-4854.
    [135] He D, Jones A M, Garg S, et al. Silver Nanoparti clReeactive Oxygen SpeciesInteractions: Application of a Charging Discharging Model[J]. The Journal ofPhysical Chemistry C,2011,115(13):5461-5468.
    [136] Lafferty B J, Ginder-Vogel M, Sparks D L. Arsenite Oxidation by a PoorlyCrystalline Manganese-Oxide1. Stirred-Flow Experiments[J]. EnvironmentalScience&Technology,2010,44(22):8460-8466.
    [137] Barrett K A, McBride M B. Oxidative Degradation of Glyphosate andAminomethylphosphonate by Manganese Oxide[J]. Environmental Science&Technology,2005,39(23):9223-9228.
    [138] Yao W S, Millero F J. Adsorption of Phosphate on Manganese Dioxide inSeawater[J]. Environmental Science&Technology,1996,30(2):536-541.
    [139] Jenkins R L, Haskins J E, Carmona L G, et al. Chlorination of Benzidine andOther Aromatic Amines in Aqueous Environments[J]. Archives of EnvironmentalContamination And Toxicology,1978,7(1):301-315.
    [140] Stone A T. Reductive Dissolution of Manganese(III/IV) Oxides by SubstitutedPhenols[J]. Environmental Science&Technology,1987,21(10):979-988.
    [141] Ji L L, Chen W, Zheng S R, et al. Adsorption of Sulfonamide Antibiotics toMultiwalled Carbon Nanotubes[J]. Langmuir,2009,25(19):11608-11613.
    [142] Czaplicka M. Sources and Transformations of Chlorophenols in the NaturalEnvironment[J]. Science of The Total Environment,2004,322(1-3):21-39.
    [143] Halden A N, Nyholm J R, Andersson P L, et al. Oral Exposure of Adult Zebrafish(Danio Rerio) to2,4,6-Tribromophenol Affects Reproduction[J]. AquaticToxicology,2010,100(1):30-37.
    [144] Alonso F, Beletskaya I P, Yus M. Metal-mediated Reductive Hydrodehalogenationof Organic Halides[J]. Chemical Reviews,2002,102(11):4009-4091.
    [145] Acero J L, Piriou P, von Gunten U. Kinetics and Mechanisms of Formation ofBromophenols during Drinking Water Chlorination: Assessment of Taste andOdor Development[J]. Water Research,2005,39(13):2979-2993.
    [146] Bernstein A, Ronen Z, Levin E, et al. Kinetic Bromine Isotope Effect: Examplefrom the Microbial Debromination of Brominated Phenols[J]. Analytical andBioanalytical Chemistry,2013,405(9):2923-2929.
    [147] Meizler A, Roddick F A, Porter N A. Continuous Enzymatic Treatment of4-Bromophenol Initiated by UV Irradiation[J]. Water Science and Technology,2010,62(9):2016-2020.
    [148] Li X C, Ma J, Liu G F, et al. Efficient Reductive Dechlorination ofMonochloroacetic Acid by Sulfite/UV Process[J]. Environmental Science&Technology,2012,46(13):7342-7349.
    [149] He D, Guan X H, Ma J, et al. Influence of Humic Acids of Different Origins onOxidation of Phenol and Chlorophenols by Permanganate[J]. Journal ofHazardous Materials,2010,182(1-3):681-688.
    [150] Kang N, Lee D S, Yoon J. Kinetic Modeling of Fenton Oxidation of Phenol andMonochlorophenols[J]. Chemosphere,2002,47(9):915-924.
    [151]赵玲.二氧化锰体系下氯酚的非生物转化研究[D].广州:中国科学院研究生院(广州地球化学研究所)环境科学学科博士学位论文,2006:60-75.
    [152] Liu G F, Ma J, Li X C, et al. Adsorption of Bisphenol A from Aqueous Solutiononto Activated Carbons with Different Modification Treatments[J]. Journal ofHazardous Materials,2009,164(2-3):1275-1280.
    [153] Allard S, von Gunten U, Sahli E, et al. Oxidation of Iodide and Iodine onBirnessite (δ-MnO2) in the pH Range4-8[J]. Water Research,2009,43(14):3417-3426.
    [154] Horvath O, Strohmayer K. Photoassisted Dissolution of Colloidal ManganeseDioxide in the Presence of Phenol[J]. Journal of Photochemistry andPhotobiology A-Chemistry,1998,116(1):69-73.
    [155] Wang Y, Stone A T. Reaction of MnIII,IV(Hydr)oxides with Oxalic Acid,Glyoxylic Acid, Phosphonoformic Acid, and Structurally-Related OrganicCompounds[J]. Geochimica Et Cosmochimica Acta,2006,70(17):4477-4490.
    [156] Hao O J, Davis A P, Chang P H. Kinetics of Manganese(II) Oxidation withChlorine[J]. Journal of Environmental Engineering-Asce,1991,117(3):359-374.
    [157] Dabrowski A, Podkoscielny P, Hubicki Z, et al. Adsorption of PhenolicCompounds by Activated Carbon--A Critical Review[J]. Chemosphere,2005,58(8):1049-1070.
    [158] Lee D G, Sebastián C F. The Oxidation of Phenol and Chlorophenols by AlkalinePermanganate[J]. Canadian Journal of Chemistry,1981,59(18):2776-2779.
    [159] Du J, Sun B, Zhang J, et al. Parabola-Like Shaped pH-Rate Profile for PhenolsOxidation by Aqueous Permanganate[J]. Environmental Science&Technology,2012,46(16):8860-8867.
    [160] Dec J, Bollag J M. Effect of Various Factors on Dehalogenation of ChlorinatedPhenols and Anilines during Oxidative Coupling[J]. Environmental Science&Technology,1995,29(3):657-663.
    [161] Parikh S J, Lafferty B J, Meade T G, et al. Evaluating Environmental Influenceson AsIIIOxidation Kinetics by a Poorly Crystalline Mn-Oxide[J]. EnvironmentalScience&Technology,2010,44(10):3772-3778.
    [162] Li X A, Lenhart J J, Walker H W. Dissolution-Accompanied Aggregation Kineticsof Silver Nanoparticles[J]. Langmuir,2010,26(22):16690-16698.
    [163] Huynh K A, Chen K L. Aggregation Kinetics of Citrate and PolyvinylpyrrolidoneCoated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions[J].Environmental Science&Technology,2011,45(13):5564-5571.
    [164] Zhang W, Rattanaudompol U S, Li H, et al. Effects of Humic and Fulvic Acids onAggregation of Aqu/nC60Nanoparticles[J]. Water Research,2013,47(5):1793-1802.
    [165] Jones A M, Garg S, He D, et al. Superoxide-Mediated Formation and Charging ofSilver Nanoparticles[J]. Environmental Science&Technology,2011,45(4):1428-1434.
    [166] Hu L, Martin H M, Arcs-Bulted O, et al. Oxidation of Carbamazepine by Mn(VII)and Fe(VI): Reaction Kinetics and Mechanism[J]. Environmental Science&Technology,2009,43(2):509-515.
    [167] Rodríguez E, Sordo A, Metcalf J S, et al. Kinetics of the Oxidation ofCylindrospermopsin and Anatoxin-a with Chlorine, Monochloramine andPermanganate[J]. Water Research,2007,41(9):2048-2056.
    [168] Liu C, Qiang Z M, Adams C, et al. Kinetics and Mechanism for Degradation ofDichlorvos by Permanganate in Drinking Water Treatment[J]. Water Research,2009,43(14):3435-3442.
    [169] Huang K C, Hoag G E, Chheda P, et al. Kinetics and Mechanism of Oxidation ofTetrachloroethylene with Permanganate[J]. Chemosphere,2002,46(6):815-825.
    [170] Shao X L, Ma J, Yang J J, et al. Effect of Humic Acid on the Oxidation ofPhenolic Endocrine Disrupting Chemicals by Permanganate[J]. Journal of WaterSupply: Research and Technology-AQUA,2010,59(5):324-334.
    [171] Jiang J, Pang S Y, Ma J. Oxidation of Triclosan by Permanganate (Mn(VII)):Importance of Ligands and in situ Formed Manganese Oxides[J]. EnvironmentalScience&Technology,2009,43(21):8326-8331.
    [172] Hu L, Stemig A M, Wammer K H, et al. Oxidation of Antibiotics during WaterTreatment with Potassium Permanganate: Reaction Pathways and Deactivation[J].Environmental Science&Technology,2011,45(8):3635-3642.
    [173] Simándi L, Záhonyi-Budó é. Relative Reactivities of Hydroxy Compounds withShort-Lived Manganese(V)[J]. Inorganica Chimica Acta,1998,281(2):235-238.
    [174] Jiang J, Pang S Y, Ma J. Role of Ligands in Permanganate Oxidation ofOrganics[J]. Environmental Science&Technology,2010,44(11):4270-4275.
    [175] Perez-Benito J F. Autocatalytic Reaction Pathway on Manganese DioxideColloidal Particles in the Permanganate Oxidation of Glycine[J]. The Journal ofPhysical Chemistry C,2009,113(36):15982-15991.
    [176]庞素艳.铁锰催化H2O2、KHSO5、KMnO4氧化降解酚类化合物的效能与机理研究[D].哈尔滨:哈尔滨工业大学环境科学与工程学科博士学位论文,2011:100-137.
    [177] Lee D G, Chen T. Oxidation of Hydrocarbons.18. Mechanism of the Reactionbetween Permanganate and Carbon-Carbon Double Bonds[J]. Journal of TheAmerican Chemical Society,1989,111(19):7534-7538.
    [178] Rush J D, Bielski B H J. Studies of Manganate(V), Manganate(VI) andManganate(VII) Tetraoxyanions by Pulse-Radiolysis-Optical-Spectra ofProtonated Forms[J]. Inorganic Chemistry,1995,34(23):5832-5838.
    [179] Klewicki J K, Morgan J J. Kinetic Behavior of Mn(III) Complexes ofPyrophosphate, EDTA, and Citrate[J]. Environmental Science&Technology,1998,32(19):2916-2922.
    [180] Perez-Benito J F. Permanganate Oxidation of α-Amino Acids: KineticCorrelations for the Nonautocatalytic and Autocatalytic Reaction Pathways[J].The Journal of Physical Chemistry A,2011,115(35):9876-9885.
    [181] Záhonyi-Budó é, Simándi L I. Selective Oxidations with Short-LivedManganese(V)[C]//2nd World Congress/4th European Workshop Meeting onNew Developments in Selective Oxidation II. Benalmadena:1994:623-628.
    [182] Simándi L I, Jáky M, Savage C R, et al. Kinetics and Mechanism of thePermanganate Ion Oxidation of Sulfite in Alkaline Solutions. The Nature ofShort-Lived Intermediates[J]. Journal of The American Chemical Society,1985,107(14):4220-4224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700