用户名: 密码: 验证码:
磷矿的形成与Rodinia超大陆裂解、生物爆发的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州省分布有两期大型磷矿:震旦纪陡山沱期和早寒武纪梅树村时期。在这两期磷矿中分别发育有瓮安生物群和小壳动物梅树村生物群,这两个生物群代表了生命早期演化过程中的两次爆发事件。由此推测磷矿的形成可能与生物的爆发存在某种联系。另外,已有研究表明,磷矿层下伏的南沱冰碛岩和上覆的灯影帽碳酸盐的形成都与晚元古代末的Rodinia超大陆裂解相关,那么沉积于它们之间的磷矿也可能与Rodinia超大陆裂解相关联。研究磷矿形成、Rodinia超大陆裂解及生物爆发三者之间的关系对揭示磷矿的物质来源、成矿环境、构造条件、成因机制等有重要的理论意义;对解决全球范围晚元古代地层、几次生物爆发事件和冰川事件的对比问题等有极其重要的理论和实际意义。
     本文以晚元古代陡山沱期(瓮安、开阳)和早寒武纪(织金)磷矿床为研究对象,借鉴岩相学、古生物学、元素地球化学、同位素地球化学、有机地球化学及Sm-Nd、Rb-Sr同位素定年等方法,讨论磷矿的形成与Rodinia超大陆裂解、生物爆发之间的关系。论文主要获得了以下几个方面的认识:
     研究了三个矿床的主要地质特征,表明寒武纪织金磷矿床的磷品位低于陡山沱期磷矿床。瓮安、织金磷矿床形成于氧化带环境,而开阳磷矿床形成于亚氧化带环境。
     确定了三个矿床的成矿时代。同位素年代学得出陡山沱组磷矿床形成年龄为583±19Ma(Sm-Nd法)、588±8.6Ma和582±7.7Ma(Rb-Sr法),寒武纪磷矿床的形成年龄为542±23Ma(Sm-Nd法)和541±12Ma(Rb-Sr法)。震旦纪陡山沱期和寒武纪梅树村期磷矿床的形成时代与华南地块从Rodinia超大陆中裂解漂移出来的时间(600Ma~550Ma、540Ma)相耦合,为Rodinia超大陆裂解事件与磷矿床的形成存在密切成因联系提供了年代学方面的证据。
     对三个磷矿床进行的大量地质地球化学研究表明:Rodinia超大陆裂解为磷矿的形成提供了热液源和幔源成矿物质,并造成了大规模的低温热液成矿作用。
     研究了发育于陡山沱组和寒武纪含磷地层中的瓮安生物群和梅树村小壳生物群爆发的原因,表明Rodinia超大陆裂解造成了两次生物大爆发。超大陆裂解
    
    引发地球化学异常,导致了生物的大发展。
     讨论了地层中生物与磷的关系。地质证据、伴生微量元素证据、磷灰石矿物
    地球化学证据及有机地球化学证据表明,生物有机质直接或间接地参与了成磷作
    用。其中生物直接参与成磷作用主要发生在成矿过程的磷质吸取阶段,同时也见
    于地球化学富集阶段还原型细菌活跃的成岩带中;有机质间接成磷作用主要发生
    在磷块岩成矿过程的地球化学富集阶段和物理富集阶段。
     总结了磷矿的形成与Rodinia超大陆裂解、生物爆发之间的关系,Rodinia
     ,
    超大陆裂解为磷矿的形成提供了热液源和慢源的成矿物质;同时引发了生物的大
    爆发,而生物大爆发则促进了成矿物质的超常聚集和大规模成矿。
    关键词:贵州陡山沱组寒武纪磷矿床Rodinia超大陆裂解生物爆发
    热水沉积生物成矿
Guizhou Province is rich in phosphorite resource, which was formed in the Doushantuoan of the Late Sinian and the Meishucunian of the Early Cambrian. The two stages phosphorit preserved the earliest Weng'an biota and Meishucun biota respectively. The two biotas are representative of two biology explosion events during the early evolvement of life. Based on the above, we may confer that there lie relationship between the formation of phosphorite and the biology explosion. In addition, studying indicate that the tillite of Nanruo Fm. and the "cap" carbonate of Dengying Fm. have relationships with the breakup of Rodinia supercontinent. The phosphorite deposited underlying Dengying carbonate and overlying Noutuo tillite, so the formation of phosphorite also has relationship with the breakup of Rodinia supercontinent.To study the relationships of the formation of phosphorite, the breakup of Rodinia supercontinent and the biology explosion is significant not only for revealing the source, environment, structure and mechanism of the deposit but also for resolving the problem to contrast Neoproterozoic strata, the events of several biology explosions and of glaciations world-wide.Analyses of petrography, paleontology, elemental-chemistry, isotopic geochemistry, organic geochemistry and isotope chronology are conducted on phosphorite of Doushantuo Formation and Early Cambrian from Weng'an, Kaiyang and Zhijjng deposit in Guizhou province, SW China. The purpose of this study is to advance our understanding of the relationships of the formation of phosphorite, the breakup of Rodinia supercontinent and the biology explosion by documenting and interpreting the geochemistry of the phosphorites. The studying gets some conclusions as follows:Study of the geology of three phosphorites indicate that the phosphorite of Doushantuoan is richer in P than that of Cambrian. The Weng'an and Zhijin
    
    phosphorites deposited on the oxidation zone, and the Kaiyang phosphorite deposited on the suboxidation zone.The mineralogenetic epoch of three phosphorites have been gained. The isochron age of the Doushantuoan phosphorite deposit is about 583±19Ma (Sm-Nd dating) and 588±8.6Ma, 582±7.7Ma (Rb-Sr dating). The isochron age of the Cambrian Meishucunian phosphorite deposit is about 542±23Ma(Sm-Nd dating) and 541±12Ma(Rb-Sr dating). These ages are coupled of that (600Ma-550Ma, 540Ma) of the breakup of South China block from the Rodinia supercontinent. So it gives a chronological proof to support the view that the breakup of Rodinia supercontinent is responsible for the formation of phosphorite.The contents of the ore-forming elements, trace element, rare earth elements and the isotopic compositions of Nd indicate that the breakup of Rodinia supercontinent provide hydrothermal and mantle's ore material for the phosphorite and lead to hypothermia metallogenesis in large-scale.Investigating the Weng'an biota in the Doushantuo stratum and the small-shell biota in the Cambrian stratum, suggest that the breakup of Rodinia supercontinent is responsible for these two biology explosions.The relations of biology and P in the stratum indicate that biology participated in phosphatization directly or indirectly. There are several proofs: geology, trace element, apatite mineral geochemistry and organic geochemistry. The biology participated in phosphatization directly mainly occurred during the process of assimilating P. Then the indirectly phosphatization occurred during the process of geochemical and physical enrichment.In conclusion, the breakup of Rodinia supercontinent initiated the biology explosion, and provided the hydrothermal and mantle's ore material. The biology enriched and accumulate P element and further formed the phosphorite.
引文
巴克.石油勘探中的有机地球化学.胡伯良译.北京:石油工业出版社.1982
    彼得斯,莫尔多万.生物标记化合物指南.姜乃煌等译.北京:石油工业出版社.1995
    曹瑞骥.震旦纪叠层石与磷块岩.晚前寒武纪叠层石及相关矿产(邱树玉等著).西安:西北大学出版社.1992
    陈多福,陈光谦,陈先沛.贵州瓮福新元古代陡山沱期磷矿床铅同位素特征及来源探讨.地球化学.2002,31(1):49-54
    陈江峰.皖南浅变质岩和沉积岩的汝同位素组成及沉积物物源区.科学通报.1989.34(20):1572-1574
    陈均远,周桂琴,朱茂炎等.澄江生物群-寒武纪大爆发的见证.台中:台湾自然科学博物馆出版社.1996:1-222
    陈孟莪,刘魁梧.晚震旦世陡山沱期磷块岩中微体化石的发现及其地质意义.地质科学.1986,22(1):46-53
    陈孟莪.震旦纪生命大爆炸-浅论地史早期的生命演化.前寒武纪研究进展.1999,22(3):36-47
    陈其英,沉积成矿过程中的生物作用.地球科学进展.1990,3:12-14
    陈其英,磷块岩形成过程中的生物作用.地质科学.1995,30(2):153-158
    陈其英,黔中沉积磷灰石的硫、碳同位素及其地质意义.岩石学报.1996,12(4):594-597
    陈其英,中国东部主要成矿时代的磷块岩组成.沉积学报.1987,5(3):135-148
    陈世加,王廷栋,黄清德等.C 29甾烷成熟度指标的“倒转”及其地质意义.第六届全国有机地球化学学术会议论文摘要汇编.1996:205
    储雪蕾,封兰英,陈其英.贵州开阳晚震旦纪磷块岩的硫同位素组成及意义.科学通报.1995,40(2):148-150
    丁悌平,蒋少涌,万德芳.硅同位素地球化学.北京:地质出版社.1994
    东野脉兴.扬子地块陡山沱期与梅树村期磷矿区域成矿规律.化工矿产地质.2001,23(4):193-209
    范德廉,叶杰,杨瑞英.扬子地台前寒武-寒武纪界线附近的地质事件与成矿作用.沉积学报.1987,5(3):81-92
    贵州省区域地质志,贵州省地质矿产局.地质出版社.1987
    郭厚良,金传荫,宋文贞.无机盐对蓝藻细胞结构的影响和原生质球形成.水生生物学报.1997,21(2):190-193
    
    韩发,沈建忠.大厂锡矿床硅、氧同位素地球化学.矿物学报.1994,14(2):172-180
    黄第藩,赵孟军.塔里木盆地满加尔油气系统下古生界油源油中蜡质烃来源的成因分析.第六届有机地球化学学术讨论会论文摘要汇编.1996
    黄敏丽,段定红,骨质疏松.上海:上海科学技术出版社.1998
    姜乃煌,黄第藩,宋孚庆等.不同沉积环境地层中的芳烃分布特征.石油学报.1994,15(3):42-50
    蒋志文.寒武纪最早期磷块岩沉积中的生物作用.第五届国际磷块岩讨论会讨论集(1).北京:地质出版社.1984
    雷加锦,李任伟等.沅陵、秀山早寒武世黑色岩和磷结核中不同形态硫的分布和同位素特征.生物有机质成矿作用研究.北京:海洋出版社.1996
    黎彤.地壳元素丰度的若干统计特征.地质与勘探.1992,28(10):1-7
    梁其中,方武,Vender V R.云南梅树村前寒武系-寒武系界线层型候选剖面的古地磁研究.地质学报.1990,(3):264-268
    李菊英.贵州息峰温泉磷矿中微生物化石类型、特征和成矿作用。生物有机质成矿作用(叶连俊主编).北京:海洋出版社.1996
    李任伟,张淑坤,雷加锦.震旦纪地层黄铁矿硫同位素组成时-空变化特征及扬子地块与晚元古超大陆关系的论证.地质科学.1996,31(3):209-217
    李胜荣,高振敏.湘黔地区牛蹄塘组黑色岩系稀土特征-兼论海相热水沉积岩稀土模式.矿物学报.1995,15(2):225-228
    李胜荣,高振敏.湘黔寒武系底部黑色岩系贵金属元素来源示踪.中国科学(D辑).2000,30(2):169-174
    李胜荣,肖启云,申俊峰,孙丽,刘波,阎柏琨.湘黔下寒武统铂族元素来源与矿化年龄的Re-Os同位素制约.中国科学(D辑).2002,32(7):568-575
    刘宝珺,许效松.中国扬子地台西缘寒武纪风暴事件与磷矿沉积。沉积学报.1987,5(3):28-39
    刘家军,刘建明,郑明华等.西秦岭寒武系金矿床中硅岩的地质地球化学特征及其沉积环境意义.岩石学报.1999,15(1):145-154
    刘家仁.试谈织金磷矿的综合利用问题.贵州地质.1999,16(3):253-258
    刘魁梧.贵州瓮安磷矿磷酸盐矿物与岩石学研究.第五届国际磷块岩讨论会论文集(1).北京:地质出版社.1984
    刘魁梧.磷块岩的成岩作用.中国科学院地质研究所集刊.1992,6:119-191
    刘新秒.新元古代Rodinia超大陆的研究进展.前寒武纪研究进展.2001,24(2):116-122
    刘英俊.元素地球化学.科学出版社.1984
    刘志礼,刘雪娴,李朋富.藻类及其有机质的成矿作用试验.沉积学报.1999.17(1):9-18
    
    刘志礼,刘雪娴,王永军.藻细胞的聚磷作用及其成矿意义.植物学报.1994,36(12):957-962
    刘志礼.藻类对磷酸盐形成和沉积作用影响的模拟实验.地质学报.1991,65(2):21-25
    刘子君主编.骨关节病理学.北京:人民卫生出版社.1994
    罗惠麟,蒋志文,唐良栋.中国下寒武统建阶层型剖面.昆明:云南科技出版社.1994:1-183
    罗惠麟,蒋志文,武希彻等.云南晋宁梅树村剖面前寒武系-寒武系界线的深入研究.地质学报.1991,85(4):367-375
    马国干,张自超,李华芹等.扬子地台震旦系同位素年代地层学的研究.宜昌地质矿产研究所所刊.1989,14:83-124
    毛景文,张光弟,杜安道,王义天,曾明果.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定.地质学报.2001,75(2):234-243
    潘家水,张乾,马东升等.滇西羊拉铜矿区硅质岩特征及与成矿的关系.中国科学(D辑) 2001,31(1):10-16
    彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩硅氧同位素组成及其成因分析.地质论评.1995,41(1):34-41
    戚华文,胡瑞忠.陆相热水沉积成因硅质岩与超大型锗矿床的成因-以临沧锗矿床为例.中国科学(D辑).2003,33(3):236-246
    钱逸.中国小壳化石分类学与生物地层学.科学出版社.1999
    全国地层委员会秘书处.《中国地质年代表》(推荐方案).地层学杂志.1998,22(4):299-303
    沈渭洲.同位素地质学教程.北京:原子能出版社.1997
    宋天锐,丁悌平.硅质岩中的硅同位素应用于沉积相分析的新尝试.科学通报.1989,34(18):1408-1411
    孙枢,范德廉.中国台地张裂盆地沉积.沉积学报.1987,5(3):6-18
    孙喜爱,卢松年,田克勤.地质体中重排甾烷的分布及其意义.第五届有机地球化学学术讨论会论文摘要汇编.1992:150-151
    王将克,陈水挟,钟月明等.氨基酸生物化学.北京:科学出版社.1991
    王砚耕,尹恭正,郑淑芳等.贵州上前寒武系及震旦系-寒武系界线.贵州人民出版社.1984
    王银喜,杨杰东,陶仙聪等.化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及其应用.南京大学学报(自然科学版).1988,24:297-308
    王中刚,于学元,赵振华.稀土元素地球化学.科学出版社.1989
    王忠诚.高δ~(34)S值重晶石矿床的成因解释.地质科学.1993,28(2):191-192
    王自强,金秋琦.宜昌峡东地区的现代叠层石.地质科学.1982,4:403-407
    维诺格拉多夫.地球化学.1956.见曹添等.地球化学.中国工业出版社.北京.1965
    吴祥和,韩至钧,蔡继锋等.贵州磷块岩.地质出版社.1999
    
    邬立言,顾信章,盛志纬等.生油岩热解快速定量评价.北京:科学出版社.1986
    夏文杰.贵州福泉晚震旦世磷质叠层石特征及成因探讨.地质学报.1987,1:23-26
    邢裕盛,尹崇玉,高林志.震旦系的范畴、时限及内部划分.现代地质.1999,13(2):202-204
    徐备.Rodinia超大陆构造演化研究的新进展和主要目标.地质科技情报.2001,20(1):15-19
    徐道一.地层的天文对比方法.见:吴瑞棠,张守信,编著.现代地层学.武汉:中国地质大学出版社.1989,159-165
    薛啸峰.同位素年龄测定.见:中国云南晋宁梅树村震旦系.寒武系界线层型剖面.昆明:云南人民出版社.1984:37-39
    薛耀松,唐天福,俞从流.贵州晚震旦世陡山沱期具骨骼动物化石的发现及其意义.古生物学报.1992,31(5):530-539
    薛耀松,唐天福,俞从流等.贵州瓮安-开阳地区陡山沱期含磷岩系的大型球形绿藻化石.古生物学报.1995,34(6):688-706
    薛耀松,唐天福,俞从流,周传明.黔中陡山沱期磷块岩中的微化石组合及磷酸盐化作用.见:叶连俊主编.生物有机质成矿作用.海洋出版社.1996
    薛耀松,周传明,唐天福.“动物胚胎”-对瓮安地区陡山沱组微体化石的错误解释.微体古生物学报.1999,16(1):1-4
    颜耀阳.超大陆研究进展.国外前寒武纪地质.1996,3:14-20
    杨杰东,孙卫国,王银喜等.云南晋宁梅树村剖面前寒武系-寒武系界线化石Sm-Nd同位素年龄测定.中国科学(B).1992,25(3):322-327
    杨卫东,漆亮,鲁晓莺.滇东早寒武世含磷岩系稀土元素地球化学特征及成因.矿物岩石地球化学通报.1995,12(4):224-227
    杨卫东,肖金凯,于炳松等.滇黔磷块岩沉积学、地球化学与可持续开发战略.地质出版社.1997
    叶连俊,陈其英,赵东旭.中国磷块岩.北京:科学出版社.1989
    叶连俊,生物成矿的类型、作用、过程和背景生物有机质成矿作用.北京:海洋出版社.1996
    叶连俊主编.生物有机质成矿作用。北京:海洋出版社.1996
    伊海生,彭军,夏文杰.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录.沉积学报.1995,13(4):131-137
    殷纯嘏,张昀,姜乃煌.贵州瓮安新元古代陡山沱组磷块岩中的有机化合物.北京大学学报(自然科学版).1999,35(4):509-517
    尹崇玉,高林志.贵州瓮安震旦纪陡山沱期含磷层位微化石再研究.科学通报.1999,44(24):2648-2654
    尹崇玉,高林志,邢裕盛.贵州瓮安震旦纪陡山沱期磷酸盐化球状化石的新观察.地质学报.2001,75(2):145-150
    
    尹崇玉,岳昭,高林志.磷酸盐化原肠胚化石在瓮安陡山沱组磷块岩中的发现.科学通报.2001,46(12):1036-1039
    尹磊明,薛耀松.湖北宜昌黄花场早奧陶世凝源类的新类型.微体古生物学报.1994,11(1):41-53
    尹磊明.扬子地台前寒武纪-寒武纪界线地层的微体植物化石群.地层学杂志.1995,19(4):299-307
    尹磊明,薛耀松.中国南方末元古宙陡山沱组中的具刺磷酸盐微体化石.微体古生物学报.1999,16(3):267-274
    袁润广.生命演化宏观形式溯源梗概.地质出版社.2002
    袁训来,李军,陈孟莪.晚前寒武纪后生植物的发展及其化石证据.古生物学报.1995,34(1):90-102
    袁训来,王启飞,张均.贵州瓮安磷矿晚前寒武纪陡山沱期的藻类化石群.微体古生物学报.1993,10(4):409-420
    岳昭,Bengtson S.寒武纪大爆发中的磷酸盐化胚胎化石.科学通报.1998,43(17):1858-1862
    曾允孚,杨卫东.滇东磷块岩的沉积环境和成矿机理.矿物岩石.1989,9(2):45-59
    张杰,陈代良.贵州织金新华含稀土磷矿床扫描电镜研究.矿物岩石.2000,20(3):59-64
    张杰、张覃,陈代良.贵州织金新华含稀土磷矿床地球化学及生物成矿基本特征.矿床地质.2002,21(增刊):930-934
    张杰,张覃,陈代良.贵州织金新华含稀土磷矿稀土元素地球化学及生物成矿基本特征.矿物岩石.2003,23(3):35-38
    张生,李统锦,王联魁.广东长坑金银矿床的成矿地球化学-硫同位素研究.地球化学.1997,26(4):78-85
    张同钢,储雪蕾,陈孟莪等.新元古代全球冰川事件对早期生物演化的影响.地学前缘.2002,9(3):49-56
    张同钢,储雪蕾,冯连君等.新元古代“雪球”事件对海水碳、硫同位素组成的影响.地球学报.2003,24(6):487-493
    张同钢.储雪蕾,张启说等.陡山沱期古海水的硫和碳同位素变化.科学通报.2003,48(80):850-855
    张文堂.寒武纪生命扩张及澄江动物群的意义.地学前缘.1997,43(4):117-121
    张昀,袁训来.元古宙末多细胞红藻有性生殖结构的发现.中国科学(B辑).1995,25(7):749-754
    赵东旭.震旦系陡山沱组磷质红藻的发现.沉积学报.1986,4(1):126-127
    赵瑞.河北铅锌矿床的硫同位素研究.地质科学.1984,3:288-295
    赵玉芬,赵国辉.元素有机化学.北京:清华大学出版社.1998,
    
    赵振华.微量元素地球化学.北京:科学出版社.1997
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社.2000
    周传明,薛耀松,张俊明.贵州瓮安磷矿磷酸盐硬底.见:叶连俊等著.生物成矿作用研究.海洋出版社.1993:170-175
    周传明,薛耀松,张俊明.贵州瓮安磷矿上震旦统陡山沱组地层和沉积环境.地层学杂志.1998,22(4):308-314
    周茂基.中国南方震旦纪的成磷环境和成磷作用.第五届国际磷块岩讨论会论文集(2).北京:地质出版社.1985
    朱士兴,王砚耕.中国开阳磷矿中的磷质叠层石.第五届国际磷块岩讨论会论文集(1).北京:地质出版社.1984:141-161
    朱士兴.中国叠层石.天津:天津大学出版社.1993
    邹采杼,李继亮.藻磷块岩的首次发现.地质科学.1965,1:80-85
    Barfod G H, Albarede F, Knoll A H, et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planetary Science Letters. 2002, 201:203-212
    Baturin C N. Phosphorites on the sea floor. Elservier Scientific Publixhing Company. 1982
    Bengtson S, Yue Z. Fossilized Metazoan Embryos from the Earliest Cambrian. Science. 1997, 277(5332): 1645-1648
    Benmore R A. Origin of sedimentary francolite from its sulfur and carbon isotope composition. Nature. 1983, 302:516-518
    Bertram C J, Elderfield H, Aldridge R J, et al. ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd and REEs in Silurian phosphatic fossils. Earth Planetary Science Letter. 1992, 113:239-249
    Bertrand-Sarfati J, Flicoteaus R, Moussine-Pouchkine A, et al. Lower Cambrian apatitic stromatolites and phosphorites related to the glacio-eustatic cratonic rebound (Sahara, Algeria). J. Sedment Res. 1997, 67:957-974
    Bonnoit-Courtois C, Flicoteaus R. Distribution of rare earth and some trace elements in Tertiary phosphorites from the Senegal Basin and their weathering products. Chemical Geology. 1989, 75: 311-328
    Bostrom K. Genesis of ferromanganese deposits diagnostic criteria for recent and old deposits. Rona P A. Hydrothermal Processes at Seafloors Spreading Centers. New york: Plenum Press. 1979, 473-483
    Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur isotope studies. Nature. 1996, 382:127-132
    Chen D F, Dong W Q, Qi L, et al. Possible REE constrains on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna, Chemical geology. 2003, 201:203-118
    Chen D F, Dong W Q, Zhu B Q, et al. Pb-Pb ages of Neoproterozoic Doushantuo phosphorites in
    
    South China: constraints on early metazoan evolution and glaciation events. Precambrian Research. 2004, 132: 123-132
    Chumakov N M, Semikhatov M A. Riphean and Vendian of the USSR. Precambrian Research.1981, 15:229-253
    Claypool G E. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretations. Chem Geol. 1980, 28: 199-260
    Clayton R N. High temperature isotope effects in the early solar system. In: Valley et al. ed. Review in Mineralogy. 1986, 16: 129-139
    Cook P J, Shergold J H. Phosphorus, phosphorite and skeletal evolution at the Precambrian-Cambrian boundary. Nature. 1984, 308: 231-236
    Cowie J W, Johnson M R W. The chronology of the geological record. Geol. Soc. Lond. Mem.1985, 10:47-64
    Crerar D A. Manganiferous cherts of the Franciscan. Assemblage: General geology, ancient and modern analogues and implications for hydrothermal convection at oceanic spreading centers.Economic Geology. 1982, 77: 519-540
    Dalziel W D. Pacific margins of Laurentia and East Antactica-Australia as a conjugate rift pair:Evidence and implication for an Eocambrian supercontinent. Geology. 1991, 19: 598-601
    Davidek K, Landing E, Bowring S A, et al. New upper most Cambrian U-Pb date from Avalonian Wales and age of the Cam-Ordovician boundary. Geological Magazine. 1998, 135(3): 303-309
    DePaolo D J, Wasserburg G J. Nd isotopic variations and petrogenetic models. Geophy. Res. Lett.1976,3:249-252
    DePaolo D J. Neodymium Isotope Geochemistry: An Introduction. Springer-Verlag, Berlin. 1988,76-80
    Douthitt C B. The geochemistry of the stable isotopes of silicon. Geoch Cosmoch Acta. 1982,46(8): 1449-1458
    Elderfield H, Greaves M J. The rare earth elements in seawater. Nature. 1982, 296: 214-219
    Fryer B J. Rare-earth evidence in iron-formations for changing Precambrian oxidation states. Geochim. Cosmochim. Acta. 1977,41:361-367
    German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography. 1990, 5: 823-833
    Goldberg E D, Koide M, Schmitt R A. Rare earth distributions in the marine environment. J.Geophys. Res. 1963, 68: 4209-4217
    Golecki J R, Drews G. Supramolecular Organization and Composition of Membrines. In: Carr N G and Whitton B A (eds.). The Biology of Cyanobactria. Oxford: Black well. 1985
    Gorjan P, Veevers J J, Walter M R. Neoproterozoic sulfur-isotope variation in Australia and global implication. Precambrian Research, 2000, 100: 151-179
    
    Graf J. Rare earth elements, iron formations and sea water. Geochim. Cosmochim. Acta. 1978, 12:1845-1850
    Grandjean P, Cappetta H, Michard A, et al. The assessment of REEs patterns and 143Nd/144Nd ratio in fish remains. Earth Planetary Science Letter. 1988, 84: 181-196
    Grotzinger J P, Bowring S A, Aylor H Z, et al. Biostratigraphic and geochronologic constraints on early animal evolution. Science. 1995, 270: 598-604
    Gulbrandsen R A. Chemical composition of phosphorites of the Phosphoria Formation. Geochimica et Cosmochimica Acta. 1966, 30(8): 769-778
    Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: weathering of phosphatic minerals. Chem Geol. 2001, 175: 495-508
    Hoefs J. Stable isotope geochemistry. Third ed. New York: Springer-Verlay. 1997
    Hoffman P. Did the breakout of Laurentia turn Gondwanaland inside out? Science. 1991, 252:1409-1412
    Hogan J P, Gilbert M C. Timing of the final breakout of Lau-rentia. Abstracts with Programs-Geological Society of America. 1997, 29: 432
    Holser W T, et al. Isotope geochemistry of sedimentary sulphates. Chem. Geol. 1966, 1: 93-135
    Horstmann U E, Verwoerd W J. Carbon and oxygen isotope variations in southern African carbonatites. J Afr Earth Sci. 1997, 25: 115-136
    Ilyin A V. Rare-earth geochemistry of 'old' phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chemical Geology. 1998, 144: 243-256
    Jarvis I, Burnett W, Nathan Y, et al. Phosphorite geochemistry: state-of-the-art and environment concerns. Eclogae Geol. Helv. 1994, 87: 643-700
    Jiang Shaoyong. Silicon isotope geochemistry of the Sullivan Pb-Zn deposit. Cannda: A preliminary study. Econ Geol. 1994, 50: 1754
    Jiang Shaoyong, Yang Jingdong, Ling Hongfei, Feng Hongzhen, Chen Yongquan Chen Jianhua.
    Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in natural science. 2003, 13(10): 788-794
    Kerr R A. Did an ancient deep freeze nearly doom life? Scienct. 1998,281: 1259-1261
    Keto L S, Jacobsen S B. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth and Planetary Science Letters. 1987, 84: 27-41
    Keto L S, Jacobsen S B. Nd isotopic variations of Phanerozoic paleoceans. Earth and Planetary Science Letters. 1988, 90: 395-410
    Kirschvink J L. A paleogeographic model for Vendian and Cambrian time. Schopf J W, Klein C. The Proterozoic Biosphere. London: Cambridge University Press. 1992
    Knoll A H. Microbiotas of the late Precambrian Hunnberg Formation. Mordau Stlandet, Svalbaul.
     J. Paleontology. 1984, 58: 131-162
    
    
    Knoll A H. Biological and biogeochemical preludes to the Ediacaran radiation. Lipps J H, Signor P W. Origin and Early Evolution of the Metazoa. New York, United States: Plenum Press. 1992
    Knoll A H, Xiao S H. On the age of the Doushantuo Formation. Acta Micropalaeontal Sin. 1999,16:225-236
    Landing E, Bowring S A, Davidek K L, et al. Duration of the Cambrian: U-Pb ages of the volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences. 1998,35: 329-338
    Li C W, Chen J Y, Hua T E. Response for the comments by Y Zhang et al. Science. 1998, 282:1783
    Li G X, Xue Y S, Zhou C M. Late Proterozoic tubular fossils from the Doushantuo Formation of Weng'an, Guizhou, China. Palaeoworld. 1997, 7: 29-37
    Li R. Chen J, Zhang S, et al. Spatial and temporal variation in carbon and sulfur isotopic compositions of Simian sedimentary rocks in the Yangtze platform, South China. Precambrian Research. 1999,97:59-75
    Li Z X, Zhang L, Powell C McA. Positions of the East Asion Cratons in the Neoproterozoic Supercontinent Rodinia. Aust J Earth Sci. 1996, 43:593-604
    Li Z X, Zhang L, Powell C McA. Roles of the major East Asia cratonic blocks in the assembly and breakup of supercontinent Rodinia, 30th International Geological Congress. Abstracts. 1996, 1:496
    Lieberman B S. Early Cambrian paleogeography and tectonic history: a biogeographic approach.Geology. 1997,25: 1039-1042
    Machel.硫酸盐-烃类成岩氧化还原反应的若干问题.见:储层有机地球化学(译文集).西安:西北大学出版社. 1990: 178-195
    Marchig V. Some geochemistry indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology. 1982, 58(3): 241-256
    Martens C S, Harriss R C. Inhibition of apatite precipitation in the marine environment by magnesiumions. Geochim Cosmochim Acta. 1970, 34: 621-625
    Mazumdar A, Banerjee D M, Schidlowski M, et al. Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower tal Formation of the Krol Belt (lesser Himalaya, India). Chemical Geology. 1999, 156:275-297
    McArthur J M, Walsh J N. Rare-earth geochemistry of phosphorites. Chemical Geology. 1984,47:191-220
    McMenamin M A, McMenamin D L S. The emergence of animals. The Cambrian Breakthrough.Columbia University Press. New York.1990
    Michard A. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13N). Nature. 1982, 303: 795-797
    
    Michard A. Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochimica et Cosmochimica Acta. 1985, 49(2): 601-610
    Moores E M. Southwest U S-East Antarctic (SWEAT) connection: a hypothesis. Geology. 1991,19:425-428
    Morad S, Felitsyn S. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology. 2001,143:259-264
    Murray R W, Buchholtz T, Jones D L, et al. Rare earth earth element as indicators of different marine depositional environments in chert and shale. Geology. 1990, 18: 268-271
    Nathan Y, Nielsen H. Sulfur isotopes in phosphorites. SEPM Special Publication. 1980, 29: 73-78
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol.1972,67: 551-579
    Ohmoto H, Kaiser C J, Geer K A. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits. In: H K Herbert and S E Ho(editors), Stable isotopes and Fluid Processes in Mineralisation. Geol Dep Univ Extens, Univ of Western Australia. 1990,23:70-120
    Ohmoto H, Goldhaber M B. Sulfur and carbon isotopes. In: Geochemistry of Hydrothermal deposits (ed H L Barnes), 3rd Edition, John Wiley and Sons, New York. 1997, 517-567
    Picard S, Lecuyer C, Barrat J, et al. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England).Chem Geol. 2002, 186: 1-16
    Piper D Z. Rare earth elements in the sedimentary cycle: a summary. Chem. Geol. 1974, 14:285-304
    Powell C McA, Li Z X, McElhinng M W, et al. Paleomagnetic constrains on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology. 1993, 21:889-893
    Pritchard H N, Brad P T. Biology of Nonvascular Plants. Times Mirror/Mosby College Publishing.1984
    Qi L, Gregoire D C. Determination of trace elements in 26 Chinese geochemistry reference materials by inductively coupled plasma mass spectrometry. Geostand. Newsl. 2000, 24: 31-63
    Quinby-Hunt Ms, Wilde P. The provenance of low-calcic black shales. Min Deposit. 1991, 26(2):113-121
    Renold J H, Verhoogen J. Natural variations in the isotopic constitution of silicon. Geoch Cosmoch Acta. 1953, 3(5): 224-234
    Reynard H, Lecuyer C, Grandjean P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions.Chemical Geology. 1999, 155: 233-241
    
    Rona P A. Criteria for recognition of hydrothermal mineral deposits in ocean crust. Economic Geology. 1987,73(2): 135-160
    Runnegar B N R. Oxygen requirements, a biology and phylogemetic significance of the late Precambrian worm Dickinsonia and the evolution of the burrowing habit. Alcheringa. 1982, 6:223-239
    Runnegar B. Shell microstructures of Cambrian mollusks replicated by phosphorate. Alcheringa.1985.9:245-257
    Runnegar B. Loophole for snowball Earth. Nature. 2000, 405: 403-404
    Shaw H F, Wasserburg G J. Sm-Nd in marine carbonates and phosphates: Implications for Nd isotopes in seawater and crustal ages. Geochimica et Cosmochimica Acta. 1985, 49: 503-518
    Shields G, Stille P. Diagenetic constrains on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology. 2001, 175:29-48
    Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of its formation.Nature. 1977, 266(5600): 346-348
    Strauss H. The isotopic composition of Precambrian sulphides-seawater chemistry and biological evolution. Spec Publs int Ass Sediment. 2002, 33, 67-105
    Sun Weiguo. Subdivisions and correlations of the Upper Precambrian in China and Australia. In Palaeontologia Cathayana. Beijing: Science Press. 1989: 1-22
    Vidal G. Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria. Lethaia. 1989,22:375-379
    Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research. 2000, 100:371-433
    Wood D A, Joron J L, Treuil M. Are-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth..Planet. Sci. Letts.1979,45:326-336
    Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta. 1987, 51: 637-644
    Xiao S H, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature. 1998, 391: 553-558
    Xiao S H, Knoll A H, Phosphatized animal embryos form the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology. 2000,74: 767-788
    Yang Jiedong, Sun Weiguo, Wang Zongzhe, et al. Sm-Nd isotopic age of Precambrian-Cambrian boundary in China. Geological Magazine. 1996, 133(1): 53-61
    Yang J D, Tao X C, Xue Y S. Nd isotopic variations of Chinese seawater during Neoproterozoic through Cambrian. Chemical geology. 1997, 135: 127-137
    
    Yang J D, Sun W, Wang Z, et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research.1999,93:215-233
    Yin C Y, Gao L Z. The microfossils in phosphate deposit in Doushantuo stage, Sinian System,Weng'an, Guizhou Province. Chinese Science Bulletin. 2000,45(3): 279-284
    Yin L M, Xue Y S. An extraordinary microfossil assemblage from Terminal Proterozoic phosphate deposits in South China. Chinese J. Bot. 1993, 5(2): 168-175
    Yin L M, Yin C Y. Neoproterozoic acritarch biostratigraphy of China. In: Proceedings of The 30th International Geological Congress. 1997, 11: 67-73
    Yuan X L, Hofmann H H. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa. 1998, 22: 189-222
    Yue Z, Bengtson S. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia, 1999,32: 181-195
    ZhangYun. Multicellular thallophytes with differentiated tissures from late Proterozoic phosphate rocks of south China. Lethaia. 1989, 22: 113-132
    Zhang Y, Yuan X L, Yin L M. Interpreting Late Precambrian microfossils. Science. 1998, 282:1783
    Zhang Yun, Yin lei ming, Xiao Shuhai, et al. Permineralized Fossils from the Terminal Proteroic Doushantuo Formation, SouthChina. Paleontol Soc Men. 1998, 50: 1-70
    ZhangYun, Yin L, Xiao S, Knoli A H. Permineralized fossils from the Terminal Proterozoic Doushantuo Formation, south China. Journal of Palaeontology. 1998, 72(4): 1-52
    Zhou C M, Brasier M D, Xue Y S. Three-dimensional phosphatic preservation of giant acritarchs from the Terminal Proterozoic Doushantuo Formation in Guizhou and Hubei Provinces, South China. Palaeontology. 2001, 44(6): 1157-1178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700