用户名: 密码: 验证码:
有机太阳能电池中的光物理过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机太阳能电池以其清洁、可弯曲和易于大面积制作等优点成为新能源研究中的热点,而有机太阳能电池要真正成为一种低成本、有市场竞争力的可替代绿色能源,首先必须在光电转换效率方面取得突破。在有机太阳能电池中,激子复合是影响光电转换效率的重要因素,为了洞悉有机太阳能电池中的光致电子转移机理,本文以马库斯(Marcus)电子转移理论为基础,通过荧光猝灭重点研究低聚噻吩与富勒烯间的光致电子转移规律。主要研究工作及取得的创新性成果如下:
     (1)由于低聚噻吩与富勒烯的吸收谱存在交迭,研究中将不可避免地遇到内滤效应影响的问题。荧光内滤效应的作用将会对光谱测量产生不可忽视的干扰,使得实验数据不能真实反映荧光猝灭的程度,从而也就无法正确地分析材料间的电子转移效率。针对这一难题,本文首先就内滤效应中的竞争吸收和再吸收过程对荧光猝灭率的影响机理分别进行了研究,通过建立二元系统混合吸收的物理模型,提出了去除内滤效应影响的校正方法,为获取正确可靠的荧光猝灭率提供了保障,也为解决内滤效应影响这一光谱分析中的共性问题提供了一条新的途径。
     (2)施主、受主间的电子转移过程宏观地体现为荧光的猝灭,通过荧光分析就能研究低聚噻吩与富勒烯间的电子转移效率。借助本文所发明的校正方法,首次对低聚噻吩(3T~7T)与富勒烯(C_(60)、C_(70)、C_(84))间的荧光猝灭进行了系统性研究,发现了光致电子转移效率随低聚噻吩分子链长及富勒烯电子亲和力变化的规律;同时,根据Marcus的电子转移理论,对描述电子转移可能性的自由能变化进行了研究,利用Weller方程对所发现的电子转移规律进行了印证。
     (3)为了了解取代基对电子转移效率的影响,本文首次对引入取代基的三联噻吩(3P)与富勒烯(C_(60)、C_(70)、C_(84))间的荧光猝灭进行研究,并与参照材料(5T)进行了对比分析,结果表明其与富勒烯间的电子转移效率同样依赖于富勒烯的电子亲和力,且荧光猝灭率有所上升,但引入取代基后,光吸收及本征荧光强度有所下降。研究结果对于有机光敏材料的合成具有指导意义。
     (4)有机太阳能电池的制备技术是实现太阳能转化为电能的关键。本文对基于低聚噻吩(6T、7T)和富勒烯(C_(60)、C_(70))的有机太阳能电池的制备进行探索性研究,取得了阶段性进展和实践经验,为今后研究工作的深入开展奠定了基础。
     本文的研究工作得到国家自然科学基金的资助(项目编号:20573030)。
Because of the advantages of its clear, flexible and easy to be produced in large-scale, Organic solar cells become the focus in new energy area. But to make it to be a low cost, competitive, alternative green energy, a breakthrough in photoelectric conversion efficiency should be made first. In organic solar cells, the recombination of exciton is an important influence factor of photoelectric conversion efficiency. For insight into the photo-induced electron transfer mechanism in organic solar cells, in this work, based on Marcus theory on electron transfer, we investigate the photo-induced electron transfer from oligothiophenes to fullerenes via fluorescence quenching. The major research and innovative results obtained are as follows:
     (1) In our study, since the absorption spectra of oligothiophenes and fullerenes are overlapping, the inner-filter effect leads to an unrealistically high ratio of fluorescence quenching. Therefor, the experimental data can not be a true reflection of the degree of fluorescence quenching, and thus the efficiency of electron transfer in donor-acceptor system will cannot be properly analyzed. In order to obtain the quenching ratio which can reflect the efficiency of electron transfer realistically, an original correction method is developed via setting up a physical model of absoption of binary system, to remove the affects of the inner-filter effect. This study also provides a new way for solving the general problem of the inner-filter effect.
     (2) Fluorescence quenching is a macro phenomenon of electron transfer in donor-acceptor system, so, the efficiency of electron transfer from oligothiophenes to fullerenes can be studied by fluorescence analyzing. With our correction method, the fluorescence quenching of oligothiophenes(3T~7T) /fullerenes(C_(60)、C_(70)、C_(84)) mixtures in solution is studied systemly, and the results show that the electron transfer in oligothiophenes / fullerenes mixtures is clearly dependent on the chain length of oligothiophene and the electron affinity of the fullerenes. Meanwhile, according to Marcus theory on electron transfer, the change in Gibbs free energy for charge separation is also studied, and the results based on Weller equation are in full agreement with above conclusions.
     (3) To understand the influence of substituents on electron transfer, terthiophene with substituents (3P) is analyzed via fluorescence quenching, the results show that the efficiency of electron transfer from 3P to fullerenes also depends on the electron affinity of fullerenes. Compared with the reference material (5T), the fluorescence quenching ratios have risen, but the absorption and intrinsic fluorescence intensity decreased. This study has some significance to synthesis of organic photosensitive materials.
     (4) Manufacture technique of organic solar cells is the key to realizing the conversion from solar energy into electrical energy. In this paper, the preparation of organic solar cells based on oligothiophenes(6T、7T) and fullerenes(C_(60)、C_(70)) is explored, some interim progresses are obtained, and the practical experiences accumulated lay a foundation for further research..
     This research has been supported by the National Natural Science Fundation (No. 20573030).
引文
[1] SH Schneider, LE Mesirow. The Genesis Strategy: Climate and Global Survival [M]. New York: Plenum Press. 1976.
    [2] Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001:The Scientific Basis [M].Cambridge: Cambridge University Press, 2001.
    [3]唐志鹏,刘卫东,周国梅,等.基于突变级数法的中国CO2减排的影响要素指标体系及其评价研究[J].资源科学,2009,31(11):1999-2005.
    [4] http://en.wikipedia.org
    [5]闫强,王安建,王高尚,等.我国新能源产业发展战略研究[J].商业时代,2009,26:105-107.
    [6] M. P. Thekaekara,‘Data on Incident Solar Energy,’Suppl. Proc. 20th Annu. Meet. Inst. Environ. Sci.1974, 21.
    [7]吴博任.可再生能源够用吗之后起之秀太阳能[J].环境, 2007,10:18-19.
    [8]陈伟立.太阳能:取之不尽而又毫无污染的能源—访著名理论物理学家、中国科学院院士何祚庥[J].中国石化,2007,3:35-37.
    [9] N. S. Sariciftci. Plastic photovoltaic devices [J]. Materials today, 2004, 7:36-40.
    [10]李荣金,李洪祥,胡文平,等.功能聚合物:从薄膜器件到纳米器件[J].物理,2006,35: 476-486.
    [11] D. Kearns, M. Calvin. Photovoltaic effect and photoconductivity in laminated organic systems [J]. J. Chem. Phys., 1958, 29: 950-951.
    [12] N. S. Sariciftci, L. Smilowitz , A. J. Heeger , et al. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene[J]. Science, 1992, 258: 1474-1476.
    [13] Jin Young Kim, Kwanghee Lee, Nelson E. Coates, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing [J]. Science, 2007, 317: 222-225.
    [14] http://www.businesswire.com/portal/site/home/permalink
    [15]德新社(DPA)2007年6月27日报道.
    [16] F. Wurther, M.S. Vollmer, F. Effenberger, et al. Synthesis and energy transfer properties of terminally substituted oligothiophenes [J].J. Am. Chem. Soc., 1995, 117:8090-8099.
    [17] C.W. Tang. Two Layer Organic Photovoltaic Cell [J]. Appl. Phys. Lett., 1986, 48:183-185.
    [18]苏梦蟾,衣立新,汪洋,等.体异质结有机太阳能电池性能提高的研究[J].光谱学与光谱分析,2008,28(4):740-744.
    [19]钟志有,顾锦华,何翔,等.沉积温度影响有机太阳能电池阳极薄膜结晶性能[J].中南民族大学学报(自然科学版),2009,28(4):33-37.
    [20]黄鹤勇,顾晓天,丁艳,等.荧光光谱法研究咖啡因与肌红蛋白的相互作用[J].光谱学与光谱分析,2009,29(10):2798-2802.
    [21]朱建伟,陆毅祥,马利林,等.皮层蛋白受磷酸化调控机制的荧光共振能量转移分析[J].细胞生物学杂质,2009,31(5):689-693.
    [22]赵庆良,贾婷,魏亮亮,等.污水厂二级出水中THMs前体物卤代活性荧光光谱分析[J].中国环境科学,2009,29(11):1164-1170.
    [23]于永丽,刘妍,徐淑坤,等.基于NaGdF4∶Eu纳米粒子的荧光猝灭测定痕量Cu2+[J].光谱学与光谱分析,2009,29(11):3061-3065.
    [24]张梅,赵永亮,赵艳芳,等.铕及其掺杂稀土噻吩乙酸、邻菲啰啉配合物的合成、表征及荧光性能[J].发光学报,2008,29(5):827-832.
    [25]徐金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [26] J. Sakai, T. Taima, T. Yamanari, et al. Annealing effect in the sexithiophene: C70 small molecule bulk heterojunction organic photovoltaic cells [J].Solar Energy Materials & Solar Cells, 2009, 93: 1149-1153.
    [27] J. R. Lakowicz. Principles of Fluorescence Spectroscopy [M].Plenum Press, New York, 1983.
    [28] Steiner R F, Weinryb L. Excited States of Proteins and Nucleic Acids [M].New York: Plenum Press, 1971.
    [29]徐岩,黄汉国,沈含熙.喹诺酮类药物对人血清白蛋白的荧光猝灭研究[J].分析化学,1998,26(12):1494-1497.
    [30]杨冉,屈凌波,陈晓岚,等.柚皮素、柚皮苷与溶菌酶相互作用的荧光光谱法研究[J].化学学报,2006,64(13):1349-1354.
    [31]杨军,余德顺,刘绍璞,等.二阶导数同步荧光光谱法同时直接测定厚朴酚及和厚朴酚[J].分析化学,2009,37(1):107-110.
    [32]陈代武,谢青季,蒋雪琴,等.槲皮素与酪蛋白和牛血清白蛋白的相互作用及共存碳纳米管的影响[J].物理化学学报,2008,24(3):379-387.
    [33]封伟,曹猛,韦玮,等.有机聚合物受体给体复合体薄膜光伏电池性能研究[J].物理学报,2001,50:1157-1162
    [34]陈向东,王锐,程萍,高峰,杨继平.低聚噻吩/富勒烯混合液中富勒烯吸收对荧光猝灭效率影响的校正方法[J].中国科技大学学报, 2008, 38(9):1123-1128.
    [35] D. Grebner, M. Helbig, and S. Rentsch. Size-Dependent Properties of Oligothiophenes by Picosecond Time-Resolved Spectroscopy [J]. Phys. Chem., 1995, 99, 16991-16998.
    [36] YANG Junlin, BAI Fenglian, LIN Hongzhen. Direct Evidence of Photoinduced ChargeTransfer from Alternating Copolymer to Buckminsterfullerene [J].Macromol.chem.phys, 2001, 202:1824-1828.
    [37]马丽英,姜吉刚,冯霞光,等.乙酰丙酮-甲醛为荧光衍生试剂同步荧光法测定胺类物质[J].化学工程师,2009,3:24-26.
    [38]张先廷,赵惠玲,杜黎明.同步荧光光谱法测定人体尿液中加替沙星[J].分析科学学报,2008,24(3):344-346.
    [39]郭尧君.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社,1983.
    [40] A. F. M. Mustafizur Rahman, Sumanta Bhattacharya, Xiaobin Peng, et al. Unexpectedly large binding constants of azulenes with fullerenes [J].Chem. Commun. , 2008, 1196-1198.
    [41] Lorenzo Stella, Agostina L. Capodilupo, Massimo Bietti. A reassessment of the association between azulene and [60] fullerene. Possible pitfalls in the determination of binding constants through fluorescence spectroscopy [J].Chem. Commun. , 2008, 4744-4746.
    [42]张荣斌,周培深,林国春,等.血清一阶导数荧光光谱诊断早期恶性肿瘤[J].分析化学,2007,35(12):1795-1797.
    [43]张建,邱宇,于道永.同步荧光光谱法测定十二烷基苯磺酸钠的临界胶束浓度[J].应用化学,2009,26(12):1480-1483.
    [44] Louri E. Borissevitch. More about the inner filter effect: Corrections of Stern-Volmer fluorescence quenching constants are necessary at very low optical absorption of the quencher [J]. Journal of Luminescence, 1999, 81 (3):219-224.
    [45] J Batke. Spectrofluorometric Analysis of the Dissociation of Oligomeric Macromolecules: Correction for the Absorption of Exciting and Emitted light in a Side-Bottom Type Fluorometer [J]. Ananlytical Biochemistry, 1982, 121(1):123-128.
    [46]刘秀,王文军,蔡志岗,等.富勒烯C60掺杂的共轭高聚物混合薄膜的光谱性质[J].光谱学与光谱分析,2002,22(4): 535-537.
    [47] Hal P A, Knol J, Langeveld-Voss B M.W, et al. Photoinduce energy and electron transfer in fullerene-oligothiophene-fullerene triads [J].Phys Chem A, 2000,104: 5974-5988
    [48] D. M. Chapin, C. S. Fuller, G. L. Pearson. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power [J].J. Appl. Phys., 1954, 25:676-678.
    [49] D. C. Reynolds, G. Leies, L. L. Antes, R. E. Marburger. Photovoltaic Efffect in Cadmium Sulfide [J] Phys. Rev., 1954, 96: 533-534.
    [50] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x [J]. J. Chem. Soc., Chem. Commun. 1977, 578-580.
    [51] C. K. Chiang, C. R. Fincher, Y. W. Park, et al. Electrical Conductivity in DopedPolyacetylene [J].Phys. Rev. Lett., 1977, 39:1098-1101.
    [52] C. K. Chiang, Y. W. Park, A. J. Heeger, et al. Conducting polymers: Halogen doped polyacetyleneJ. Chem. Phys. 1978, 69:5098-5104.
    [53] G. A. Chamberlain, Organic solar cells: A review [J].Solar Cells, 1983, 8:47-83.
    [54] J. Simon, J. J. André. Molecular Semiconductors [M].Springer Verlag, Berlin, 1985.
    [55] D. W?hrle, D. Meissner. Organic Solar Cells [J].Adv. Mater., 1991, 3:129-138.
    [56] N. S. Sariciftci (Ed.), Primary photoexcitations in conjugated polymers: Molecular Exciton versus Semiconductor Band Model [M].World Scientific Publishers, Singapore, 1998.
    [57] S. R. Forrest. The Limits to Organic Photovoltaic Cell Efficiency [J]. MRS Bulletin, 2005, 30: 28-32.
    [58] H. S. Nalwa (Ed.), Handbook of Organic Conductive Molecules and Polymers [M].Wiley, New York, 1996.
    [59] G.Yu, J.Cao, J.C.Hummelen, F.Wudl, A.J.Heeger. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J].Science, 1995, 270:1789-1791.
    [60] J. J. M. Halls, C. A. Walsh, N. C. Greenham, et al. Efficient photodiodes from interpenetrating polymer networks [J].Nature, 1995, 376:498-500.
    [61] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, et al. 2.5% efficient organic plastic solar cells [J].Appl. Phys. Lett., 2001, 78:841-843.
    [62] K. Fesser, A. R. Bishop, D. K. Campbell. Optical absorption from polarons in a model of polyacetylene [J].Phys. Rev. B 1983, 27:4804-4825.
    [63] Paulus A. van Hal, Photophysics of Molecules and Materials for Polymer Solar Cells [D]. Druk: Universiteitsdrukkerij, Technische Universiteit Eindhoven, 2003.
    [64] J.M.Kroon, S.C.Veenstra, L.H.Slooff, et al. Polymer Based Photovotaics: Novel, Concepts, Materials and State of the ART Efficiencis. - 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 2005 (6-10 June).
    [65] T. F?rster. Transfer mechanisms of electronic excitation [J].Discuss. Faraday Soc. 1959, 27:7-17.
    [66] J. Mott and G. Pfister (Eds.), Electronic Properties of Polymers [M].Wiley, Chichester, 1982.
    [67] D. L. Dexter. A Theory of Sensitized Luminescence in Solids [J].J. Chem. Phys. 1953, 21:836-850.
    [68] R. A. Marcus, N. Sutin. Electron transfers in chemistry and biology [J].Biochim. Biophys. Acta, 1985, 811:265-322.
    [69] R. A. Marcus. Electron Transfer Reactions in Chemistry: Thery and Experiment (NobelLecture) [J].Angew. Chem. Int. Ed. Engl. 1993, 32: 1111-1121.
    [70] H. Oevering, M. N. Paddon-Row, M. Heppener, et al. Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges: distance and solvent dependence [J].J. Am. Chem. Soc. 1987, 109:3258-3269.
    [71] J. Ulstrup. Charge Transfer Processes in Condensed Media [M] Springer-Verlag, Berlin, 1979.
    [72] D. Devault. Quantum-Mechanical Tunneling in Biological Systems [M].Cambridge Univ. Press, Cambridge, 1984, 2nd edition.
    [73] M. D. Newton, N. Sutin, Annu. Electron transfer reactions in condensed phases [J]. Annu. Rev. Phys. Chem. 1984, 35:437-480.
    [74] B. Pispisa, M. Venanzi, M. D'alagni. Photophysical behavior of poly (L-lysine) carrying porphyrin and naphthyl chromophores [J].Biopolymers, 2004, 34:435-442.
    [75] J. R. Miller, J. V. Beitz, R. K. Huddleston. Effect of free energy on rates of electron transfer between molecules [J].J. Am. Chem. Soc., 1984, 106, 5057-5068.
    [76] G. L. Closs, L. T. Calcaterra, N. J. Green, et al. Distance, Stereoelectronic Effects, and the Marcus Inverted Region in Intramolecular Electron Transfer in Organic Radical Anions [J].J. Phys. Chem. 1986, 90:3673-3683.
    [77] G. L. Closs, J. R. Miller. Intramolecular Long-Distance Electron Transfer in Organic Molecules [J].Science, 1998, 240: 440-447.
    [78] Weller A. Photoinduced electron transfer in solution: Exciplex and radical ion pair formation free enthalpies and their solvent dependence [J]. Z Phys Chem Neue Folge, 1982, 133: 93-98.
    [79]陈向东,高峰,程萍,王锐,杨继平.四噻吩与富勒烯(C60、C70、C84)间光致电子转移效率的研究[J].合肥工业大学学报(自然科学版), 2009, 32(7):1094-1096.
    [80] N. S. Sariciftci, A. J. Heeger. Photophysics of Semiconducting Polymer-C60 Composites: A Comparative Study [J].Synthetic Metals, 1995, 70:1349-1352.
    [81] K. Pichlert, S. Grahamt, O. M. Gelsent, et al. Photophysical properties of solid films of fullerene, C60 [J]. J. Phys.: Condens. Matter, 1991, 3: 9259-9270.
    [82] O. V. Boltalina, E. V. Dashkova, L. N. Sidorov. Gibbs energies of gas-phase electron transfer reactions involving the large fullerene anions [J]. Chem Phys Lett, 1996, 256: 253-260.
    [83] Ralph S, Becker, J. Seixas de Melo, Antonio L.MaGanita, et al. Comprehensive investigation of the solutionphotophysics and theoretical aspects ofoligothiophenes of 1-7 rings [J]. Pure & Appl. Chem.1995, 67:9-16.
    [84] M. K. Nazeeruddin, A. Kay, I. Rodicio, et al.Conversion of Light to Electricity bycis-X2Bis(2, 2’-bipyridyl-4, 4’-dicarboxylate) ruthenium (Ⅱ) Charge-Transfer Sensitizers(X=C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes [J]. J. Am. Chem. Soc., 1993, 115:6382-6390.
    [85] Sakata Y, Tsue H, O’Neil M P, et al. Effect of donor-acceptor orientation on ultrafast photoinduced electron transfer and dark charge recombination in porphyrin-quinone molecules [J]. J. Am. Chem. Soc., 1994, 116: 6904-6909.
    [86] Colditz R,Grebner D,Helbig M,et al. Theoretical Studies and Spectroscopic Investigations of groud and excited electronic states of thiophene oligomers [J].chemical physics.1995.201:309-320.
    [87] CHEN Xiang-dong, DING Chen, CHENG Ping, WANG Rui, GAO Feng, YANG Ji-ping. Size Dependence of Electron Transfer Efficiency for Oligothiophenes/Fullerenes Mixtures in Solution[J].复旦学报(自然科学版), 2009, 48(3):391-396.
    [88] J. Sakai, T. Taima, K. Saito. Efficient oligothiphene: fullerene bulk heterojunction organic photovoltaic cells [J]. Org. Electron. 2008, 9:582-590.
    [89]谈国强,刘剑,贺中亮.自组装单层膜技术及其在制备功能薄膜领域中的应用[J].陶瓷,2009,7:9-13.
    [90]侯长军,向芸颉,法焕宝,等.新型自组装卟啉纳米材料及其光学性质研究[J].功能材料,2009,40(9):1425-1428.
    [91]陈安尚,李亚明,张华.取代基对4-N,N-二苯胺基均二苯乙烯类电致发光材料光电特性的影响[J].化学学报,2005,63:460-464.
    [92]陈新斌,孙咏芬,陈俊琛,等.卟啉化合物荧光性能的取代基效应研究[J].光谱实验室,2006,23(2):1-2.
    [93] H. Gommans, B. Verreet, B.P. Rand, et al. On the role of bathocuproine in organic photovoltaic cells [J]. Adv. Funct. Mater, 2008, 18:3686-3691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700