用户名: 密码: 验证码:
根癌农杆菌介导申克氏孢子丝菌T-DNA插入突变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
申克氏孢子丝菌(Sporothrix schenckii)是一种双相型病原真菌,引起人和动物的孢子丝菌病(Sporotrichosis)。本研究首次成功建立了根癌农杆菌介导的申克氏孢子丝菌JLCC32757遗传转化体系,并探讨了影响转化效率的主要因素。该转化体系效率达600个转化子/10~6个分生孢子,可在短期内获得大量T-DNA(Transfer DNA)插入突变体,且这些突变体有丝分裂稳定。已获得突变菌株2130株,初步建立了小范围的申克氏孢子丝菌T-DNA标签的突变体库,并得到了一些生长、发育、代谢等表型发生改变的突变体,为揭示申克氏孢子丝菌分子机理、探讨致病机制等奠定了坚实的基础。申克氏孢子丝菌T-DNA插入突变体的分子分析表明,T-DNA已插入到申克氏孢子丝菌基因组中,其中87%为T-DNA单拷贝插入,13%为T-DNA多拷贝插入,利用TAIL-PCR即可获得T-DNA插入位点的侧翼序列,表明根癌农杆菌介导的申克氏孢子丝菌遗传转化是一种有效的插入突变策略,是进行申克氏孢子丝菌功能基因组学研究的有力工具。筛选申克氏孢子丝菌T-DNA插入突变体,获得产色素缺陷菌株JLCC32757-M2013。与野生型相比,该菌株失去产色素的能力,其菌丝、分生孢子形态均发生明显改变。分子分析表明,T-DNA以单拷贝插入到申克氏孢子丝菌类泛素结合酶E2基因(SsUBCc),破坏菌体内类泛素结合酶E2基因的正常表达,导致SsUBCc基因和色素合成相关基因在转录水平的表达量降低,菌株毒力下降。以突变株JLCC32757-M2013的SsUBCc基因为参照,PCR扩增模板DNA结果表明,50ng/μl模板DNA稀释1600倍时,仍能获得清晰的PCR扩增产物,含有400个突变体的DNA池的模板核酸浓度足以保证每个突变体PCR扩增的需要。由此以每100个突变体为单位,构建了21个突变体池和DNA池,既保证实验的可靠性又方便从突变体库中筛选靶基因突变的菌株,为充分利用T-DNA插入突变体库进行申克氏孢子丝菌反向遗传学研究提供技术支持。
Sporothrix schenckii is a dimorphic pathogenic fungus that causes human and animal sporotrichosis globally. Recent years, with the growing number of people with impaired immune, the incidence of sporotrichosis has rising, a serious threat to human health. Although the studies of genotyping, rapid identification and immune response had been carried out, however, the growth, metabolism, development, disease, dimorphic conversion mechanisms details that underlie S. schenckii remain uncharacterized owing to the lack of efficient genetic methods that can generate mutants.
     Mutants obtained by molecular tags are the most effective means of cloning genes and genetic analysis. Agrobacterium tumefaciens is a Gram-negative soil bacteria which has the ability to transfer its T-DNA (transfer DNA), located on a tumor inducing plasmid, to its host genome at random sites. A. tumefaciens-mediated T-DNA insertional mutagenesis is used widely owing to receptors types, high efficiency, stable transformants, easy to operation and so on.
     In this study, an optimized A. tumefaciens-mediated transformation system of S. schenckii was established. The molecular analysis of transformants were performed by PCR, Southern blotting, TAIL-PCR, to determine the T-DNA insertion copy numbers and insertion site flanking sequences. Mutants’phenotypes and genetic traits were analysis by reverse genetics and forward genetic strategy to reveal the growth and metabolism molecular mechanism and provide for drug targets of S. schenckii. At the same time, the establishment of high-throughput screening method of mutants improves our ability to isolate mutants in targeted genes, thereby facilitating the molecular genetic analysis of S. schenckii.
     1. The establishment of A. tumefaciens-mediated transformation system of S. schenckii
     This is the first time to establishment of the Agrobacterium-mediated transformation (ATMT) system and an investigation into the important factors affecting the transformation frequency of S. schenckii. The transformation system includes the using of S. schenckii conidia as starting material, A. tumefaciens strain AGL-1 harboring binary vector pBHt1 as DNA donor was pre-cultured in IM with 200μM AS. A. tumefaciens cell were mixed with the same volume of conidia suspension and pipetted onto HybondN+ filters. After co-cultivation for 48h at 25°C in the dark, transformants were selected on SM containing 100μg/ml hygromycinB and 200μM cefotaxime for 5d at 25°C. The transformation efficiency reached more than 600 transformants per 10~6 conidia. The highly efficient transformation enabled us to obtain a large number of S.schenckii T-DNA insertion mutagenesis within a short experimental period and these mutants mitotic stability. A small scale T-DNA tagged mutant library of S. schenckii including 2130 mutants were established and some growth, development and metabolism phenotypic changes mutants were obtained which would provid materials for reveal the molecular mechanisms of S.schenckii.
     2. The molecular analysis of S. schenckii T-DNA insertion mutants
     PCR, Southern blotting, TAIL-PCR were performed to analysis S. schenckii T-DNA insertion mutants. Hygromycin phosphotransferase gene (hph) were amplified by PCR in 15 ATMT transformants selected randomly of S. schenckii, 0.8kb target bands were obtained, indicating that the T-DNA had been inserted into the S. schenckii genomes. Southern blotting results show that 87% mutants were T-DNA insertion single copy, 13% mutants were T-DNA insertion more copies in randomly selected mutants. TAIL-PCR amplified T-DNA insertion site flanking sequences analysis showed that 14 mutants had obtained sequences flanking from the left arm, 13 mutants had obtained flanking sequences from right arm in the 15 randomly selected mutants. Combined with PCR amplification results from complete T-DNA suggested there was missing borders in the T-DNA transfer process. These results indicated that ATMT was an effective insertion mutation strategy and provide a powerful tool to S. schenckii functional genomics.
     3. The analysis of pigment defects mutant of S. schenckii JLCC32757-M2013
     By screening T-DNA insertion mutants of S. schenckii, pigment defects mutant strains JLCC32757-M2013 was obtained. Compared with the wild type strains, this strain growth rate was normal, the colony was white, lost the ability to produce pigment, and its hyphae, conidia morphological were changed obviously. Molecular analysis showed that this mutant were T-DNA insertion single copy into wild type S. schenckii genomics. TAIL-PCR cloned T-DNA insertion site flanking sequence of JLCC32757-M2013. The NCBI database showed that T-DNA inserted into the ubiquitin conjugating enzyme E2 catalytic domain gene of S. schenckii, this gene was named SsUBCc. Designed specific primers of SsUBCc gene and pigment synthesis related genes exons for Real-time PCR, results showed that SsUBCc gene and pigment synthesis related genes expression at transcription level were lower than the wild-type strain. Animal experiments showed that the virulence of mutant strain was significantly lower than the wild type strain. Speculated that the insertion of T-DNA destructed the expression of ubiquitin conjugating enzyme E2 catalytic domain gene which affected parts of proteins post-translational modification and degradation, resulting in the loss of pigment production capacity and virulence decreased significantly. Speculating preliminary that SsUBCc was associated with pigment synthesis and pathogenic.
     4. The establishment of high-throughput screening T-DNA insertion mutants for reverse genetics
     SsUBCc gene of JLCC32757-M2013 strain as a reference, the minimum concentration required template DNA of PCR amplification was detected, the results showed that clear PCR amplification products still could be obtained when 50ng/μl template DNA was diluted to1600 times. So mutants’pools were constructed per 100, 200, 400 mutants and the corresponding mutants DNA pools. PCR amplified the SsUBCc gene from mutants DNA pools results showed that DNA pools were sufficient to ensure that each strain template DNA could be amplified in the mutants’pools which containing 400 mutants. To ensure the reliability and facilitate to isolate specific mutant from the mutants pools by PCR and 96-well plates in the future, per 100 mutants as unit to construct 21 mutants pools and DNA pools in 2100 mutants for high-throughput screening of mutants. The establishment of high-throughput screening mutants’method could improve our ability to isolate mutants in targeted genes from mutants’library and facilitating the molecular genetic analysis of S. Schenckii.
     In summary, for the first time, an optimizated ATMT system of S. schenckii for insertional mutagenesis was established; small-scale S. schenckii T-DNA tagged mutants library and DNA libraries were constructed; the mutant that T-DNA inserted into the ubiquitin-like conjugating enzyme E2 gene was analyses; the method of high-throughput screening mutants’for the reverse genetics was established which would help to investigate the pathogenic mechanism and develop drug targets of pathogenic fungi. This study should be possible to adapt to other clinically important pathogenic fungi.
引文
[1] Findlay GH, Vismer HF, Dreyer L. Studies on sporotrichosis. Pathogenicity and morphogenesis in the Transvaal strains of Sporothrix schenckii[J]. Mycopathologia, 1984, 87(2):85-93.
    [2] Hektoen L, Perkins CF. Refractory Subcutaneous Abscesses Caused by Sporothrix Schenckii[J]. A New Pathogenic Fungus. J Exp Med, 1900, 5(1):77-89.
    [3] Lutz A, Splendore A. Sobreuma mycose observada emhomens eratos[J]. Rev Med S?o Paulo, 1907, 21: 433– 450.
    [4] Barros MB, Schubach TP, Coll JO, et al. A. Sporotrichosis: development and challenges of an epidemic[J]. Rev Panam Salud Publica, 2010, 27(6):455-460.
    [5] Rodriguez-Del Valle N, Rosario M, Torres-Blasini G. Effects of pH, temperature, aeration and carbon source on the development of the mycelial or yeast forms of Sporothrix schenckii from conidia[J]. Mycopathologia, 1983, 82(2):83-88.
    [6] Alsina A, Rodriguez-Del Valle N. Effects of divalent cations and functionally related substances on the yeast to mycelium transition in Sporothrix schenckii[J]. Sabouraudia, 1984, 22(1):1-5.
    [7] Schubach TM, Schubach A, Okamoto T, et al. Haematogenous spread of Sporothrix schenckii in cats with naturally acquired sporotrichosis[J]. J Small Anim Pract, 2003, 44(9):395-398.
    [8] Mohan N, Jayaseelan E, Abraham A, et al. Cutaneous sporotrichosis in Bangalore, southern India[J]. Int J Dermatol, 2004, 43(4):269-272.
    [9] Barros MB, Schubach Ade O, do Valle AC, et al. Cat-transmitted sporotrichosis epidemic in Rio de Janeiro, Brazil: description of a series of cases[J]. Clin Infect Dis, 2004, 38(4):529-535.
    [10] Lyon GM, Zurita S, Casquero J, et al. Population-based surveillance and a case-control study of risk factors for endemic lymphocutaneous sporotrichosis in Peru[J]. Clin Infect Dis, 2003, 36(1):34-39.
    [11] Pappas PG, Tellez I, Deep AE, et al. Sporotrichosis in Peru: description of an area ofhyperendemicity[J]. Clin Infect Dis, 2000, 30(1):65-70.
    [12] Hay RJ, Morris-Jones R. Outbreaks of sporotrichosis[J]. Curr Opin Infect Dis, 2008, 21(2):119-121.
    [13] Quintal D. Sporotrichosis infection on mines of the Witwatersrand[J]. J Cutan Med Surg, 2000, 4(1):51-54.
    [14] Multistate outbreak of sporotrichosis in seedling handlers[J]. MMWR Morb Mortal Wkly Rep, 1988, 37(42):652-653.
    [15] Khandpur S, Nanda S, Reddy BS. An unusual episode of lupus vulgaris masquerading as sporotrichosis[J]. Int J Dermatol, 2001, 40(5):336-339.
    [16] Yelverton CB, Stetson CL, Bang RH, et al. Fatal sporotrichosis[J]. Cutis, 2006, 78(4):253-256.
    [17] Mendonca-Previato L, Gorin PA, Travassos LR. Galactose containing polysaccharides from the human pathogens Sporothrix schenckii and Ceratocystis stenoceras[J]. Infect Immun, 1980, 29(3):934-939.
    [18] Figueiredo CC, De Lima OC, De Carvalho L, et al. The in vitro interaction of Sporothrix schenckii with human endothelial cells is modulated by cytokines and involves endothelial surface molecules[J]. Microb Pathog, 2004, 36(4):177-188.
    [19] Lima OC, Bouchara JP, Renier G, et al. Immunofluorescence and flow cytometry analysis of fibronectin and laminin binding to Sporothrix schenckii yeast cells and conidia[J]. Microb Pathog, 2004, 37(3):131-140.
    [20] Travassos LR, Gorin PA, Lloyd KO. Discrimination between Sporothrix schenckii and Ceratocystis stenoceras rhamnomannans by proton and carbon-13 magnetic resonance spectroscopy[J]. Infect Immun, 1974, 9(4):674-680.
    [21] Castillo MC, Tapia FJ, Arciniegas E. Ultrastructural localization of specific surface antigens in the dimorphic fungus Sporothrix schenckii[J]. J Med Vet Mycol, 1990, 28(1):91-94.
    [22] Lopes-Alves LM, Mendonca-Previato L, Fournet B, et al. O-glycosidically linked oligosaccharides from peptidorhamnomannans of Sporothrix schenckii[J]. Glycoconj J,1992, 9(2):75-81.
    [23] Hamilton AJ, Gomez BL. Melanins in fungal pathogens[J]. J Med Microbiol, 2002, 51(3):189-191.
    [24] da Silva MB, Marques AF, Nosanchuk JD, et al. Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility[J]. Microbes Infect, 2006, 8(1):197-205.
    [25] Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, et al. Tyrosinase: a comprehensive review of its mechanism[J]. Biochim Biophys Acta, 1995, 1247(1):1-11.
    [26] Eisenman HC, Nosanchuk JD, Webber JB, et al. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans[J]. Biochemistry, 2005, 44(10):3683-3693.
    [27] Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds[J]. Antimicrob Agents Chemother, 2006, 50(11):3519-3528.
    [28] Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis[J]. Cell Microbiol, 2003, 5(4):203-223.
    [29] van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin[J]. Antimicrob Agents Chemother, 2002, 46(11):3394-3400.
    [30] Cohen C, Zavala-Pompa A, Sequeira JH, et al. Mitogen-actived protein kinase activation is an early event in melanoma progression[J]. Clin Cancer Res, 2002, 8(12):3728-33.
    [31] Lawler FH. Reasons to exercise caution when considering a screening program for type 2 diabetes mellitus[J]. Mayo Clin Proc, 2009, 84(1):34-36.
    [32] Tokunaga F, Sakata S, Saeki Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation[J]. Nat Cell Biol, 2009, 11(2):123-132.
    [33] Zeng W, Sun L, Jiang X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity[J]. Cell, 2010,141(2):315-330.
    [34] Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity[J]. Nature, 2009, 458(7237):430-437.
    [35] Al-Hakim AK, Zagorska A, Chapman L, et al. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains[J]. Biochem J, 2008, 411(2):249-260.
    [36] Garnett MJ, Mansfeld J, Godwin C, et al. UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit[J]. Nat Cell Biol, 2009, 11(11):1363-1369.
    [37] Xia ZP, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains[J]. Nature, 2009, 461(7260):114-119.
    [38] Carter S, Bischof O, Dejean A, et al. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53[J]. Nat Cell Biol, 2007, 9(4):428-435.
    [39] MacKay C, Declais AC, Lundin C, et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2[J]. Cell, 2010, 142(1):65-76.
    [40] Bennett EJ, Harper JW. DNA damage: ubiquitin marks the spot[J]. Nat Struct Mol Biol, 2008, 15(1):20-22.
    [41] Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers[J]. Neoplasia, 2006, 8(8):645-654.
    [42] Srinivasan R, Davidson Y, Gibbons L, et al. The apolipoprotein E epsilon4 allele selectively increases the risk of frontotemporal lobar degeneration in males[J]. J Neurol Neurosurg Psychiatry, 2006, 77(2):154-158.
    [43] Malanicheva IA, Koz'mian LI. Effect of protoplast formation and regeneration on the production of nebramycin complex in Streptomyces cremeus subsp. tobramycini[J]. Antibiot Khimioter, 1990, 35(7):3-5.
    [44] Bej AK, Perlin MH. A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment[J]. Gene, 1989, 80(1):171-176.
    [45] Chakraborty BN, Patterson NA, Kapoor M. An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi[J]. Can J Microbiol, 1991, 37(11):858-863.
    [46] Armaleo D, Ye GN, Klein TM, et al. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi[J]. Curr Genet, 1990, 17(2):97-103.
    [47] Zheng Z, Huang C, Cao L, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris[J]. Fungal Bio, 2010, 115(3):265-274.
    [48] Anand A, Uppalapati SR, Ryu CM, et al. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens[J]. Plant Physiol, 2008, 146(2):703-715.
    [49] Zhu J, Oger PM, Schrammeijer B, et al. The bases of crown gall tumorigenesis[J]. J Bacteriol, 2000, 182(14):3885-3895.
    [50] Cangelosi GA, Ankenbauer RG, Nester EW. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein[J]. Proc Natl Acad Sci U S A, 1990, 87(17):6708-6712.
    [51] Brencic A, Eberhard A, Winans SC. Signal quenching, detoxification and mineralization of vir gene-inducing phenolics by the VirH2 protein of Agrobacterium tumefaciens[J]. Mol Microbiol, 2004, 51(4):1103-1115.
    [52] Frenkiel-Krispin D, Wolf SG, Albeck S, et al. Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1[J]. J Biol Chem, 2007, 282(6):3458-3464.
    [53] Cascales E, Atmakuri K, Liu Z, et al. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein[J]. Mol Microbiol, 2005, 58(2):565-579.
    [54] Michielse CB, Ram AF, Hooykaas PJ, Hondel CA. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori[J]. Fungal Genet Biol, 2004, 41(5):571-578.
    [55] de Groot MJ, Bundock P, Hooykaas PJ, et al. Agrobacterium tumefaciens-mediatedtransformation of filamentous fungi[J]. Nat Biotechnol, 1998, 16(9):839-842.
    [56] Bundock P, den Dulk-Ras A, Beijersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae[J]. EMBO J, 1995, 14(13):3206-3214.
    [57] Sugui JA, Chang YC, Kwon-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption[J]. Appl Environ Microbiol, 2005, 71(4):1798-1802.
    [58] Nyilasi I, Papp T, Csernetics A, et al. Agrobacterium tumefaciens-mediated transformation of the zygomycete fungus Backusella lamprospora[J]. J Basic Microbiol, 2008, 48(1):59-64.
    [59] Zhang P, Xu B, Wang Y, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungus Penicillium marneffei[J]. Mycol Res, 2008, 112(8):943-949.
    [60] Al-Ramamneh EA, Sriskandarajah S, Serek M. Agrobacterium tumefaciens mediated transformation of Rhipsalidopsis gaertneri[J]. Plant Cell Rep, 2006, 25(11):1219-1225.
    [61] Samils N, Elfstrand M, Czederpiltz DL, et al. Development of a rapid and simple Agrobacterium tumefaciens-mediated transformation system for the fungal pathogen Heterobasidion annosum[J]. FEMS Microbiol Lett, 2006, 255(1):82-88.
    [62] Degefu Y, Hanif M. Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus[J]. Arch Microbiol, 2003, 180(4):279-284.
    [63] Malonek S, Meinhardt F. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii[J]. Curr Genet, 2001, 40(2):152-155.
    [64] Chen X, Stone M, Schlagnhaufer C, et al. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus[J]. Appl Environ Microbiol, 2000, 66(10):4510-4513.
    [65] Leal CV, Montes BA, Mesa AC, et al. Agrobacterium tumefaciens-mediatedtransformation of Paracoccidioides brasiliensis[J]. Med Mycol, 2004; 42(4):391-395.
    [66] Hao Y, Charles TC, Glick BR. ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars[J]. FEMS Microbiol Lett, 2010, 307(2):185-190.
    [67] Zhang P, Liu TT, Zhou PP, et al. Agrobacterium tumefaciens-mediated Transformation of A Taxol-Producing Endophytic Fungus, Cladosporium cladosporioides MD2[J]. Curr Microbiol, 2011, 62(4):1315-1320.
    [68] Jin B, Jiang F, Yu M, et al. Agrobacterium tumefaciens mediated Chitinase and beta-1, 3-glucanase gene transformation for Pinellia ternata[J]. Zhongguo Zhong Yao Za Zhi, 2009, 34(14):1765-1767.
    [69] Maruthachalam K, Nair V, Rho HS, et al. Agrobacterium tumefaciens-mediated transformation in Colletotrichum falcatum and C. acutatum[J]. J Microbiol Biotechnol, 2008, 18(2):234-241.
    [70] Bahler J, Wu JQ, Longtine MS, et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast[J].1998, 14(10): 943-951.
    [71] Winzeler EA, Shoemaker DD, Astromoff A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis[J]. Science, 1999, 285(5429):901-906.
    [72] Kopke K, Hoff B, Kuck U. Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes[J]. Appl Environ Microbiol, 2010, 76(14):4664-4674.
    [73] Wendland J. PCR-based methods facilitate targeted gene manipulations and cloning procedures[J]. Curr Genet, 2003, 44(3):115-1123.
    [74] Hillemann D, Puhler A, Wohlleben W. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors[J]. Nucleic Acids Res, 1991, 19(4):727-731.
    [75] Bako L, Umeda M, Tiburcio AF, et al. The VirD2 pilot protein of Agrobacteriumtransferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants[J]. Proc Natl Acad Sci U S A, 2003, 100(17):10108-10113.
    [76] Michielse CB, Arentshorst M, Ram AF, et al. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori[J]. Fungal Genet Biol, 2005, 42(1):9-19.
    [77] Dobinson KF, Grant SJ, Kang S. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae[J]. Curr Genet, 2004, 45(2):104-110.
    [78] Zeilinger S. Gene disruption in Trichoderma atroviride via Agrobacterium mediated transformation[J]. Curr Genet, 2004, 45(1):54-60.
    [79] Kellner EM, Orsborn KI, Siegel EM, et al. Coccidioides posadasii contains a single 1,3-beta-glucan synthase gene that appears to be essential for growth[J]. Eukaryot Cell, 2005, 4(1):111-120.
    [80] Michielse CB, van Wijk R, Reijnen L, et al. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis[J]. Genome Biol, 2009, 10(1):R4.
    [81] Gardiner DM, Howlett BJ. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans[J]. Curr Genet, 2004, 45(4):249-255.
    [82] Khang CH, Park SY, Lee YH, et al. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum[J]. Fungal Genet Biol, 2005, 42(6):483-492.
    [83] Adachi K, Nelson GH, Peoples KA, et al. Efficient gene identification and targeted gene disruption in the wheat blotch fungus Mycosphaerella graminicola using TAGKO[J]. Curr Genet, 2002, 42(2):123-127.
    [84] Takken FL, Van Wijk R, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ. A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation[J]. Curr Genet, 2004, 45(4):242-248.
    [85] van Attikum H, Hooykaas PJ. Genetic requirements for the targeted integration ofAgrobacterium T-DNA in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 2003, 31(3):826-832.
    [86] Kato A, Akamatsu Y, Sakuraba Y, et al. The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair[J]. Curr Genet, 2004, 45(1):37-44.
    [87] Kooistra R, Hooykaas PJ, Steensma HY. Efficient gene targeting in Kluyveromyces lactis[J]. Yeast, 2004, 21(9):781-792.
    [88] He RF, Wang Y, Shi Z, et al. Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus[J]. Gene, 2003, 321:113-121.
    [89] Boyko A, Matsuoka A, Kovalchuk I. High frequency Agrobacterium tumefaciens mediated plant transformation induced by ammonium nitrate[J]. Plant Cell Rep, 2009, 28(5):737-757.
    [90] Bendahmane A, Querci M, Kanyuka K, et al. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato[J]. Plant J, 2000, 21(1):73-81.
    [91] Bundock P, van Attikum H, den Dulk-Ras et al. Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens[J]. Yeast, 2002, 19(6):529-536.
    [92] Tucker SL, Orbach MJ. Agrobacterium-mediated transformation to create an insertion library in Magnaporthe grisea[J]. Methods Mol Biol, 2007, 354:57-68.
    [93] Rogers CW, Challen MP, Green JR, et al. Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans[J]. FEMS Microbiol Lett, 2004, 241(2):207-214.
    [94] Tudzynski B, Liu S, Kelly JM. Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes[J]. FEMS Microbiol Lett, 2000, 184(1):9-15.
    [95] Idnurm A, Reedy JL, Nussbaum JC, et al. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis[J]. Eukaryot Cell, 2004, 3(2):420-429.
    [96] Jeon J, Park SY, Chi MH, et al. Genome-wide functional analysis of pathogenicitygenes in the rice blast fungus[J]. Nat Gene, 2007, 39(4):561-565.
    [97] Wirawan IG, Kang HW, Kojima M. Isolation and characterization of a new chromosomal virulence gene of Agrobacterium tumefaciens[J]. J Bacteriol, 1993, 175(10):3208-3212.
    [98] Heidekamp F, Dirkse WG, Hille J, et al. Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene[J]. Nucleic Acids Res, 1983, 11(18):6211-6223.
    [99] Lazo GR, Stein PA, Ludwig RA. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium[J]. Biotechnology, 1991, 9(10):963-967.
    [100] Michielse CB, Hooykaas PJ, van den Hondel CA, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi[J]. Curr Genet, 2005, 48(1):1-17.
    [101] Zwiers LH, De Waard MA. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola[J]. Curr Genet, 2001, 39(5-6):388-393.
    [102] Michielse CB, Salim K, Ragas P, et al. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer[J]. Mol Genet Genomics, 2004, 271(4):499-510.
    [103] Mikosch TS, Lavrijssen B, Sonnenberg AS, et al. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens[J]. Curr Genet, 2001, 39(1):35-39.
    [104] Abuodeh RO, Orbach MJ, Mandel MA, et al. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens[J]. J Infect Dis, 2000, 181(6): 2106-2110.
    [105] Michielse CB, Hooykaas PJ, van den Hondel CA, et al. Agrobacterium mediated transformation of the filamentous fungus Aspergillus awamori[J]. Nat Protoc, 2008, 3(10):1671-1678.
    [106] Shaw CH, Watson MD, Carter GH. The right hand copy of the nopaline Ti-plasmid 25bp repeat is required for tumour formation[J]. Nucleic Acids Res, 1984,12(15):6031-6041.
    [107] Nester EW, Amasino R, Akiyoshi D, et al. The molecular basis of plant cell transformation by Agrobacterium tumefaciens[J]. Basic Life Sci, 1985, 30:815-822.
    [108] Nonaka S, Yuhashi K, Takada K, et al. Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens[J]. New Phytol, 2008, 178(3):647-656.
    [109] Hooykaas PJ, Schilperoort RA. Agrobacterium and plant genetic engineering[J]. Plant Mol Biol, 1992, 19(1):15-38.
    [110] Leclerque A, Wan H, Abschutz A, et al. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana[J]. Curr Genet, 2004, 45(2):111-119.
    [111] Flowers JL, Vaillancourt LJ. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola[J]. Curr Genet, 2005, 48(6):380-388.
    [112] Zambre M, Terryn N, De Clercq J, et al. Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells[J]. Planta, 2003, 216(4):580-586.
    [113] Fullner KJ, Nester EW. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens[J]. J Bacteriol, 1996, 178(6):1498-1504.
    [114] Larrondo LF, Colot HV, Baker CL, et al. Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies[J]. Eukaryot Cell, 2009, 8(5):800-804.
    [115] Nan GL, Walbot V. Plasmid rescue: recovery of flanking genomic sequences from transgenic transposon insertion sites[J]. Methods Mol Biol, 2009, 526:101-109.
    [116] Dong X, Li J, Li S, et al. A novel genotyping strategy based on allele-specific inverse PCR for rapid and reliable identification of conditional FADD knockout mice[J]. Mol Biotechnol, 2008, 38(2):129-135.
    [117] O'Malley RC, Alonso JM, Kim CJ, et al. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome[J]. Nat Protoc, 2007, 2(11):2910-2917.
    [118] Jeung JU, Cho SK, Shin JS. A partial-complementary adapter for an improved and simplified ligation-mediated suppression PCR technique[J]. J Biochem Biophys Methods, 2005, 64(2):110-120.
    [119] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics, 1995, 25(3):674-681.
    [120] Li ZT, Gray DJ. Isolation by improved thermal asymmetric interlaced PCR and characterization of a seed-specific 2S albumin gene and its promoter from grape (Vitis vinifera L.) [J]. Genome, 2005, 48(2):312-320.
    [121] Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. Plant J, 1995, 8(3):457-463.
    [122] Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. Biotechniques, 2007, 43(5):649-654.
    [123] Mullins ED, Chen X, Romaine P, et al. Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer[J]. Phytopathology, 2001, 91(2):173-180.
    [124] Arrillaga-Moncrieff I, Capilla J, Mayayo E, et al. Different virulence levels of the species of Sporothrix in a murine model[J]. Clin Microbiol Infect, 2009, 15(7):651-655.
    [125] Jacobson ES. Pathogenic roles for fungal melanins[J]. Clin Microbiol Rev, 2000, 13(4):708-717.
    [126] Henson JM, Butler MJ, Day AW. The Dark Side of the Mycelium: Melanins of Phytopathogenic Fungi[J]. Annu Rev Phytopathol, 1999, 37:447-471.
    [127] Wang JS, Tseng CH. Changes in pulmonary mechanics and gas exchange after thoracentesis on patients with inversion of a hemidiaphragm secondary to large pleural effusion[J]. Chest, 1995, 107(6):1610-1614.
    [128] Casadevall N, Croisille L. Erythropoiesis disorders and other central autoimmune anemias[J]. Rev Prat, 2001, 51(14):1547-1551.
    [129] Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea[J]. Annu Rev Microbiol, 1996, 50:491-512.
    [130] Langfelder K, Streibel M, Jahn B, et al. Biosynthesis of fungal melanins and their importance for human pathogenic fungi[J]. Fungal Genet Biol, 2003, 38(2):143-158.
    [131] Blinova MI, Kalmykova NV, Iudintseva NM, et al. Effect of melanins from black yeast fungi on cultured human cells. II. Differentiation of keratinocytes in vitro[J]. Tsitologiia, 2002, 44 (8):788-791.
    [132] Romero-Martinez R, Wheeler M, Guerrero-Plata A, et al. Biosynthesis and functions of melanin in Sporothrix schenckii[J]. Infect Immun, 2000, 68 (6):3696-3703.
    [133] Teixeira PA, De Castro RA, Ferreira FR, et al. L-DOPA accessibility in culture medium increases melanin expression and virulence of Sporothrix schenckii yeast cells[J]. Med Mycol, 2010, 48(5):687-695.
    [134] Morris-Jones R, Youngchim S, Gomez BL, et al. Synthesis of melanin-like pigments by Sporothrix schenckii in vitro and during mammalian infection[J]. Infect Immun, 2003, 71(7):4026-4033.
    [135] Revankar SG, Sutton DA. Melanized fungi in human disease[J]. Clin Microbiol Rev, 2010, 23(4):884-928.
    [136] Ruan L, Yu Z, Fang B, et al. Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction[J]. Syst Appl Microbiol, 2004, 27(3):286-289.
    [137] Dadachova E, Casadevall A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin[J]. Curr Opin Microbiol, 2008, 11(6):525-531.
    [138] Jacobson ES, Hove E, Emery HS. Antioxidant function of melanin in black fungi[J]. Infect Immun, 1995, 63(12):4944-4945.
    [139] Gomez BL, Nosanchuk JD. Melanin and fungi[J]. Curr Opin Infect Dis, 2003, 16(2):91-96.
    [140] Kawamura C, Moriwaki J, Kimura N, et al. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants ofMagnaporthe grisea[J]. Mol Plant Microbe Interact, 1997, 10(4):446-453.
    [141] Franzen AJ, Cunha MM, Batista EJ, et al. Effects of tricyclazole (5-methyl-1, 2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells[J]. Microsc Res Tech, 2006, 69(9):729-737.
    [142] Cunha MM, Franzen AJ, Alviano DS, et al. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages[J]. Microsc Res Tech, 2005, 68(6):377-384.
    [143] Chaffin WL, Lopez-Ribot JL, Casanova M, et al. Cell wall and secreted proteins of Candida albicans: identification, function, and expression[J]. Microbiol Mol Biol Rev, 1998, 62(1):130-180.
    [144] Sepulveda P, Cervera AM, Lopez-Ribot JL, et al. Cloning and characterization of a cDNA coding for Candida albicans polyubiquitin[J]. J Med Vet Mycol, 1996, 34(5):315-322.
    [145] Taccioli GE, Grotewold E, Aisemberg GO, et al. Ubiquitin expression in Neurospora crassa: cloning and sequencing of a polyubiquitin gene[J]. Nucleic Acids Res, 1989, 17(15):6153-6165.
    [146] Spitzer ED, Spitzer SG. Structure of the ubiquitin-encoding genes of Cryptococcus neoformans[J]. Gene, 1995, 161(1):113-117.
    [147] Noventa-Jordao MA, do Nascimento AM, Goldman MH, et al. Molecular characterization of ubiquitin genes from Aspergillus nidulans: mRNA expression on different stress and growth conditions[J]. Biochim Biophys Acta, 2000, 1490(3):237-244.
    [148] Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity[J]. Prog Neurobiol, 2004, 73(5):311-357.
    [149] Kirkin V, Dikic I. Role of ubiquitin-and Ubl-binding proteins in cell signaling[J]. Curr Opin Cell Biol, 2007, 19(2):199-205.
    [150] Sung P, Prakash S, Prakash L. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its variousbiological functions[J]. Proc Natl Acad Sci U S A, 1990, 87(7):2695-2699.
    [151] Wu PY, Hanlon M, Eddins M, et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family[J]. EMBO J, 2003, 22 (19):5241-5250.
    [152] Kus BM, Caldon CE, Andorn-Broza R, et al. Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro[J]. Proteins, 2004, 54(3):455-467.
    [153] Takeda K, Yanagida M. Regulation of nuclear proteasome by Rhp6/Ubc2 through ubiquitination and destruction of the sensor and anchor Cut8[J]. Cell, 2005, 122(3):393-405.
    [154] Guo W, Shang F, Liu Q, et al. Differential regulation of components of the ubiquitin-proteasome pathway during lens cell differentiation[J]. Invest Ophthalmol Vis Sci, 2004, 45(4):1194-1201.
    [155] Feng J, Zhu T, Cui Z, Wang K. Construction of T-DNA insertion mutants of Botrytis cinerea via Agrobacterium tumefaciens mediated transformation and sequence analysis of insertion site[J]. Wei Sheng Wu Xue Bao, 2010, 50(2):169-173.
    [156] Dufresne M, Daboussi MJ. Development of impala-based transposon systems for gene tagging in filamentous fungi[J]. Methods Mol Biol, 2010, 638:41-54.
    [157] Dietzl G, Chen D, Schnorrer F, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila[J]. Nature, 2007, 448(7150):151-156.
    [158] Hu SF, Zhu ML, Liu LX, et al. Analysis of differential protein expression of REMI mutant of Trichoderma koningii[J]. Fen Zi Xi Bao Sheng Wu Xue Bao, 2009, 42(1):77-81.
    [159] Bhadauria V, Banniza S, Wei Y, et al. Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes[J]. Comp Funct Genomics, 2009, ID: 380719.
    [160] Magee PT, Gale C, Berman J, et al. Molecular genetic and genomic approaches to the study of medically important fungi[J]. Infect Immun, 2003, 71(5):2299-2309.
    [161] Argmann CA, Dierich A, Auwerx J. Uses of forward and reverse genetics in mice to study gene function[J]. Curr Protoc Mol Biol, 2006, Chapter 29: Unit 29A1.
    [162] Krysan PJ, Young JC, Sussman MR. T-DNA as an insertional mutagen inArabidopsis[J]. Plant Cell, 1999, 11(12):2283-2290.
    [163] Hamer JE, Givan S. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus[J]. Mol Gen Genet, 1990, 223(3):487-495.
    [164] Myouga F, Akiyama K, Motohashi R, et al. The Chloroplast Function Database: a large-scale collection of Arabidopsis Ds/Spm- or T-DNA-tagged homozygous lines for nuclear-encoded chloroplast proteins, and their systematic phenotype analysis[J]. Plant J, 2010, 61(3):529-542.
    [165] Eckert M, Maguire K, Urban M, et al. Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp[J]. FEMS Microbiol Lett, 2005, 253(1):67-74.
    [166] Choi J, Park J, Jeon J, et al. Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae[J]. Mol Microbiol, 2007, 66(2):371-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700