用户名: 密码: 验证码:
离子液体型导电聚合物纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物是近年来的研究热点,它在电化学催化、传感、电容器等领域的成功应用引来了越来越多关注的目光。室温离子液体作为一类新型的环境友好的绿色溶剂拥有许多优异的物理、化学性能,它的出现为绿色化学开辟了一条崭新的道路。将离子液体引入聚合物结构中,或者是将聚合物结构引入到离子液体中可能会使两者的优点有机的结合起来,产生出一种具有新性能的聚合物。本论文在离子液体和导电聚合物的基础上,通过化学或者电化学等不同方法,合成离子液体掺杂的导电聚合物或者是导电离子液体聚合物。并通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量色散谱(EDS)、X射线衍射谱(XRD)、红外光谱(IR)、紫外可见光谱(UV-vis)、电化学循环伏安扫描(CV)等分析测试技术对制得的纳米材料的形貌、结构、物理化学性质及应用进行了详细研究。本论文的主要研究工作如下:
     (1)在离子液体/水微乳体系中成功的制备了一种新型核壳结构的聚苯胺核-TiO2壳复合物(PANI-TiO2), TiO2粉末用OP-10和正丁醇乳化预处理以减弱TiO2颗粒之间的团聚。并通过FTIR、UV-vis、SEM、TEM、电化学循环伏安扫描、TGA表征其性质。SEM结果显示复合物纳米粒子为直径大约100 nm的球形,TEM进一步表明复合物纳米粒子的结构是一种与已报道的TiO2-聚苯胺复合物纳米粒子结构不同的新型的核壳结构,TiO2粒子包覆在聚苯胺粒子的表面。红外和紫外可见光谱的检测结果都表明聚苯胺和TiO2之间不是简单的混合作用,并提出了一种可能的反应机理。
     (2)一种新型的1,3-甲基咪唑六氟磷酸盐取代聚亚苯基聚合物,在1-丁基-3-甲基咪唑六氟磷酸盐离子液体中通过脉冲在金电极表面电聚合制备。聚合物膜层为直径500 nm左右的球形。红外证实了聚亚苯基的结构。电容性能通过循环伏安法和脉冲充放电法分别在0.2 mol·L-1H2SO4溶液和纯离子液体[bmim]PF6中检测。聚合物在充放电电流密度为1 mA·cm-2时在酸溶液和离子液体[bmim]PF6中的比电容分别为206 F·g-1和164 F·g-1,而且聚合物电极有良好的充放电稳定性(充放电600圈后比电容仍保持在85%),在两种电解液中都有较好的电性能。
     (3)以咪唑和1,3-二氯-4,6-二硝基苯为原料在恒温油浴和磁力搅拌条件下合成了新的聚离子液体,并通过GPC、扫描电镜、FTIR、UV-vis、热分析、和电导率测定对其表征。GPC结果表明聚合物的数均分子量Mn为1517,重均分子量Mw为2543。红外光谱结果可以表明聚合物中的确存在咪唑环结构和苯环结构,紫外可见光谱的结果进一步表明了推测的聚合物的结构的正确性。SEM图显示此聚合物形貌为平均粒径在200 nm左右的颗粒,且EDX的结果也进一步证实了此聚合物的结构。热重分析结果表明此聚合物在200℃以下显示出了非常好的热稳定性,在550℃范围内质量损失为20%,总体具有良好的热稳定性。电导率测定结果显示此聚合物的电导率较商业聚苯胺要好,且由于未经过掺杂,导电率还有进一步提高的空间。
Conducting polymers have attracted considerable attention because of their applications in electrochemical catalysis, sensor, capacitor, etc. "Green solvent" room temperature ionic liquids are environmentally benign, and exhibit many excellent physical and chemical properties. They play an important part in green chemistry. It may produce a new polymer with novelty properties by introducing IL into polymer frame or introducing polymer into IL. In this paper, polymer doped with IL and poly(IL) were prepared by chemical method or electrochemical method. Their micrographs, structure, properties and applications have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), infrared absorption spectra (IR), ultraviolet visible absorption spectra (UV-vis), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), etc. The main points of this dissertation are summarized as follows:
     (1) Polyaniline core-TiO2 shell (PAN-TiO2) nanocomposite particles with a novel croe-shell structure have been successfully sythesized in ionic liquid/water (IL/water) microemulsion in the presence of anatase TiO2 nanoparticles, and the TiO2 nanoparticles beforehand had been dispersed in OP-10 and n-butanol to weaken the strong particles agglomeration of TiO2-The PAN-TiO2 nanocomposites were characterized by fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscope (TEM). SEM micrographs showed that the nanocomposites exhibited spherical morphology with particle sizes about 100 nm. The TEM result showed that the PAN-TiO2 nanocomposite had a croe-shell structure that nanocrytalline TiO2 deposited onto the surface of PAN, which was different from the reported structure of TiO2-PAN nanocomposites. Both fourier transform infrared spectra and ultraviolet visible spectra results indicate that polyaniline and nano-TiO2 particles are not simply blended or mixed up, and a possible reaction mechanism is suggested and analyzed.
     (2) A new type of polyphenylene, ionic liquid (IL) 1,3-methylimidazolium hexafluorophosphate substituted, has been prepared by electrodeposition on Au electrode surface via pulse galvanostatic method in l-butyl-3-methylimidazolium hexafluorophosphate solution. The obtained polymer film had a spherulitic morphology with smallest grains of around 500 nm. Infrared spectrometry revealed that polyphenylene was deposited to a certain extent. The capacitive behavior of the IL substituted polyphenylene was investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge method in 0.2 mol·L-1 H2SO4 aqueous solutions or pure IL [bmim]PF6. The specific capacitance of the polymer at the charge-discharge current density of 1 mA·cm-2 equaled 206 F·g-1 in acidic aqueous solution or 164 F·g"1 in [bmim]PF6. Additionally, excellent charge-discharge cycle stability (over 85% value of specific capacitance remained after 600 charge-discharge cycles) and power characteristics of the polymer electrode were observed in both electrolytes.
     (3) Imidazole and 1,3-Dichloro-4,6-dinitrobenzene were dissolved in proper amount of absolute ethanol under the such condition as magnetic stirring to prepare poly(imidazolium chloride ionic liquid). The polymer was characterized by gel permeation chromatography (GPC), fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and conductivity measurement. GPC result showed that the Mn of the polymer was 1517, and the Mw was 2543. Infrared spectrometry revealed that there exist benzenoid ring and benzene ring in the polymer chains, and the ultraviolet visible spectra result approved the conjecture about the structure of the polymer furthermore. SEM micrographs showed that the polymer exhibited spherical morphology with particle sizes about 200 nm, EDX result further confirmed the structure. The polymer has excellent thermostability under 200℃, the mass lost of the polymer is only 20% below 550℃. Conductivity of the polymer is better than the commercial polyaniline, moreover, the conductivity of the polymer can be further improved after doping.
引文
[1]Seddon K R. Ionic liquids for clean technology. Journalof Chemical Technology and Biotechnology,1997,68(4):351-356
    [2]徐德明.天然气在热电联产和联合循环发电中的利用.石油与天然气化工,1997,(1):156-159
    [3]Hurley F H, Wier P T. Electrodeposition of metals from fused quaternary ammonium salts. Journal of the Electrochemical Society,1951,98 (5): 203-206
    [4]Tait S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorganic Chemistry,1984, 23(25):4352-4360
    [5]Fuller J, Breda A C, Carlin R T. Ionic liquid-polymer gel electrolytes. Journal of the Electrochemical Society,1997,144(4):67-69
    [6]薛群基,徐康.纳米化学.化学进展,2000,12(4):431-444
    [7]辽宁化工,肖友军,周阳,等.离子液体及其应用进展.辽宁化工,2008,(11):755-758
    [8]Martins M A P, Frizzo C P, Moreira D N, et al. Ionic liquids in heterocyclic synthesis. Chemical Reviews,2008,108(6):2015-2050.
    [9]Larsen A S, Holbrey J D, Tham F S, et al. Designing ionic liquids:imidazolium melts with inert carborane anions. Journal of the American Chemical Society, 2000,122(30):7264-7272
    [10]杨雅立,王晓化.不断壮大的离子液体家族.化学进展,2003,15(6):471-476
    [11]李汝雄.绿色溶剂-离子液体的合成与应用.北京:化学工业出版社,2004:136-138
    [12]张进,朴香兰,朱植林.离子液体在化工分离过程中的应用进展.化学试剂,2007,29(5):269-272
    [13]陈孝云,邱仁辉,林金春,等.绿色离子液体在电化学领域的应用研究进展.科学技术与工程,2008,8(16):4583-4587
    [14]Ito T, Shirakawa H, Ikeda S. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. Journal of Polymer Science:Polymer Chemistry Edition,1974,12(1): 11-20
    [15]MacDiarmid A G. Progress on the study of polyanaline. Synthetic Metals, 1997,84(1-3):27-34
    [16]Gustafsson G, Gao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature,1992,357(6378):477-479
    [17]马利,刘家和.聚苯胺微乳合成及其电致变色性.化学推进剂和高分子材料,2004,1(2):28-30
    [18]Wan M X, Yang J. Growth mechanism of transparent and conucting composite films of polyaniline. Journal of Applied Polymer Science,1993,49(9): 1639-1645
    [19]王军.离子液体中纳米材料的合成与研究:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2005:12-13
    [20]钟厉,韩西.纳米复合材料的研究应用.重庆交通学院学报,2003,22(03):104-107
    [21]任斌,黄河,余成.纳米复合材料的研究进展.信息记录材料,2004,5(2):44-48
    [22]Agag T, Koga T, Takeichi T. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer,2001, (42):3399-3408
    [23]Wu S H, Wang F Y, Ma C C M, et al. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Chemical Materials Letters,2001,49(6): 327-333
    [24]Liang You Jiang, Chyi Ming Leu, Kung Hwa Wei. Layered silicates/fluorinated polyimide nanocomposites for advanced dielectric materials applications. Advanced Materials,2002,14 (6):426-429
    [25]Rdgan O, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2. Nature,1991,353(6346):737-739
    [26]Gu G R, He Z, LiYG, et al. Influence of interface electrons on conductivity of nanometer TiO2 thin films. Journal of Jilin University,2002,40(3):273-275
    [27]Tang J S, Wang B C, Wang F S. Synthesis, structure, properties and application of polyaniline. Polymer Materials Science and Engineering,1987,3 (1):5-13
    [28]Cao Y, Andretta A, Heeger A J, et al. Influence of chemical polymerization conditions on the properties of polyaniline. Polymer,1989,30(12):2305-2311
    [29]Scott J C. Conducting Polymer:from novel science to new technology. Science,1997,278(5346):2071-2072
    [30]Fu Y, Ma J B, He B L. Electropolymerization of polyaniline by potention static method and its electrochemical behavior. Chemical Research and Application, 1998,10(2):133-137
    [31]Liu M S, Yang M Z, Hao Y Z, et al. Photoelectrochemical studies on nanoporous TiO2 conducting Polymer Film Electrode. Acta Chimica Sinica, 2001,59(3):377-382
    [32]Chu D B, Shen G X, Zhou X F. Electrocatalytic activity of nanocrystalline TiO2 film modified Ti electrode. Chemical Journal of Chinese Universities, 2002,23(4):678-681
    [33]Kokatnur V R. Motor fuels and the methods of making them. United States Patent.2111100.1935-8-26
    [34]Hoar T P, Schulman J H. Transparent Water-in-Oil Dispersions:the Oleopathic hydro-micelle. Nature,1943,152(3847):102-103
    [35]Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of microemulsions by electron microscopy. Journal of Physical Chemistry,1959,63(10):1677-1680
    [36]Leung R, Hou M J, Manohar C, et al. Reaction kinetics as a probe for the dynamic structure of microemulsions. In:macro-and microemulsions. Wash ington, DC:American Chemical Society,1985,325-344
    [37]Mitchell D J, Ninham B W. Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transcations Ⅱ,1981,77(4):601-629
    [38]连洪洲,石春山.用于纳米粒子合成的微乳液.化学通报,2004,67(5):333-340
    [39]宋中健,张惠林.离子聚合物的发展及其应用.玻璃钢/复合材料,1992,(5):38-42
    [40]Wang A G, Meyer W H, Wegner G S. Sthesis and solid state properties of comb like ionenes. Acta Polymer,1995,46(3):233-240
    [41]Meyer W H. Polymer electrolytes for lithium-ion batteties. Advanced Materials,1998,10(6):439-448
    [42]张振琳,王荣瞅,王云普,等.高分子离子液体的研究进展.高分子通报,2004,(2):63-69
    [43]Hirao M, Ito K, Ohno H. Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochimica Acta,2000, 45(8):1291-1294
    [44]Watanabe M, Yamada S I, Ogata N. Ionic conductivity of polymer electrolytes containing room temperature molten salts based on pyridinium halide and aluminium chloride. Electrochimica Acta,1995,40(13-14):2285-2288
    [45]Ohno H. Molten salt type polymer electrolytes. Electrochimica Acta,2001, 46(10-11):1407-1411
    [46]Yoshizawa M, Ohno H. Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochimica Acta,2001, 46(10-11):1723-1728
    [47]Nakai Y, Ito K, Ohno H. Ion conduction in molten salts prepared by terminal-charged PEO derivatives. Solid State Ionics,1998,113-115(1-2): 199-204
    [48]Yoshizawa M, Ito-Akita K, Ohno H. Evidence of interaction between anion and polyether in the bulk. Electrochimica Acta,2000,45(10):1617-1621
    [49]Wu C G, DeGroot D C, Marcy H O, et al. Redox Intercalative polymerization of aniline in V2O5 xerogel. The post-intercalative intralamellar polymer growth in polyaniline/metal-oxide nanocomposites is facilitated by molecular oxygen. Chemical Materials,1996,8(8):1992-2004
    [50]Huang J, Virji S, Weiller B H, et al. Polyaniline nanofibers:facile synthesis and chemical sensors. Journal of the American Chemical Society,2003,125: 314-315
    [51]Somani P, Kale B B, Amalnerkar D P. Charge transport mechanism and the effect of poling on the current-voltage characteristics of conducting polyaniline-BaTiO3 composites. Synthetic Metals,1999,106(1):53-58
    [52]Fusalba F, Belanger D J. Chemical synthesis and characterization of polyaniline-molybdenum trisulfide composite. Journal of Materials Resarch, 1999,14(5):1805-1813
    [53]Gantu L M, Romero G P. Synthesis and characterization of intercalate phases in the organic-inorganic polyaniline/V2O5 system. Journal of Solid State Chemistry,1999,147(2):601-608
    [54]Jiang J, Ai L H. Polyaniline/Li0.25Ni0.5LaxFe2.25-xO4 nanocomposites: Preparation and tailoring the magnetic property. Materials Letters,2008, 62(21-22):3643-3645
    [55]Zheng Y, Shi E, Chen Z, et al. Influence of solution concentration on the hydrothermal preparation of titania crystallites. Journal of Materials Chemisty,2001,11(5):1547-1551
    [56]Ferroni M, Guidi V, Martinelli G, et al. Characterization of a nanosized TiO2 gas sensor. Nanostruct Materials,1996,7(7):709-718
    [57]Blake D M, Webb J, Turchi C, et al. Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous solution. Solar Energy Materials,1991,24(1-4):584-593
    [58]Karch J, Birriger R, Gleiter H. Ceramics ductile at low temperature. Nature, 1987,330(6148):556-558
    [59]Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry,2000,72(12):2275-2287
    [60]Innis P C, Mazurkiewicz J, Nguyen T, et al. Enhanced electrochemical stability of polyaniline in ionic liquids. Current Applied Physics,2004,4(2-4):389-393
    [61]Gao H X, Jiang T, Han B X, et al. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer,2004,45(9): 3017-3019
    [62]Xing Y, Li M, Davis S A, et al. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. The Journal of Physical Chemistry B,2006,110(3):1111-1113
    [63]Zhong J F, He D L, Zhou Z, et al. Electrochemical oxidation behavior of hydroxypivalaldehyde in the ionic liquids. Chinese Chemical Letters,2008, 19(3):319-323
    [64]Xia Y N, Joanna M, Wiesinger, Alan G, et al. Camphorsulfonic acid fully doped polyaniline emeraldine salt:Conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chemical Materials,1995,7(3):443-445
    [65]Burke A. Ultracapacitor:why, how, and where is the technology. Journal of Power Sources,2000,91(1):37-50
    [66]Nishino A. Capacitors:operating principles, currentmarket andtechnical trends. Journal of Power Sources,1996,60(2):137-147
    [67]Soavi F. New trends in electrochemical supercapacitors. Jouranl of Power Sources,2001,100(1-2):164-170
    [68]Nomoto S, NakataH, YoshiokaK, et al. Advanced capacitors and their application. Journal of Power Sources,2001,97-98(1):807-811
    [69]Arbizzani C,Mastragostino M. Principles and applications of electrochemical capacitors. Electrochimica Acta,2000,45(15):2483-2498
    [70]Robert A H. Supercapacitors and electrochemical pulse sources. Solid State Ionics,2000,134(1):179-195
    [71]Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. Journal of Power Sources,2002,112(2):236-246
    [72]Faggioli E, Rena P, Danel V, etal. Supercapacitors for the energy management of electric vehicles. Journal of Power Sources,1999,84(2):261-269
    [73]Jarvis L P, Atwater T B, Cygan P J. Feul cell/electrochemical capacitorhybrid for intermittent high power applications. Journal of Power Sources,1999, 79(1):60-63
    [74]Hughes M, Chen G Z, Shaffer M S P, et al. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chemical Materials,2002,14(4):1610-1613
    [75]Mi H Y, Zhang X G, An S Y, et al. Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite, Electrochemistry Communications,2007,9 (12):2859-2862
    [76]Zein El Abedin S, Borissenko N, Endres F. Electropolymerization of benzene in a room temperature ionic liquid. Electrochemistry Communications,2004, 6(4):422-426
    [77]Wyman I W, Robertson K N, Cameron T S, et al. Synthesis, structure and electrochemistry of (ferrocene-2-propenoato-O,O')bis [1,2-bis(diphenylphosphino)ethane-P,P']ruthenium(II) hexafluorophosphate. Inorganica Chimica Acta,2006,359(9):3092-3096
    [78]Lerner N R. ESR and chemical study of p-polyphenylene formed by using an aluminum chloride-copper(II) chloride catalyst. Journal of Polymer Science Part A:Polymer Chemistry,1974,12(11):2477-2495
    [79]Wang R M, Chai C P, He Y F, et al. Preparation and catalytic activity of polymer bound benzotriazole copper complexes. European Polymer Journal, 1999,35(11):2051-2055
    [80]Du J, Zhang J, Han B, et al. Polyaniline nonotubessynthesized by supercritical CO2 and aqueous interfacial polymerization. Synthetic Metals,2005,155(11): 523-526
    [81]Kinyanjui J M, Wijeratne N R, Hanks J, et al. Chemical and electrochemical synthesis of polyaniline/platinum composites. Electrochimica Acta,2006, 51(14):2825-2835
    [82]Conway B E. Electrochemical supercapacitors:scientific fundamentals and technological applications. New York:Kluwer Academic/Plenum Publishers. 1999
    [83]Hu C C, Wang C C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. Journal of the Electrochemical Society,2003,150(8):A1079-A1084
    [84]Wang Y G, Li H Q, Xia Y Y. Ordered whisker-like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Advanced Materials,2006,18(19):2619-2623
    [85]Seddon K R. Ionic liquids for clean technology. Journal of Chemical Technology and Biotechnology,1997,68(4):351-356
    [86]Welton T. Room temperature ionic liquids:solvents for synthesis and catalysis. Chemical Reviews,1999,99(8):2071-2084
    [87]Watanabe M, Yamada S I, Ogata N. Ionic conductivity of polymer electrolytes containing room temperature molten salts based on pyridinium halide and aluminium chloride. Electrochimica Acta,1995,40(13-14):2285-2288
    [88]Ohno H, Ito K. Room-temperature molten salt polymers as a matrix for fast ion conduction. Chemistry Letters,1998,27(8):751-752
    [89]Mizumo T, Watanabe T, Matsumi N, et al. Preparation of ion conductive inorganic-organic composite systems by in situ sol-gel reaction of polymerizable ionic liquids. Polymers for Advanced Technologies,2008, 19(10):1445-1450
    [90]Hiroyuki Ohno. Molten salt type polymer electrolytes, Electrochimica Acta, 2001,46(10-11):1407-1411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700