用户名: 密码: 验证码:
酵母对纤维素水解液中复合抑制剂耐受的系统分析与解耦
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素预处理过程中产生的呋喃类、弱酸类和酚类化合物等对酵母的纤维素乙醇生产产生明显的协同抑制。发育能够耐受多种抑制剂的菌种,并深入剖析菌株与抑制剂之间复杂的相互作用关系,对优化纤维素乙醇工业生产是一个挑战。本研究通过紫外诱变结合驯化的方法获得一株能够同时耐受三种抑制剂的酵母菌株;并从转录、蛋白和代谢水平系统地比较分析原始酿酒酵母和耐受酵母对复合抑制剂响应机制的差异,简化复合抑制剂与酵母细胞之间的复杂关系。
     以酿酒酵母为出发菌种,通过紫外诱变结合驯化的方法筛选出的耐受菌株,在含1.3 g/L糠醛,0.5 g/L苯酚和5.3 g/L乙酸的高糖培养基中发酵培养,与原始酵母相比,延滞期由48 h缩短至4 h,生长速率提高了8.7倍、葡萄糖消耗速率和乙醇生产速率均提高了3.3倍,糠醛转化时间由40 h减少到6 h,乙醇产量没有显著变化,为48.28 g/L,表现出很强的耐受能力。
     通过对三种抑制剂对细胞协同作用的代谢水平分析,发现乙酸对酵母细胞的胁迫作用最明显,而糠醛、苯酚则增强了乙酸对细胞的胁迫;耐受酵母在代谢方面表现出较强的耐受性,主要表现为氨基酸和碳代谢等受复合抑制剂的影响较小。蛋白水平研究表明复合抑制剂对酵母产生氧化胁迫和未折叠蛋白胁迫等,但原始和耐受酵母的应答机制不同;耐受酵母能通过胁迫响应和脱毒来自我保护,且通过较低的氨基酸和核苷酸代谢和较高能量代谢,使其本身具有更强的耐受能力,而原始酵母需要依赖糖酵解和糖异生产生更多能量以抵抗抑制剂的胁迫作用。在蛋白水平和代谢水平的研究都发现,复合抑制剂使酿酒酵母的蛋白降解增加,且诱发氧化胁迫,从而抑制细胞的生长和生产。
     对原始和耐受酵母在转录水平对复合抑制剂的响应进行分析,发现复合抑制剂使原始和耐受酵母中与RNA和蛋白合成相关的基因显著下调,参与电子传递和能量合成相关基因显著上调,说明复合抑制剂影响酵母的生物合成和能量代谢,细胞需要合成更多能量抵抗抑制剂的胁迫;另外,复合抑制剂导致原始酵母蛋白降解,诱发氧化脱毒,使细胞产生自噬。通过研究细胞膜磷脂对复合抑制剂的响应机制,发现磷脂酰胆碱(PC)和磷脂酰肌醇(PI)链长的变化是酵母细胞对复合抑制剂响应的一个重要方面;磷脂酰乙醇胺(PE)和磷脂酰丝氨酸(PS)在原始和耐受酵母中对复合抑制剂的响应差异最大。转录和磷脂水平的研究结果表明,复合抑制剂使酵母细胞PE转化为PC的步骤严重受阻,酵母细胞膜曲率增加、细胞膜孔径增大,使抑制剂更易进入胞内,对细胞产生抑制作用。
Inhibitors produced during lignocellulose pretreatment including furan derivatives, weak acids and phenolic compounds impose severely synergistic effects on Saccharomyces cerevisiae during ethanol fermentation. Obtaining a stain that could tolerate combined inhibitors and deeply investigating the relationship between strain and inhibitors were challenges for lignocellulosic fermentation. In this study, a tolerant yeast which could exhibit better characteristics in the presence of combined-inhibitors (furfural, acetic acid and phenol) was obtained. The complex relationship between combined inhibitors and yeast cells was analyzed systematically on mRNA, protein and metabolite levels.
     The tolerant yeast which was obtained by UV mutagenesis and domestication exhibited better characteristics in the presence of combined-inhibitors (1.3 g/L furfural, 5.3 g/L acetic acid and 0.5 g/L phenol). The lag phase of tolerant yeast shortened from 48 h to 4 h. The rates of growth, glucose consumption, and ethanol production increased 8.7, 3.3 and 3.3 fold, respectively. Furfural conversion time shortened from 40 h to 6 h. And ethanol production was 48.28 g/L, which did not change significantly compared to parental yeast.
     Analysis on metabolite levels indicated that acetic acid played the most important role in the combined inhibitors. And its influence on the growth and metabolism of yeast cells was enhanced by the presence of phenol and furfural. Tolerant yeast exhibited better tolerance to inhibitors, reflecting on less affected amino acid metabolism and carbon central metabolism. Study on protein levels suggested that oxidative, osmotic and unfolded protein stress responses were induced in yeast by combined inhibitors, but the mechanisms of stress response in parental and tolerant yeasts were different. Higher stress response and detoxification related proteins were important for tolerant yeast to protect itself. And lower levels of amino acid and nucleotide metabolism related proteins and higher levels of energy related proteins were necessary for tolerant yeast to defend the inhibitors stresses. Glycolysis and gluconeogenesis related proteins were upregulated in parental yeas to produce more energy to resist the inhibitors stresses. Metabolomic and proteomic results indicated that protein degradation was increased by combined inhibitors, inducing oxidative stress and inhibiting growth and production of yeast.
     Study on transcriptional level found that RNA and protein synthesis related genes were repressed, while electron transport and membrane-associated energy conservation related genes were upregulated by combined inhibitors. It indicated that biosynthesis in yeast was inhibited, and more energy was needed to defend the inhibitors stresses. In addition, inhibitors caused protein degradation in cells, resulting in oxidative detoxification and autophagy. Research on phospholipids of cell membrane revealed that the variation of chain length in phosphatidylcholine (PC) and phosphatidylinositol (PI) was induced by inhibitors. Phosphatidylethanolamine (PE) and phosphatidylserine (PS) were significantly different for parental and tolerant yeasts in response to combined inhibitors. Transcriptomic and lipidomic results indicated that PC synthesized was inhibited by inhibitors, resulting in increased membrane curvature and pore size, which facilitated the import of inhibitors to cells to affect normal metabolism.
引文
[1] Yang, B. and Wyman, C.E., Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts & Biorefining-Biofpr, 2008. 2(1): 26-40.
    [2] Palmqvist, E. and Hahn-Hagerdal, B., Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 2000. 74(1): 25-33.
    [3] Sikkema, J., de Bont, J.A., and Poolman, B., Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 1995. 59(2): 201-222.
    [4] Beltrame, P., Beltrame, P.L., Carniti, P., et al., Inhibiting action of chlorophenols on biodegradation of phenol and its correlation with structural properties of inhibitors. Biotechnology and Bioengineering, 1988. 31(8): 821-828.
    [5] Sierra-Alvarez, R. and Lettinga, G., The effect of aromatic structure on the inhibition of acetoclastic methanogenesis in granular sludge. Applied Microbiology and Biotechnology, 1991. 34(4): 544-550.
    [6] Larsson, S., Quintana-Sainz, A., Reimann, A., et al., Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2000. 84-86: 617-632.
    [7] Keweloh, H., Weyrauch, G., and Rehm, H.J., Phenol-induced membrane changes in free and immobilized Escherichia coli. Applied Microbiology and Biotechnology, 1990. 33(1): 66-71.
    [8] Heipieper, H.J., Keweloh, H., and Rehm, H.J., Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Applied and Environmental Microbiology, 1991. 57(4): 1213-1217.
    [9] Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., et al., The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 1999. 24(3-4): 151-159.
    [10] Verduyn, C., Postma, E., Scheffers, W.A., et al., Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 1992. 8(7): 501-517.
    [11] Viegas, C.A. and Sacorreia, I., Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. Journal of General Microbiology, 1991. 137: 645-651.
    [12] Pampulha, M.E. and Loureiro-Dias, M.C., Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. Fems Microbiology Letters, 2000. 184(1): 69-72.
    [13] Piper, P., Calderon, C.O., Hatzixanthis, K., et al., Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology-Sgm, 2001. 147: 2635-2642.
    [14] Ludovico, P., Sousa, M.J., Silva, M.T., et al., Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology-Sgm, 2001. 147: 2409-2415.
    [15] Giannattasio, S., Guaragnella, N., Corte-Real, M., et al., Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene, 2005. 354: 93-98.
    [16] Almeida, B., Ohlmeier, S., Almeida, A.J., et al., Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics, 2009. 9(3): 720-732.
    [17] Liu, Z.L., Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Applied Microbiology and Biotechnology, 2006. 73(1): 27-36.
    [18] Palmqvist, E., Almeida, J.S., and Hahn-Hagerdal, B., Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnology and Bioengineering, 1999. 62(4): 447-454.
    [19] Boyer, L.J., Vega, J.L., Klasson, K.T., et al., The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass and Bioenergy, 1992. 3(1): 41-48.
    [20] Navarro, A.R., Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: Mathematical models. Current Microbiology, 1994. 29(2): 87-90.
    [21] Azhar, A.F., Bery, M.K., Colcord, A.R., et al., Factors affecting alcohol fermentation of wood acid hydrolysate. Biotechnology & Bioengineering Symposium, 1981. 293-300.
    [22] Allen, S.A., Clark, W., McCaffery, J.M., et al., Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2010. 3.
    [23] Liu, Z.L., Moon, J., Andersh, B.J., et al., Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2008. 81(4): 743-753.
    [24] Klinke, H.B., Thomsen, A.B., and Ahring, B.K., Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 2004. 66(1): 10-26.
    [25] Palmqvist, E., Grage, H., Meinander, N.Q., et al., Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 1999. 63(1): 46-55.
    [26] Mandelstam, J., Protein turnover of its function in the economy of the cell. Annals of the New York Academy of Sciences, 1963. 102(3): 621-636.
    [27] Zaldivar, J., Martinez, A., and Ingram, L.O., Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 1999. 65(1): 24-33.
    [28] Zaldivar, J., Martinez, A., and Ingram, L.O., Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 2000. 68(5): 524-530.
    [29] Olsson, L. and Hahn-H?gerdal, B., Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 1996. 18(5): 312-331.
    [30] Slininger, P.J., Gorsich, S.W., and Liu, Z.L., Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124. Biotechnology and Bioengineering, 2009. 102(3): 778-790.
    [31] Liu, Z.L., Slininger, P.J., and Gorsich, S.W., Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Applied Biochemistry and Biotechnology, 2005. 121: 451-460.
    [32] Keating, J.D., Panganiban, C., and Mansfield, S.D., Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 2006. 93(6): 1196-1206.
    [33] Almeida, J.R.M., Karhumaa, K., Bengtsson, O., et al., Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresource Technology, 2009. 100(14): 3674-3677.
    [34] Tian, S., Zhou, G., Yan, F., et al., Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification. Biotechnology Advances, 2009. 27(5): 656-60.
    [35] Sauer, U., Evolutionary engineering of industrially important microbial phenotypes. Advances in Biochemical Engineering Biotechnology, 2001: 129-169.
    [36] Xia, J.M. and Yuan, Y.J., Comparative Lipidomics of Four Strains of Saccharomyces cerevisiae Reveals Different Responses to Furfural, Phenol, and Acetic Acid. Journal of Agricultural and Food Chemistry, 2009. 57(1): 99-108.
    [37] Ding, M.Z., Zhou, X., and Yuan, Y.J., Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics, 2010. 6(1): 42-55.
    [38] Almeida, J.R.M., Modig, T., Petersson, A., et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology, 2007. 82(4): 340-349.
    [39] Petersson, A., Almeida, J.R.M., Modig, T., et al., A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast, 2006. 23(6): 455-464.
    [40] Gorsich, S.W., Dien, B.S., Nichols, N.N., et al., Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2006. 71(3): 339-349.
    [41] Hood, L., Heath, J.R., Phelps, M.E., et al., Systems biology and new technologies enable predictive and preventative medicine. Science, 2004. 306(5696): 640-643.
    [42] Kitano, H., Systems biology: a brief overview. Science, 2002. 295(5560): 1662-1664.
    [43] Lee, S.Y., Lee, D.Y., and Kim, T.Y., Systems biotechnology for strain improvement. Trends in Biotechnology, 2005. 23(7): 349-358.
    [44] Park, J.H., Lee, S.Y., Kim, T.Y., et al., Application of systems biology for bioprocess development. Trends in Biotechnology, 2008. 26(8): 404-412.
    [45] Ma, M. and Liu, Z.L., Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010. 87(3): 829-845.
    [46] Stanley, D., Bandara, A., Fraser, S., et al., The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 2010. 109(1): 13-24.
    [47] Alexandre, H., Ansanay-Galeote, V., Dequin, S., et al., Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. Febs Letters, 2001. 498(1): 98-103.
    [48] Hirasawa, T., Yoshikawa, K., Nakakura, Y., et al., Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, 2007. 131(1): 34-44.
    [49] Li, B.Z. and Yuan, Y.J., Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010. 86(6): 1915-1924.
    [50] Li, B.Z., Cheng, J.S., Qiao, B., et al., Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. Journal of Industrial Microbiology & Biotechnology, 2010. 37(1): 43-55.
    [51] Li, B.Z., Cheng, J.S., Ding, M.Z., et al., Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. Journal of Biotechnology, 2010. 148(4): 194-203.
    [52] Wu, H., Zheng, X.H., Araki, Y., et al., Global gene expression analysis of yeast cells during sake brewing. Applied and Environmental Microbiology, 2006. 72(11): 7353-7358.
    [53] Aebersold, R. and Mann, M., Mass spectrometry-based proteomics. Nature, 2003. 422(6928): 198-207.
    [54] Graham, R.L., Graham, C., and McMullan, G., Microbial proteomics: a mass spectrometry primer for biologists. Microbial Cell Factories, 2007. 6: 26.
    [55] Yan, W. and Chen, S.S., Mass spectrometry-based quantitative proteomic profiling. Briefings in Functional Genomics & Proteomics, 2005. 4(1): 27-38.
    [56] Sa-Correia, I. and Teixeira, M.C., 2D electrophoresis-based expression proteomics: a microbiologist's perspective. Expert Review of Proteomics, 2010. 7(6): 943-953.
    [57] Gorg, A., Weiss, W., and Dunn, M.J., Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004. 4(12): 3665-3685.
    [58] Pham, T.K. and Wright, P.C., The Proteomic Response of Saccharomyces cerevisiae in Very High Glucose Conditions with Amino Acid Supplementation. Journal of Proteome Research, 2008. 7(11): 4766-4774.
    [59] Lin, F.M., Qiao, B., and Yuan, Y.J., Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound. Applied and Environmental Microbiology, 2009. 75(11): 3765-3776.
    [60] Cheng, J.S., Ding, M.Z., Tian, H.C., et al., Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae. Proteomics, 2009. 9(20): 4704-4713.
    [61] Cheng, J.S., Zhou, X., Ding, M.Z., et al., Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Applied Microbiology and Biotechnology, 2009. 83(5): 909-923.
    [62] Szopinska, A. and Morsomme, P., Quantitative proteomic approaches and their application in the study of yeast stress responses. Omics-A Journal of Integrative Biology, 2010. 14(6): 639-649.
    [63] Allen, J., Davey, H.M., Broadhurst, D., et al., High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 2003. 21(6): 692-696.
    [64] Nielsen, J. and Oliver, S., The next wave in metabolome analysis. Trends Biotechnol, 2005. 23(11): 544-6.
    [65] Fiehn, O., Kopka, J., Dormann, P., et al., Metabolite profiling for plant functional genomics. Nature Biotechnology, 2000. 18(11): 1157-1161.
    [66] Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., et al., Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. Embo Reports, 2003. 4(10): 989-993.
    [67] Garcia, D.E., Baidoo, E.E., Benke, P.I., et al., Separation and mass spectrometry in microbial metabolomics. Current Opinion in Microbiology, 2008. 11(3): 233-239.
    [68] Tweeddale, H., Notley-McRobb, L., and Ferenci, T., Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ("Metabolome") analysis. Journal of Bacteriology, 1998. 180(19): 5109-5116.
    [69] Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., et al., Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast, 2005. 22(14): 1155-1169.
    [70] Gonzalez, B., Francois, J., and Renaud, M., A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 1997. 13(14): 1347-1355.
    [71] Hans, M.A., Heinzle, E., and Wittmann, C., Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2001. 56(5-6): 776-779.
    [72] Hajjaj, H., Blanc, P.J., Goma, G., et al., Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. Fems Microbiology Letters, 1998. 164(1): 195-200.
    [73] Maharjan, R.P. and Ferenci, T., Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Analytical Biochemistry, 2003. 313(1): 145-154.
    [74] Wittmann, C., Kromer, J.O., Kiefer, P., et al., Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Analytical Biochemistry, 2004. 327(1): 135-139.
    [75] de Koning, W. and van Dam, K., A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 1992. 204(1): 118-123.
    [76] Villas-Boas, S.G., Mas, S., Akesson, M., et al., Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 2005. 24(5): 613-646.
    [77] van Mispelaar, V.G., Tas, A.C., Smilde, A.K., et al., Quantitative analysis of target components by comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2003. 1019(1-2): 15-29.
    [78] Halket, J.M., Waterman, D., Przyborowska, A.M., et al., Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany, 2005. 56(410): 219-243.
    [79] Wenk, M.R., The emerging field of lipidomics. Nature Reviews Drug Discovery, 2005. 4(7): 594-610.
    [80] Han, P.P. and Yuan, Y.J., Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. Faseb Journal, 2009. 23(2): 623-630.
    [81] Xia, J.M., Jones, A.D., Lau, M.W., et al., Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and Its parental strain in different media reveals correlations between membrane lipids and fermentation capacity. Biotechnology and Bioengineering, 2011. 108(1): 12-21.
    [82] Kopka, J., Schauer, N., Krueger, S., et al., GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics, 2005. 21(8): 1635-1638.
    [83] Smith, C.A., O'Maille, G., Want, E.J., et al., METLIN - A metabolite mass spectral database. Therapeutic Drug Monitoring, 2005. 27(6): 747-751.
    [84] Paley, S.M. and Karp, P.D., The pathway tools cellular overview diagram and omics viewer. Nucleic Acids Research, 2006. 34(13): 3771-3778.
    [85] Caspi, R., Foerster, H., Fulcher, C.A., et al., MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research, 2006. 34: 511-516.
    [86] Devantier, R., Scheithauer, B., Villas-Boas, S.G., et al., Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering, 2005. 90(6): 703-714.
    [87] Ding, M.Z., Cheng, J.S., Xiao, W.H., et al., Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS. Metabolomics, 2009. 5(2): 229-238.
    [88] Ding, M.Z., Li, B.Z., Cheng, J.S., et al., Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. Omics-A Journal of Integrative Biology, 2010. 14(5): 553-561.
    [89] Ding, M.Z., Tian, H.C., Cheng, J.-S., et al., Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. Journal of Biotechnology, 2009. 144(4): 279-286.
    [90] Ding, M.Z., Wang, X., Yang, Y., et al., Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics, 2011: 1-12.
    [91] Sen, R. and Swaminathan, I., Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal, 2004. 21(2): 141-148.
    [92] Lin, F.M., Tang, Y., and Yuan, Y.J., Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics, 2009. 9(24): 5471-5483.
    [93] Mukhopadhyay, A., Redding, A.M., Rutherford, B.J., et al., Importance of systems biology in engineering microbes for biofuel production. Current Opinion in Biotechnology, 2008. 19(3): 228-234.
    [94] Stephanopoulos, G., Alper, H., and Moxley, J., Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnology, 2004. 22(10): 1261-1267.
    [95] Askenazi, M., Driggers, E.M., Holtzman, D.A., et al., Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnology, 2003. 21(2): 150-156.
    [96] Barrett, C.L., Kim, T.Y., Kim, H.U., et al., Systems biology as a foundation for genome-scale synthetic biology. Current Opinion in Biotechnology, 2006. 17(5): 488-492.
    [97] Petranovic, D. and Vemuri, G.N., Impact of yeast systems biology on industrial biotechnology. Journal of Biotechnology, 2009. 144(3): 204-211.
    [98] Andrianantoandro, E., Basu, S., Karig, D.K., et al., Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2006. 2: 28.
    [99] Kohanski, M.A., Dwyer, D.J., Hayete, B., et al., A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007. 130: 797-810.
    [100]Lu, T.K. and Collins, J.J., Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(12): 4629-4634.
    [101]Hill, J., Nelson, E., Tilman, D., et al., Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(30): 11206-11210.
    [102] Larsson, S., Cassland, P., and Jonsson, L.J., Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology, 2001. 67(3): 1163-1170.
    [103] Martinez, A., Rodriguez, M.E., Wells, M.L., et al., Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 2001. 17(2): 287-293.
    [104] Horvath, I.S., Franzen, C.J., Taherzadeh, M.J., et al., Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Applied and Environmental Microbiology, 2003. 69(7): 4076-4086.
    [105] Horvath, I.S., Taherzadeh, M.J., Niklasson, C., et al., Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2001. 75(5): 540-549.
    [106] Taherzadeh, M.J., Gustafsson, L., Niklasson, C., et al., Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 1999. 87(2): 169-174.
    [107] Oliva, J.M., Saez, F., Ballesteros, I., et al., Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2003. 105-108: 141-153..
    [108] Fiehn, O., Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology, 2002. 48(1-2): 155-171.
    [109] Casal, M., Cardoso, H., and Leao, C., Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology-Uk, 1996. 142: 1385-1390.
    [110] Pampulha, M.E. and Loureiro-Dias, M.C., Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Applied Microbiology and Biotechnology, 1989. 31(5): 547-550.
    [111] Russell, J.B., Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of Applied Bacteriology. 1992. 73(5): 363-370.
    [112] Eklund, T., The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. Journal of Applied Bacteriology, 1983. 54(3): 383-389.
    [113] Mira, N.P., Palma, M., Guerreiro, J.F., et al., Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 2010. 9: 79.
    [114] Willetts, N.S., Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochemical Journal, 1967. 103(2): 453-461.
    [115] Bauer, B.E., Rossington, D., Mollapour, M., et al., Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry, 2003. 270(15): 3189-3195.
    [116] Heipieper, H.J., Weber, F.J., Sikkema, J., et al., Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 1994. 12(10): 409-415.
    [117] Mira, N.P., Teixeira, M.C., and Sa-Correia, I., Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. Omics-A Journal of Integrative Biology, 2010. 14(5): 525-540.
    [118] Caridi, A., Protective agents used to reverse the metabolic changes induced in wine yeasts by concomitant osmotic and thermal stress. Letters in Applied Microbiology, 2002. 35(2): 98-101.
    [119] Furukawa, K., Kitano, H., Mizoguchi, H., et al., Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. Journal of Bioscience and Bioengineering, 2004. 98(2): 107-113.
    [120] Coburn, R.F., Polyamine effects on cell function: Possible central role of plasma membrane PI(4,5)P2. Journal of Cellular Physiology, 2009. 221(3): 544-551.
    [121] Tabor, C.W. and Tabor, H., Polyamines in microorganisms. Microbiological Reviews, 1985. 49(1): 81-99.
    [122] Jozefczuk, S., Klie, S., Catchpole, G., et al., Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 2010. 6: 364.
    [123] Pampulha, M.E. and Loureiro-Dias, M.C., Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Applied Microbiology and Biotechnology, 1990. 34(3): 375-380.
    [124] Weber, H., Polen, T., Heuveling, J., et al., Genome-wide analysis of the general stress response network in Escherichia coli: sigma(S)-dependent genes, promoters, and sigma factor selectivity. Journal of Bacteriology, 2005. 187(5): 1591-1603.
    [125] Brewster, J.L., Devaloir, T., Dwyer, N.D., et al., An osmosensing signal transduction pathway in yeast. Science, 1993. 259(5102): 1760-1763.
    [126] Hohmann, S., Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 2002. 66(2): 300-372.
    [127] York, J.D., Regulation of nuclear processes by inositol polyphosphates. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2006. 1761(5-6): 552-559.
    [128] Pinontoan, R., Krystofova, S., Kawano, T., et al., Phenylethylamine induces an increase in cytosolic Ca2+ in yeast. Bioscience Biotechnology and Biochemistry, 2002. 66(5): 1069-1074.
    [129] Narendranath, N.V., Thomas, K.C., and Ingledew, W.M., Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. Journal of Industrial Microbiology Biotechnology, 2001. 26(3): 171-177.
    [130] Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., et al., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995. 16(1): 1090-1094.
    [131] Rabilloud, T., Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2002. 2(1): 3-10.
    [132] Lahm, H.W. and Langen, H., Mass spectrometry: A tool for the identification of proteins separated by gels. Electrophoresis, 2000. 21(11): 2105-2114.
    [133]程景胜,固定化微环境中红豆杉细胞mapk信号转导过程研究.天津大学博士论文, 2005.
    [134]李炳志,酵母对纤维素乙醇生产中的抑制剂响应的系统生物技术研究.天津大学博士论文, 2010.
    [135] Shamu, C.E., Cox, J.S., and Walter, P., The unfolded-protein-response pathway in yeast. Trends in Cell Biology, 1994. 4(2): 56-60.
    [136] Ron, D. and Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 2007. 8: 519-529.
    [137] Verduyn, C., Postma, E., Scheffers, W.A., et al., Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Journal of General Microbiology, 1990. 136: 405-412.
    [138] Diaz De Villegas, M.E., Villa, P., Guerra, M., et al., Conversion of furfural into furfuryl alcohol by saccharomyces cervisiae 354. Acta Biotechnologica, 1992. 12(4): 351-354.
    [139] Weigert, B., Klein, K., Rizzi, M.,et al., Influence of furfural on the aerobic growth of the yeast Pichia stipitis. Biotechnology Letter, 1988. 10 (12): 895-900.
    [140] Miller, E.N., Jarboe, L.R., Turner, P.C., et al., Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180. Applied and Environmental Microbiology, 2009. 75(19): 6132-6141.
    [141] Alvarez-Ordonez, A., Fernandez, A., Bernardo, A., et al., Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. International Journal of Food Microbiology, 2010. 136(3): 278-282.
    [142] Hondorp, E.R. and Matthews, R.G., Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biology, 2004. 2(11): e336.
    [143] Shamir, R., Maron-Katz, A., Tanay, A., et al., EXPANDER - An integrative program suite for microarray data analysis. Bmc Bioinformatics, 2005. 6: 232.
    [144] Parsons, P.A., Behavioral variability and limits to evolutionary adaptation under stress, in advances in the study of behavior. Advances in the Study of Behavior, 1998. 27: 155-180.
    [145] Heer, D., Heine, D., and Sauer, U., Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Applied and Environmental Microbiology, 2009. 75(24): 7631-7638.
    [146] Mizushima, N., Autophagy: process and function. Genes & Development, 2007. 21: 2861-2873.
    [147] Wu, J.J., Quijano, C., Chen, E., et al., Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging-Us, 2009. 1(4): 425-437.
    [148] Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., et al., Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010. 141(4): 656-667.
    [149] Qin, L., Wang, Z., Tao, L.Y., et al., ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy, 2010. 6(2): 239-247.
    [150] Meijer, A.J. and Codogno, P., Autophagy: regulation by energy sensing. Current Biology, 2011. 21(6): 227-229.
    [151] Banerjee, N., Bhatnagar, R., and Viswanathan, L., Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1981. 11(4): 226-228.
    [152] Mols, M., van Kranenburg, R., Tempelaars, M.H., et al., Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. International Journal of Food Microbiology, 2010. 137(1): 13-21.
    [153] Lum, J.J., Bauer, D.E., Kong, M., et al., Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005. 120(2): 237-248.
    [154] Guaragnella, N., Passarella, S., Marra, E., et al., Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Letters, 2010. 584(16): 3655-3660.
    [155] Jain, A., Lamark, T., Sjottem, E., et al., p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem, 2010. 285(29): 22576-91.
    [156] Tal, M.C., Sasai, M., Lee, H.K., et al., Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(8): 2770-2775.
    [157] Gaspar, M.L., Aregullin, M.A., Jesch, S.A., et al., The emergence of yeast lipidomics. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2007. 1771(3): 241-254.
    [158] Guldfeldt, L.U. and Arneborg, N., Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Applied and Environmental Microbiology, 1998. 64(2): 530-534.
    [159] Casey, E., Sedlak, M., Ho, N.W.Y., et al., Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. Fems Yeast Research, 2010. 10(4): 385-393.
    [160]夏金梅,纤维素乙醇发酵过程中不同酵母菌株的比较脂组学研究.天津大学博士论文, 2010.
    [161] Ma, M.G. and Liu, Z.L., Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. Bmc Genomics, 2010. 11: 660.
    [162] Athenstaedt, K., Weys, S., Paltauf, F., et al., Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 1999. 181(5): 1458-1463.
    [163] Boumann, H.A., Damen, M.J.A., Versluis, C., et al., The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Biochemistry, 2003. 42(10): 3054-3059.
    [164] Janssen, M.J.F.W., Jong, H.M.d., Kruijff, B.d., et al., Cooperative activity of phospholipid-N-methyltransferases localized in different membranes. FEBS Letters, 2002. 513(2): 197-202.
    [165] de Kroon, A., Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2007. 1771(3): 343-352.
    [166] Boumann, H.A., Gubbens, J., Koorengevel, M.C., et al., Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: Evidence for regulation of intrinsic membrane curvature in a eukaryote. Molecular Biology of the Cell, 2006. 17(2): 1006-1017.
    [167] Kamal, M.M., Mills, D., Grzybek, M., et al., Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(52): 22245-22250.
    [168] Boumann, H.A., Chin, P.T.K., Heck, A.J.R., et al., The yeast phospholipid N-methyltransferases catalyzing the synthesis of phosphatidylcholine preferentially convert Di-C16:1 Substrates both in vivo and in vitro. Journal of Biological Chemistry, 2004. 279(39): 40314-40319.
    [169] Kamada, Y., Sekito, T., and Ohsumi, Y., Autophagy in yeast: a TOR-mediated response to nutrient starvation. Current Topics in Microbiology and Immunology, 2004. 279: 73-84.
    [170] Marion, R.M., Regev, A., Segal, E., et al., Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(40): 14315-14322.
    [171] Chen, L., Xu, B., Liu, L., et al., Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Laboratory Investigation, 2010. 90(5): 762-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700