用户名: 密码: 验证码:
离子液体中钯、钌催化的碳—杂键和碳—碳键形成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体(Room Temperature Ionic Liquids, RTILs)是一类特殊的液体熔融盐,具有优良的物理化学性质及可修饰、调变的阴阳离子结构,且可循环利用,被认为是替代常用挥发有机溶剂的新型绿色溶剂。近年来,离子液体作为一种绿色溶剂、催化剂以及催化剂的液相载体在有机反应中发挥了独特的作用,受到人们越来越多的关注。
     碳-碳和碳-杂原子键的形成反应是有机合成研究的中心问题。利用离子液体作为有机反应的溶剂、催化剂及催化剂的液相载体完成碳-碳键和碳-杂键的形成反应已成为目前该领域研究的热点。本论文在综述了近年来以离子液体作为绿色溶剂、催化剂及催化剂的液相载体在碳-碳键和碳-杂键形成反应中的应用研究的基础上,进一步探索过渡金属催化的碳-碳键和碳-杂键形成反应在离子液体中进行的可能性,主要研究内容如下:
     第一部分:按文献方法制备了疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐离子液体([BMIm] PF6),研究了在该离子液体中Pd(PPh3)4催化PhSeSnBu3与卤代烃的交叉偶联反应,发现该反应在80 oC能顺利进行,以高产率合成了相应的芳基硒醚,为碳-硒键的形成提供了绿色新途径。研究了在[BMIm] PF6中三氯化钌催化醇、酚、硫醇和硫酚与乙酸酐的乙酰化反应,发现该反应在45 oC下能顺利进行,以高产率合成了各种乙酸酯类化合物,为各种醇、酚、硫醇的乙酰化反应提供了绿色新方法。在上述两类碳-杂键形成反应中,离子液体和催化剂可循环使用多次,对反应基本无影响。
     第二部分:按文献方法制备了苯基锡烷和炔基锡烷,研究了它们在[BMIm] PF6中Pd(PPh3)4催化下与卤代芳烃的Stille偶联反应,发现该反应在80 oC能顺利进行,以良好的产率生成相应的偶联产物。研究了PdCl2(PPh3)2催化下芳基溴与端炔在[BMIm] PF6中的Sonogashira偶联反应,结果表明,该反应在60-80 oC下能顺利进行,以较好的产率合成了各种芳炔。在上述两类碳-碳键形成反应中,离子液体和催化剂也可循环使用多次。
Room temperature ionic liquids, as a new green reaction medium as well as catalyst, possess super-ordinary physical chemistry properties and easily modified the structure of anions and cations. Ionic liquids were considered as the replacement of the commonly used volatile organic solvent. Recently, ionic liquids as a kind of green solvent and catalyst even as a carrier for catalyst have received much attention due to the important roles they played in organic reactions.
     Carbon-carbon and carbon-heteroatom bond-forming reactions are central to organic synthesis. Ionic liquids as a solvent, catalyst or carrier for catalyst in carbon-carbon and carbon-heteroatom bond-forming reactions have attracted great interest in organic synthesis. In this thesis, based on the reviewing developments of ionic liquids as a kind of green solvent, catalyst and carrier for catalyst in organic synthesis, we explored the possibility of transition-metal-catalyzed carbon-carbon and carbon-heteroatom bond-forming reactions in ionic liquids. The details are summarized as following:
     Part one: According to the literature procedure, we prepared a hydrophobic ionic liquid, namely, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm] PF6). We investigated the cross-coupling reaction of phenyl tributylstannyl selenide (PhSeSnBu3) with aryl and alkyl halides in the presence of Pd(PPh3)4 in [BMIm] PF6. It was found that the reaction proceeded smoothly at 80 oC to afford the corresponding diaryl and alkylaryl selenides in moderate to good yields, providing a green procedure for the formation of carbon-selenium. Ruthenium (III) chloride catalyzed acylation reactions of alcohols, phenols, and thiols in [BMIm] PF6 were also investigated. It was found that the acylation reactions could proceed smoothly at 45 oC to afford a variety of acetate in high yields, providing a green and practical method for acylation of alcohols, phenols, and thiols. In the two reactions above, the catalytic system composed of ionic liquid and the catalysts can be recycled many times without noticeable loss of the catalyst activity.
     Part two: According to the literature method, we prepared phenylstannane and alkynylstannanes and investigated Stille coupling reactions of organostannanes with aryl halides in [BMIm] PF6 in the presence of Pd(PPh3)4. It was found that the Stille reaction proceeded smoothly at 80 oC to give corresponding coupled products in good high yields. We also investigated the Sonogashira coupling reactions of aryl bromides with terminal alkynes in [BMIm] PF6. It was found that the Sonogashira coupling reaction proceeded smoothly at 60 ~ 80 oC in [BMIm] PF6, to afford a variety of aryl alkynes in high yields. In the two carbon-carbon bond-forming reactions, the [BMIm] PF6 and the catalysts could be recycled several times.
引文
[1]朱清时.绿色化学.化学进展[J],2000, 12(4): 410 ~ 414.
    [2] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 1999, 99 (8): 2071 ~ 2084.
    [3] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 1992, (13): 965 ~ 967.
    [4]顾彦龙.室温离子液体及其在催化和有机合成中的应用[J].化学进展, 2003, 15(3): 222 ~ 241.
    [5]石家华.离子液体研究进展[J].化学通报, 2002, 4, 243 ~ 250.
    [6] Sugden S, Wilkins H. CLXVII.-The parachor and chemical constitution. Part XII. Fused metals and salts. J. Chem. Soc., 1929, 1291 ~ 1298.
    [7] Hirao M, Sugimoto H, Ohno H. Preparatioon of novel room-temperature molten salts by neutralization of amines. J. Electro.Chem.Soc., 2000, 147(11): 4168 ~ 4172.
    [8] Wasserscheid P, Gordon C M, Hilgers C, Muldoon M J, Dunkin I R. Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher-olefins with cationic Ni complexes. Chem. Commun., 2001, 13, 1186 ~ 1187.
    [9] Leveque J M, Luche J L, Petrier C, et al. An improved preparation of ionic liquids by ultrasound. Green Chem., 2002, 4(4): 357 ~ 360.
    [10] Varma R S, Namboodiri V V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun., 2001, 643 ~ 644.
    [11] Bhushan M K, Geeta L R. Microwave-assisted synthesis of room–temperature ionic liquid precursor in closed vessel. Org. Process Res. Dev., 2002, 6, 826 ~ 828.
    [12] Deetlefs M and Seddon K R. Improved preparations of ionic liquids using microwave irradiation. Green Chem., 2003, 5, 181 ~ 186.
    [13] Wasserscheid P, Welton T. Ionic liquids in synthesis. Wiley-VCH, 2002, P 23.
    [14] Chauvin Y, Mubann L, Olivier H. A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew. Chem. Int. Ed., 1995, 34, 2698 ~ 2700.
    [15] Mathews C J, Smith P J, Welton T, et al. In situ formation of mixed phosphine-imidazolyidene palladium complexes in room-temperature ionic liquids. Organometallics, 2001, 20(18), 3848 ~ 3850.
    [16] Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic solids. .Pure Appl. Chem., 2000, 72, 2275 ~ 2287.
    [17] Wikes J S, Zaworoko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of Chemical Society, Chem. Comm., 1992, 965 ~ 967.
    [18] Ellis B. Ionic liquids. WO 961845, 1996.
    [19] Bonhote P, Dias A P, Papageorigiou N, et al. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem., 1996, 35, 1168 ~ 1178.
    [20] Holbrey J D, Seddon K R. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans., 1999, 13, 2133 ~ 2139.
    [21] Anna S L, John D H, Fook S T, Christopher A R. Desinging ionic liquids: imidazolium melts with inert carborane anions. J. Am. Chem. Soc., 2000, 122(14): 7264 ~ 7272.
    [22] Fredlake C P, Crosthwaite J M, Hert D G, Aki S N V K, Brennecke J F. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data, 2004, 49(4): 945 ~ 964.
    [23]邓友全.离子液体—性质、制备与应用[M].北京:中国石化出版社. 2006, 49 ~ 50.
    [24] Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluor. Chem., 2003, 120, 135 ~ 141.
    [25] Okoturo M, Gustafsson J, Rosenholm J B. Thermochim Acta, 2004, 412: 47.
    [26](a) Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 4, 156 ~ 164; (b) Dzyuba S V, Bartsch R A. Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl) imides on Physical Properties of the Ionic Liquids. Chem. Phys. Chem., 2002, 3, 161 ~ 166; (c) Carda-Broch S, Berthold A, Armstrong D W. Solvent properties of the 1-butyl-3-methylimidazoliumhexafluorophosphate ionic liquid. Anal. Bioanal. Chem., 2003, 375: 191 ~ 199 .
    [27]石家华,孙逊,杨春和,等.离子液体研究进展[J].化学通报,2002,4: 243 ~ 250.
    [28] Wu W, Wang L M, Nieman R A, et al. Ionic Liquids of Chelated Orthoborates as Model Ionic Glassformers. J. Phys. Chem. B, 2003, 107, 11749 ~ 11756.
    [29] Pringle J M, Golding J, Baranyai K, et al. The effect of anion fluorination in ionic liquids—physical properties of a range of bis(methanesulfonyl)amide salts. New J. Chem., 2003, 27, 1504 ~ 1510.
    [30] Deetlefs M, Raubenheimer H G, Esterhuysen M W. Stoichiometric and catalytic reactions of gold utilizing ionic liquids. Catalysis Today, 72, 2002, 29 ~ 41.
    [31] Fannin A A, Floreani D A, King L A, et al. Properties of 1,3-Dialkylimldazollum Chloride-Aluminum Chloride Ionic Liquids. 2. Phase Transitions, Densities, Electrical Conductivities, and Viscosities. J. Phys. Chem., 1984, 88, 2614 ~ 2621.
    [32] Douglas R, Farlane M, Golding J, Forsyth S, et al. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun., 2001, (16): 1430 ~ 1431.
    [33] McEwen A B, Ngo H L, LeCompte K, Goldaman J L. Temperature dependence of viscosity for room temperature ionic liquids. J. Electrochem. Soc., 1999, 146(5): 1687 ~ 1691.
    [34] Kimizuka N and Nakashima T. Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels. Langmuir, 2001, 17(22): 6759 ~ 6761.
    [35]杨绮琴,方北龙.常温熔盐体系[J].化学通报, 1993, 5: 14 ~ 18.
    [36] Appleby D, Hussey C L, Seddon K R, Turp J E. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1986, 323: 614 ~ 616.
    [37] Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun., 2001, 135 ~ 136.
    [38] C .赖卡特,有机化学中的溶剂效应[M].北京:化学工业出版社, 1987, 47 ~ 51.
    [39] Endres F. Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid. Phys. Chem. Chem. Phys., 2001, 15: 3165 ~ 3174.
    [40] Koch V R, Miller L L, Osteryoung R A. Electroinitiated Friedel-Craftstransalkylations in a room-temperature molten-salt medium. J. Am. Chem. Soc., 1976, 98 (17): 5277 ~ 5284.
    [41] Zhao Z, Li Z, Wang G, et al. Friedel–Crafts alkylation of 2-methylnaphthalene in room temperature ionic liquids. Appl. Catal. A: Gen., 2004, 262(1): 69 ~ 73.
    [42] Csihony S, Mehdi H, Horváth I T. In situ infrared spectroscopic studies of the Friedel–Crafts acetylation of benzene in ionic liquids using AlCl3 and FeCl3. Green Chem., 2001, (6): 307 ~ 309.
    [43] Song C E, Shim W H, Roh E J, Choi J H. Scandium(III) triflate immobilised in ionic liquids: a novel and recyclable catalytic system for Friedel–Crafts alkylation of aromatic compounds with alkenes. Chem. Commun., 2000, 17, 1695 ~ 1696.
    [44] Gmouh S, Yang H, and Vaultier M Activation of Bismuth(III) Derivatives in Ionic Liquids: Novel and Recyclable Catalytic Systems for Friedel?Crafts Acylation of Aromatic Compounds. Org. Lett., 2003, 5 (13): 2219 ~ 2222.
    [45] Zulfiqar F, Kitazume T. Lewis acid-catalysed sequential reaction in ionic liquids. Green Chem., 2000, 6, 296 ~ 297.
    [46] Jaeger D A, Tucker C E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Letters, 1989, 30(14): 1785 ~ 1788.
    [47] Lee C W. Diels-Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement. Tetrahedron Lett., 1999, 40(13): 2461 ~ 2464.
    [48] Song C E, Shim W H, Roh E J, Lee S, Choi J H. Ionic liquids as powerful media in scandium triflate catalysed Diels–Alder reactions: significant rate acceleration, selectivity improvement and easy recycling of catalyst. Chem. Commun., 2001, 12, 1122 ~ 1123.
    [49] Meracz I, Oh T. Asymmetric Diels–Alder reactions in ionic liquids. Tetrahedron Lett., 2003, 44(34): 6465 ~ 6468.
    [50] Dubreuil J F, Bazureau J P. Rate accelerations of 1,3-dipolar cycloaddition reactions in ionic liquids. Tetrahedron Lett., 2000, 41(38): 7351 ~ 7355.
    [51] Conti D, Rodriquez M, Sega A, Taddei M. 1,3-Cycloaddition of nitrile oxides in ionic liquids. An easier route to 3-carboxy isoxazolines, potential constrained glutamic acid analogues. Tetrahedron Lett., 2003, 44(28): 5327 ~ 5330.
    [52] Kitazume T, Kasai K. The synthesis and reaction of zinc reagents in ionic liquids. Green Chem., 2001, 1, 30 ~ 32.
    [53] Qiao K, Deng Y. Hydroesterification of tert-butyl alcohol in room temperature ionic liquids. New J. Chem., 2002, 5, 667 ~ 670.
    [54] Wasserscheid P, Waffenschmidt H. Ionic liquids in regioselective platinum-catalysed hydroformylation. Journal of Molecular Catalysis A: Chemical, 2000, 164(1): 61 ~ 67.
    [55] Shi F, Deng Y, Peng J, et al. Alternatives to Phosgene and Carbon Monoxide: Synthesis of Symmetric Urea Derivatives with Carbon Dioxide in Ionic Liquids. Angew. Chem. Int. Ed, 2003, 42(22): 3257 ~ 3260.
    [56] Rosa J N, Afonso C A M, Santos A G. Ionic liquids as a recyclable reaction medium for the Baylis–Hillman reaction. Tetrahedron, 2001, 57(19): 4189 ~ 4193.
    [57] Buijsman R C, Vuuren E, and Sterrenburg J G. Ruthenium-Catalyzed Olefin Metathesis in Ionic Liquids. Org. Lett., 2001, 3(23): 3785 ~ 3787.
    [58]谭淑英等. Schiff碱型和促胺型壳聚糖~冠醚对金属离子的络合吸附性能[J].应用化学, 1992, 16(1): 98 ~ 100.
    [59] Hagiwara H, Shimizu Y, Hoshi T, et al. Heterogeneous Heck reaction catalyzed by Pd/C in ionic liquid. Tetrahedron Lett., 2001, 42(26): 4349 ~ 4351.
    [60] Okubo K, Shirai M, Yokoyama C. Heck reactions in a non-aqueous ionic liquid using silica supported palladium complex catalysts. Tetrahedron Lett., 2002, 43(39): 7115 ~ 7118.
    [61] Selvakumar K, Zapf A, and Beller M. New Palladium Carbene Catalysts for the Heck Reaction of Aryl Chlorides in Ionic Liquids. Org. Lett., 2002, 4(18): 3031 ~ 3033.
    [62] Wang L, Li H, Li P. Task-specific ionic liquid as base, ligand and reaction medium for the palladium-catalyzed Heck reaction. Tetrahedron, 2009, 65(1): 364 ~ 368.
    [63] Mathews C J; Smith P J and Welton T. Palladium catalyzed Suzuki cross-coupling reactions in ambient temperature ionic liquids, Chem. Commun., 2000, 14, 1249 ~ 1250
    [64] McNulty J, Capretta A, Wilson J, Dyck J, Adjabeng G, Robertson A. Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. Chem. Commun., 2002(17): 1986 ~ 1987.
    [65] CalòV, Nacci A, Monopoli A, and Montingelli F. Pd Nanoparticles as Efficient Catalysts for Suzuki and Stille Coupling Reactions of Aryl Halides in Ionic Liquids. J. Org. Chem., 2005, 70(15): 6040 ~ 6044.
    [66] Yu G A, Ren Y, Guan J T, et al. Synthesis and application of novel ionic phosphine ligands with a cobaltocenium backbone. Journal of OrganometallicChemistry, 2007, 692(18): 3914 ~ 3921.
    [67] Bellefon C, Pollet E, Grenouillet P. Molten salts (ionic liquids) to improve the activity, selectivity and stability of the palladium catalysed Trost–Tsuji C–C coupling in biphasic media. J. Mol. Catal. A: Chem., 1999, 145(1): 121 ~ 126.
    [68] Handy S T and Zhang X. Organic Synthesis in Ionic Liquids: The Stille Coupling. Org. Lett., 2001, 3 (2): 233 ~ 236.
    [69] Fukuyama T, Shinmen M, Nishitani S, et al. Copper-Free Sonogashiira Coupling Reaction in Ionic Liquids and Its Application to a Microflow System for Efficient Catalyst Recycling. Org. Lett., 2002, 4(10): 1691 ~ 1694.
    [70] Rahman M T, Fukuyama T, Ryu I, Suzuki K, et al. High throughput evaluation of the production of substituted acetylenes by the Sonogashira reaction followed by the Mizoroki-Heck reaction in ionic liquids, in situ, using a novel array reactor. Tetrahedron Lett., 2006, 47(16): 2703 ~ 2706.
    [71] Lima P G, Antunes O A C. Copper-free Sonogashira cross coupling in ionic liquids. Tetrahedron Lett., 2008, 49(16): 2506 ~ 2509.
    [72] Dell’Anna M M, Gallo V, Mastrorilli P, et al. Metal catalyzed Michael additions in ionic liquids. Chem. Commun., 2002(5): 434 ~ 435.
    [73] Hamashima Y, Takano H, Hotta D and Sodeoka M. Immobilization and Reuse of Pd Complexes in ionic liquid: Efficient Catalytic Asymmetric Fluorination and Michael Reactions withβ-Ketoesters. Org. Lett., 2003, 5(18): 3225 ~ 3228.
    [74] Lee S and Park J H. Ytterbium(Ⅲ) Triflate-Catalyzed One-Pot Mannich-Type Reaction in ionic liquid. Bull. Korean Chem. Soc. 2002, 23(10): 1367 ~ 1368.
    [75] Zhao G, Jiang T, Gao H, Han B, et al. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem., 2004, 6: 75 ~ 77.
    [76] Ranu B C, Dey S S, Hajra A. Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutylammonium bromide under solvent-free conditions. Tetrahedron, 2003, 59(14): 2417 ~ 2421.
    [77] Yadav J S, Reddy B V S and Baishya G. Green Protocol for Conjugate Addition of Thiols toα,β-Unsaturated Ketones Using a [BMIm] PF6/H2O System. J. Org. Chem., 2003, 68 (18): 7098 ~ 7100.
    [78] Xu L W, Li L, Xia C G, Zhou S L, Li J W. The first ionic liquids promoted conjugate addition of azide ion toα,β-unsaturated carbonyl compounds, Tetrahedron Lett., 2004, 45(6): 1219 ~ 1221.
    [79] Luo Y, Wu J X, Ren R X. Ullmann Diaryl Ether Synthesis in Ionic Liquids.Synlett, 2003, 11: 1734 ~ 1736.
    [80] Chauhan S M S, Jain N, Kumar A, Srinivas K A. Copper (I) Chloride Catalyzed Synthesis of Diaryl Ethers in Ionic Liquids under Mild Conditions. Synth. Commun., 2003, 33(20): 3607 ~ 3614
    [81]彭家建,邓友全.离子液体系中催化环己酮肟重排制己内酰胺[J].石油化工, 2001, 30(2): 91 ~ 92.
    [82] Peng J, Deng Y. Catalytic Beckmann rearrangement of ketoximes in ionic liquids, Tetrahedron Lett., 2001, 42(3): 403 ~ 405.
    [83] Ren R X, Zueva L D, Ou W. Formation ofε-caprolactam via catalytic Beckmann rearrangement using P2O5 in ionic liquids, Tetrahedron Lett., 2001, 42(48): 8441 ~ 8443.
    [84] Li D, Shi F, Guo S, Deng Y. Highly efficient Beckmann rearrangement and dehydration of oximes. Tetrahedron Lett., 2005, 46(4): 671 ~ 674.
    [85] Lee J K, Kim D C, Song C E, et al. Thermal Behaviors of Ionic Liquids Under Microwave Irradiation and Their Application on Microwave-Assisted Catalytic Beckmann Rearrangement of Ketoximes. Synth. Comm., 2003, 33(13): 2301 ~ 2307.
    [86] Branco L C, Afonso C A M. Ionic liquids as recyclable reaction media for the tetrahydropyranylation of alcohols. Tetrahedron, 2001, 57(20): 4405 ~ 4410.
    [87] Yadav J S, Reddy B V S, Gnaneshwar D. InCl3 immobilized in ionic liquids: a novel and recyclable catalytic system for tetrahydropyranylation and furanylation of alcohols. New J. Chem., 2003, 2: 202 ~ 204.
    [88] Peng J, Deng Y. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett., 2001, 42(34): 5917 ~ 5919.
    [89] Potdar M K, Mohile S S, Salunkhe M M. Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett., 2001, 42(52): 9285 ~ 9287.
    [90] Khandekar A C, Khadikar B M. Pechmann Reaction in Chloroaluminate Ionic Liquid. Synlett, 2002, 1: 152 ~ 154.
    [91] Yadav J S, Reddy B V S, Reddy M S, Niranjan N. Eco-friendly heterogeneous solid acids as novel and recyclable catalysts in ionic medium for tetrahydropyranols. J. Mol. Catal. A: Chem., 2004, 210: 99 ~ 103.
    [92] Bernini R, Coratti A, Fabrizi G, Goggiamani A. CH3ReO3/H2O2 in room temperature ionic liquids: an homogeneous recyclable catalytic system for the Baeyer-Villiger reaction. Tetrahedron Lett., 2003, 44(50): 8991 ~ 8994.
    [93] Chandrasekhar S, Narasihmulu C, Jagadeshwar V, Reddy K V. The first Corey-Chaykovsky epoxidation and cyclopropanation in ionic liquids. Tetrahedron Lett., 2003, 44(18): 3629 ~ 3630.
    [94] Lau R M, Rantwijk F, Seddon K R, Sheldon R A. Lipase-catalyzed reactions in ionic liquids. Org. Lett., 2000, 26(2): 4189 ~ 4191.
    [95] Zhao H and Malhotra S V. Enzymatic resolution of amino acid esters using ionic liquid N-ethyl pyridinium trifluoroacetate. Biotechnol. Lett., 2002, 24(15): 1257 ~ 1259.
    [96] Kaftzik N, Wasserscheid P and Kragl U. Use of Ionic Liquids to Increase the Yield and Enzyme Stability in theβ-Galactosidase Catalysed Synthesis of N-Acetyllactosamine. Org. Process. Res. Dev., 2002, 6 (4): 553 ~ 557.
    [97] Armstrong D W, He L and Liu Y S. Examination of Ionic Liquids and Their Interaction with Molecules, When Used as Stationary Phases in Gas Chromatography . Anal. Chem., 1999, 71 (17): 3873 ~ 3876.
    [98] Jiang T F, Gu Y L, Liang B, et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Anal. Chim. Acta, 2003, 479(2): 249 ~ 254.
    [99] Zhang W, He L, Gu Y, et al. Effect of Ionic Liquids as Mobile Phase Additives on Retention of Catecholamines in Reversed-Phase High-Performance Liquid Chromatography. Anal. Lett., 2003, 36, 827 ~ 838.
    [100] He L, Zhang W, Zhao L, et al. Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J. Chromatogr. A, 2003, 1007(1): 39 ~ 45.
    [101] Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun., 2001, (1): 135 ~ 136.
    [102] Visser A E, Swatloski R P, Reichert W M, et al. Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res., 2000, 39 (10): 3596 ~ 3604.
    [103] Gu Y, Shi F, Yang H, Deng Y. Leaching separation of taurine and sodium sulfate solid mixture using ionic liquids. Sep. Purif. Technol., 2004, 35(2): 153 ~ 159.
    [104]顾彦龙,石峰,邓友全.室温离子液体浸取分离牛磺酸与硫酸钠固体混合物[J].化学学报, 2004, 62(5): 532 ~ 536.
    [105] Liu J, Jiang G, Chi Y, et al. Use of Ionic Liquids for Liquid-PhaseMicroextraction of Polycyclic Aromatic Hydrocarbons. Anal. Chem., 2003, 75 (21): 5870 ~ 5876.
    [106] Liu J, Chi Y, Jiang G, et al. Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. J. Chromatogr. A, 1026(1): 143 ~ 147.
    [107] Lai P K, Skyllas-Kazacos M. Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride. J.Electroanal. Chem., 1988, 248(2): 431 ~ 440.
    [108] Zhao Y, VanderNoot T. Electrodeposition of aluminium from room temperature AlCl3-TMPAC molten salts. J. Electrochem. Soc., 1997, 42, 1693 ~ 1643.
    [109] Yang M H and Sun I W. Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid. J. Appl. Electrochem., 2003, 33: 1077 ~ 1084.
    [110] Yang H, Gu Y, Deng Y, Shi F. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun., 2002, 274 ~ 275.
    [111] Mellah M, Gmouh S, Vaultier M, Jouikov V. Electrocatalytic dimerisation of PhBr and PhCH2Br in [BMIm]+NTf2? ionic liquid. Electrochem. Comm., 2003, 5(7): 591 ~ 593.
    [112] Buzzeo M C, Hardacre C, and Richard G. Compton Use of Room Temperature Ionic Liquids in Gas Sensor Design. Anal. Chem., 2004, 76 (15): 4583 ~ 4588.
    [113] Wang R, Okajima T, Kitamura F, Ohsaka T. A Novel Amperometric O2 Gas Sensor Based on Supported Room-Temperature Ionic Liquid Porous Polyethylene Membrane-Coated Electrodes. Electroanalysis, 2004, 16(1): 66 ~ 72.
    [114] Hurley F, Wier T. Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc., 1951, 98, 203.
    [115] Cai M, Wang Y, and Hao W. Palladium-catalyzed addition of diaryl disulfides and diselenides to terminal alkynes in room temperature ionic liquids. Green Chem., 2007, 9, 1180 ~ 1184.
    [116] Nishiyama Y, Tokunaga K and Sonoda N. New Synthetic Method of Diorganyl Selenides: Palladium-Catalyzed Reaction of PhSeSnBu3 with Aryl and Alkyl Halides. Org. Lett., 1999, 1(11): 1725 ~ 1727.
    [117] Kanta De S. Ruthenium(III) chloride catalyzed acylation of alcohols, phenols, thiols, and amines. Tetrahedron Lett., 2004, 45: 2919 ~ 2922.
    [118] Rogers R D, Seddon K R. Ionic liquids-solvents of the future? Sciece, 2003, 302: 792 ~ 793.
    [119] Hemeon I and Singer R D. Silylstannation of terminal alkynes using a recyclable palladium(0) catalyst immobilised in an ionic liquid. Chem. Comm., 2002, 17: 1884 ~ 1885.
    [120] Cai M, Wang Y and Hao W. Palladium-Catalyzed Hydrostannylation ofα-Heteroalkynes and Alkynyl Esters in Ionic Liquids. Eur. J. Org. Chem. 2008, 2983 ~ 2988.
    [121] Comasseto J V. Vinylic selenides. J. Organomet. Chem., 1983, 253(2): 131 ~ 181.
    [122] Marco T, Marcello T, Lorenzo T, Roberta B. Reactions of Terminal Alkynes with Iodobenzene Diacetate and Diphenyl Diselenide: Synthesis of Phenyl Alkynyl Selenides. Synlett, 1993, 211 ~ 212.
    [123] Huang X and Xie M. Highly Stereoselective Three-Component Reactions of Phenylselenomagnesium Bromide, Acetylenic Sulfones, and Saturated Aldehydes/Ketones orα,β-Unsaturated Enals or Enones. J. Org. Chem., 2002, 67 (25): 8895 ~ 8900.
    [124] Ma S, Hao X, Huang X. Highly regio- and stereoselective four-component iodoamination of Se-substituted allenes: an efficient synthesis of N-(3-organoseleno-2-iodo-2(Z)-propenyl) acetamides. Chem. Commun., 2003, (9): 1082 ~ 1083.
    [125] Huang X, Duan D and Zheng W. Studies on Hydrozirconation of 1-Alkynyl Sulfoxides or Sulfones and the Application for the Synthesis of Stereodefined Vinyl Sulfoxides or Sulfones. J. Org. Chem., 2003, 68 (5): 1958 ~ 1963.
    [126]刘文奇,黄荣新,许新华.硒插入C-Zn键及其生成物与环氧、α,β-不饱和酯(腈)的反应[J].有机化学, 2003, 23(3): 286 ~ 287.
    [127] Beletskaya I P, Sigeev A S, Peregudov A S, Petrovskii P V. New approaches to the synthesis of unsymmetrical diaryl selenides. J. Organomet. Chem. 2000, 605: 96 ~ 101.
    [128]李毅群.一水合硫酸氢钠的催化酯化作用[J].现代化工, 1999, 19(4): 31 ~ 33.
    [129]龙石红,邓斌.对甲苯磺酸铜催化合成乙酸环己酯[J].精细与专用化学品, 2007, 15(2): 17 ~ 19.
    [130]李红缨,黎碧娜.季铵树脂的三相转移催化酯化的研究-乙酸苄酯的三相催化合成[J].精细化工, 1995, 12(4): 35 ~ 37.
    [131]文瑞明.聚苯乙烯二乙醇胺树脂催化合成丙酸苄酯的研究[J].有机化学, 2002, 22(7): 504 ~ 507.
    [132] Deng Y, Shi F, Beng J, Qiao K. Ionic liquid as a green catalytic reaction medium for esterifications. J. Mol. Catal. A: Chem., 2001, 165(1): 33 ~ 36.
    [133] Zhu H, Yang F, Tang J and He M. Br?nsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem., 2003, 5, 38 ~ 39.
    [134] Lee S, Park J H. Metallic Lewis acids-catalyzed acetylation of alcohols with acetic anhydride and acetic acid in ionic liquids: study on reactivity and reusability of the catalysts. J. Mol. Catal. A: Chem., 2003, 194(1): 49 ~ 52.
    [135]唐文明,李朝军.三氯化钌催化下环己烷和环己醇在离子液体中的氧化反应研究[J].化学学报, 2004, 42(7): 742 ~ 744.
    [136] (a) Diederich F, Stang P J. Metal-Catalyzed Cross-coupling Reactions. Wiley-VCH,Weinheim, 1998; (b) Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, 2002; (c) Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Aryl?Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev. 2002, 102, 1359 ~ 1470.
    [137] Milstein D, Stille J K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc., 1978, 100 (11): 3636 ~ 3638.
    [138] Stille J K. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles. Angew. Chem. Int. Ed., 1986, 25(6): 508 ~ 524.
    [139] Shair M D, Yoon T Y, Mosny K K, Chou T C, and Danishefsky S J. The Total Synthesis of Dynemicin A Leading to Development of a Fully Contained Bioreductively Activated Enediyne Prodrug. J. Am. Chem. Soc., 1996, 118 (40): 9509 ~ 9525.
    [140] Pattenden G, Sinclair D J. The intramolecular Stille reaction in some target natural product syntheses. Journal of Organometallic Chemistry, 2002, 653(1): 261 ~ 268.
    [141] Zhao H, Wang Y, Sha J, Sheng S, Cai M. MCM-41-supported bidentate phosphine palladium(0) complex as an efficient catalyst for the heterogeneous Stille reaction. Tetrahedron, 2008, 64(32): 7517 ~ 7523.
    [142] Chiappe C, Imperato G, Napolitano E and Pieraccini D. Ligandless Stillecross-coupling in ionic liquids. Green Chem., 2004, 6, 33 ~ 36.
    [143] Dieck H A, Heck F R. Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. J. Organomet. Chem., 1975, 93(2): 259 ~ 263.
    [144] Cassar L. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J. Organomet. Chem., 1975, 93(2): 253 ~ 257.
    [145] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50): 4467 ~ 4470.
    [146] Sonogashira K. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1): 46 ~ 49.
    [147] Berteina S, Wendeborn S, Brill W K D, Mesmaeker A D. Pd-Mediated C-C Bond Formation with Olefins and Acetylenes on Solid Support: A Scope and Limitations Study. Synlett 1998, 676 ~ 678.
    [148] (a) Hao W, Sha J, Sheng S, Cai M. The first heterogeneous carbonylative Sonogashira coupling reaction catalyzed by MCM-41-supported bidentate phosphine palladium(0) complex. J. Mol. Catal. A: Chem., 2009, 298(1): 94 ~ 98; (b) Cai M, Xu Q, Sha J. Copper-free Sonogashira coupling reaction catalyzed by MCM-41-supported thioether palladium(0) complex in water under aerobic conditions. J. Mol. Catal. A: Chem., 2007, 272(1): 293 ~ 297; (c) Cai M, Sha J, Xu Q. MCM-41-supported bidentate phosphine palladium(0) complex: a highly active and recyclable catalyst for the Sonogashira reaction of aryl iodides. Tetrahedron, 2007, 63(22): 4642 ~ 4647; (d) Cai M, Xu Q, Wang P. A novel MCM-41-supported sulfur palladium(0) complex catalyst for Sonogashira coupling reaction. J. Mol. Catal. A: Chem., 2006, 250(1): 199 ~ 202.
    [149] Huddleston J G., Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for‘clean’liquid–liquid Extraction. Chem. Commun., 1998, 1765 ~ 1766.
    [150] Coulson D R, Satek L C, Grim S O. Tetrakis (Triphenylphosphine) Palladium (0). Inorg, Synth., 1972, 13, 121 ~ 124.
    [151] Chatt J, G. Mann F. The constitution of complex metallic salts. Part X. Further evidence for the structure of bridged dipalladium derivatives. J. Chem. Soc., 1939, 1622 ~ 1634.
    [152] Reich H J, Renga J M, Reich I L. Organoselenium chemistry. Conversion of ketones to enones by selenoxide syn elimination. J. Am. Chem. Soc., 1975, 6897(19): 5434 ~ 5447.
    [153] Ludwig S, Jacek M. The Convenient Syntheses of Organoselenium Reagents. Synthesis, 1984, 439 ~ 442.
    [154] Liotta D, Markiewicz W and Santiesteban H. The Generation of Uncomplexed Phenyl Selenide Anion and its Applicability to SN2-Type Ester Cleavages. Tetrahedron Lett., 1977, 50, 4365 ~ 4368.
    [155] Perriot P P, Gandemar M. Bull. Soc. Chim. Fr., 1968, 3239.
    [156]赵红,章荣立,叶红德,蔡明中.一种制备炔基硅烷和炔基锡烷的简便方法[J].江西师范大学学报(自然科学版), 2002, 26(4): 360 ~ 362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700