用户名: 密码: 验证码:
高碱石灰介质中电位调控浮选技术原理与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅锌硫硫化矿的分离一直是选矿界研究的热点,其难点在于这些矿物性质相似,可浮性相近,矿物彼此间相互活化和相互影响的现象比较严重,高碱电位调控技术的出现成功地解决了这个难题。本研究利用腐蚀电化学研究方法、旋转圆盘电极、机械电化学研究方法以及表面检测技术对高碱环境中矿物与矿物、矿物与药剂、矿物与磨矿介质之间的各种作用以及机械力对这些作用的影响进行了研究,并利用分子力场理论、量子化学理论和半导体能带理论对这些作用和影响进行了计算与分析,以揭示高碱电位调控浮选的微观机理,为寻找更加高效的电化学浮选方法提供依据。研究的主要内容如下:
     利用单矿物电位调控浮选和循环伏安扫描方法研究了浮选与电位的关系,考察了每种矿物的浮选电位范围(电极电位),并绘出了方铅矿、黄铁矿和闪锌矿在不同环境中的Eh-pH-C图,研究了影响电极电位的各种因素,并对这些因素进行了分类,发现影响矿物电极电位的因素可以分为两类,一类因素既影响矿物表面电极电位,又影响矿物的可浮电位区间,这类因素主要包括:浓度、pH值等。另一类因素,只影响矿物的表面电极电位,而不影响矿物的可浮电位区间,这类因素主要有:pH介质、磨矿介质、加药方式、搅拌等。高钙高碱电位调控技术正是根据以上原理而开发的硫化矿分离技术,单矿物试验、混合矿试验证明高钙高碱电位调控技术是可行的。
     针对常规体系,采用旋转圆盘电极技术研究了硫化矿表面氧化还原反应的反应电子数和反应机制,并研究了影响表面反应机制的各类因素,指出表面活性对反应类型和反应机制的影响至关重要。
     利用腐蚀电化学技术研究了高碱环境中矿物、介质、药剂间的各种作用,通过不同电极电位下电化学阻抗谱的变化研究了硫化矿表面反应的变化,通过腐蚀电位腐蚀电流的对比,并运用缓蚀效率表征了矿物与各类药剂之间的作用力,研究指出高碱体系对于三种硫化矿的腐蚀行为的影响是不同的,三种硫化矿受影响的顺序为黄铁矿)闪锌矿)方铅矿,关于捕收剂的研究表明,对于黄药和乙硫氮两种捕收剂来说,黄药对三种硫化矿都表现出了相当的作用能力,表现为极化电阻增大,显著的缓蚀效率,而乙硫氮只对方铅矿表现出较强的作用能力。
     为了考察石灰对硫化矿浮选行为的影响,运用分子力场方法对钙系化合物在铅锌硫化矿表面选择性吸附进行了动力学,结果表明:OH~-和CaOH~+两种离子在黄铁矿表面的吸附能力最强,因此无论是NaOH体系,还是石灰体系,黄铁矿都会受到抑制。在闪锌矿表面,CaOH~+的吸附要强于OH~-,方铅矿对于两种
    
    离子最不敏感,吸附量最小,吸附能最正。
     运用机械电化学技术,研究了磨矿介质类型、机械力的大小对矿物电极电
    位和表面反应电流的影响,并考察了矿物与矿物之间、矿物与介质之间存在的腐
    蚀电偶作用,发现这些作用会对硫化矿表面的氧化还原反应机制产生影响,进而
    影响到矿物表面的疏水和亲水性。硫化矿在不同机械力下的表面形貌的研究进一
    步证明了上述结论。
     依据半导体能带理论和密度函数理论以及分子轨道理论,探讨了不同类型硫
    化矿表面与捕收剂作用的微观机理,结果表明不同的硫化矿具有不同的表面结
    构,即使是同一种硫化矿,在不同环境下,表面电子结构也会发生变化,这种变
    化是导致不同表面反应的根本原因。
     在理论研究的基础上,进行了硫化矿电位调控浮选的应用研究,电位调控浮
    选在广东凡口铅锌矿的成功应用表明高碱电位调控浮选具有较大的优越性,指标
    好,药耗低,该工艺2000年获得国家科技进步一等奖,并在全国逐渐推广。
Froth flotation is a commonly used separation technique for sulfide minerals. It is proved that several electrochemical processes occur in flotation which involve the valuable minerals, flotation reagents, and the species dissolved in aqueous phase and grinding media. All these kinds of actions including mineral oxidation, dissolution, adsorption, surface reaction, mechanical reaction and precipitation will lead to undesired flotation and difficulties in separation. This thesis is focused on these behaviors in order to find a better way to enhance the efficiency of flotation.
    To better understand the relation between mineral electrode potential and flotation behaviors, the Cyclic Voltammeter of freshly fractured sulfides electrodes and single mineral potential-controlled flotation tests were used. The results showed that the recovery of sulfide minerals depended on its surface potential. Different minerals have different potential region for flotation. It predicted that to control the potential of sulfide minerals could modify the results of flotation. The factors, which can affect the variation of mineral surface potential, were also studied. These factors can be divided into two classes, one of them can affect not only potential of sulfides but also range of flotation potential, including concentration of reagents, pH value, the other can only affect sulfides potential, such as grinding media, pH modifiers, agitation etc. From these conclusions, a new technique of sulfides flotation, Original Potential Flotation (OPF), which controlled potential of minerals by grinding environm
    ent in alkali pulp, was invented for Lead-Zinc complex sulfides. The flotation results implied that it is doable.
    In order to investigate the mechanism of oxidation and reduction occurring on mineral surface, the Rotating Disc Electrode technique was undertaken. The results illustrated that the activity of surface have an important effect on reaction mechanism.
    The Electrochemical Impedance Spectroscopy (EIS) was used to probe the interaction among minerals, reagents, grinding medias. The inhibition efficiency ( η) was used to weigh the action between reagents and minerals. The results suggest that alkali pulp have different effect on different sulfide minerals, the ranking of anti-alkali ability of sulfides is >ZnS>FeS2.
    To make out the function of lime in OPF, the Force Field Method was employed to simulating the adsorption of calcium species on sulfides minerals.
    
    
    The result indicated that both OH" and CaOH can adsorbed on pyrite surface, but only CaOT have adsorptive action on saphalerite surface. As far as PbS is concerned, neither of above ions can adsorb on it.
    A special cell was designed to study mechanical electrochemistry phenomena in grinding environment. The effect of grinding media type and mechanical pressure on potential and current of mineral surface was researched; the galvanic couple between mineral and medias were also researched. The results showed that these effects can change activity of surface, which have an important effect on reaction mechanism.
    The quantum methods were employed to investigate the micro mechanism of reaction between mineral surfaces and collectors. The conclusion expressed that every minerals has it own surface electro-structure, different structure has different properties, which determine what kind of reaction would be occur.
    At last, the OPF was applied in Fankou Lead-Zinc Mine, the index of industrial experiment showed that the new technique has glorious foreground.
引文
1 胡为柏 浮选,冶金工业出版社,1988.6,P1-20
    2 Fuerstenau. D.W., Advances in Flotation Technology (Eds. B.K. Parekh and J.D. Miller) 1999.. SME: Littleton (CO). 3-21.
    3 Taggart. A.F., Handbook of Mineral Dressing._1945.John Wiley: New York.
    4 Gaudin A M Malozemoff p Recovery by flotation of mineral particles of colloidal size Phys.chem.1933 V.37 p597-607
    5 Barthelemy R E Advance in flotation Eng. Mining 1933 V134 p280
    6 Gaudin. A.M Advances In Interracial Phenomena Of Particulate/Solutions/Gas Systems; Applications To Flotation Research. AIChE Symposium Series v 71 n 150 1975 191p
    7 Gaudin. A.M etc.Processing Of Copper Sulphide Ores: Froth Flotation Reagents. Mining Magazine V 138 N 4 Apr 1978 P 332-333,335, 337-339
    8 Jones, M. H.; Woodcock, J. T.Applications Of Pulp Chemistry To Regulation Of Chemical Environment In Sulphide Mineral Flotation. Australasian Inst of Mining & Metallurgy 1984 Aust p 147-183
    9 Clement b the Nonferrors metal manufacturing industries of Australia Chem Eng. Mining 1933 V25 p29-33
    10 Frederic S Oxygen-free flotation AIMME 1933 V517 p17.
    11 Gaudin. A.M.. 1932. Flotation. 1st Ed., McGraw-Hill: New York.
    12 Talmud P L Mechanism of the flotation process Tech. Phys. 1933 V.3 p540
    13 Colin G .Scientific research-its possible furore beraing on the nonferrous metal indersties Eng. Mining. 1934 V135 p31
    14 Wark. I.W. and Cox. A.B..the Chemical basis of flotation PAIMM. 1933.V90 p80-123
    15 Mallkarjunan and Venkatachalam Int. Symp. Electrochemistry in Mineral and Metal Processing. In:Richardson P E. etal.(Eds), Electro-chemistry Society,1984.233~256
    16 Plaksin. I.N. and Shafeev, R.Sh., 1963. Bull IMM, 72, 715-722.
    17 Plaksin. I.N. and Bessonov. S.V., 1957. Proc. 2nd Intl Cong. on Surf Act. (Ed. J.H. Schulman). 3. 361-367.
    18 Salamy. S.G. and Nixon. J.C., 1953, Recent Developments in Mineral Dressing. IMM. 503-516.,
    19 Chander, S. Oxidation/Reduction Effects In Depression Of Sulfide Minerals, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Society v 278 1985 p 26-35 In English
    
    
    20 Gaudin. A.M.. Miaw, H.L. and Spedden. H.R., 1957. Proc. 2nd Intl Cong. on Surf Act. (Ed. J.H. Schulman). 3.202-219.
    21 Gaudin. A.M.. 1957. Flotation. 2st Ed.. McGraw-Hill: New York.
    22 Malhotra, D.; Ramadorai, C.; Purdy, K Plant Practice In Sulfide Flotation. Chem Reagents in the Min Process Ind 1986 Soc of Mining Engineers, Inc p 21-37
    23 Finkelstein. N.P. Allsion, S.A.. Lovell, V.M. and Stewart, B.V., 1975. Advances in Interf Pheno. of Particulate/Solution/Gas Systems (Eds. R Somasundaran and R.B. Grieves). AIChE: New York. 71(150), 165-175.
    24 Tolun. R.and Kitchener, J.A., Electrochemistry study of the galena-xthanthate flotation system 1964.IMM, 313-322.
    25 Fuerstenau, M.C.. Kuhn, M.C. and Elgillani, D.A., 1968. Trans SME/AIME, 241, 148-156.
    26 Majima H,How Oxidation Affects Selective Flotation Of Complex Sulphide Ores, Can Met Quarterly v 8 n 3 July-Sept 1969 p 269-73
    27 Majima, H, Mamiya, M.; Tanaka, H. Matsuda, K, Physical Chemistry Of Copper Cementation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan v 2 Sep 1-3 1976 ,AIME p 565-584. 1976
    28 Biegler T. Rand D.A. Woods R. Oxygen Reduction on Sulfide minerals. Part 1 Kinetic and Mechanism at rotated pyrite electrodes Electrochemistry and interfacial electrochemistry, Vol.60,1975, p 151-163
    29 Rand D.A. Oxygen Reduction on Sulfide minerals.partⅢ Comparisson of Activity of Various copper, Iorn,Lead,Nickle Mineral Electrodes, Electrochemistry and interfacial electrochemistry, Vol.60,197 5, p265-275
    30 Neeraj K. M. Kinetic Studies of Sulfide Mineral Oxidition and Xanthate Adsorption,Doctor thesis of Virginia Polytechnic Institute and State University ,2000.5, A Bell & Howell Company UMI dissertation Services
    31 Ahlberg. E. and Broo. A.E. oxgen reduction at sulfide minerals: I A rotating ring disc electrode (RRDE) study on galena and pyrite, 1996b. IJMP. 47.33-47.
    32 Ahlberg, E, Broo, A.E. Electrochemical reaction mechanisms at pyrite in acidic perchlorate solutions Journal of the Electrochemical Society v 144 n 4 Apr 1997 p 1281-1286
    33 Ahlberg. E. And Broo. A.E.1988.Proc.Intl.Svmp.Elevtrochem.in Mineral and Metal Process. Ⅱ(Eds. RE.Richardson and R. Woods). ECS:Pennington(NJ)36-48.
    34 Rao, S. R ,Surface Forces In Flotation, Minerals Science and Engineering v 6 n 1 Jan 1974 p 45-53.
    35 Allison. S.A..Goold. L.A..Nicol. M.J. and Granville, A.. Determination Of The Products Of Reaction Between Various Sulfide Minerals And Aqueous Xanthate Solution, And A
    
    Correlation Of The Products With Electrode Rest Potential,1972. Metal Trans. 3. 2613-2618.
    36 Allison S.A and Finkelstein N.P. Products of Reaction between Galena and Aqueous Xanthate Solutions Trans. Of Institution of Mining and Metalurgy,Section C,Vol78,1969,181-184
    37 Richardson, P.E.; Gebhardt, J.E.; Rice, D.A.; Yoon, R.H ,Electrochemical control of sulfide flotation circuits. Symposium on Emerging Computer Techniques for the Minerals Industry Feb 1993 1993
    38 Eadington. P. And Prosser. A.P., 1969, Oxidation of lead sulfides in Aqueous suspensions,Trans IMM, Sect. C: Min. Pro. Ext. Metall. 78. 74-82.
    39 Esposito MC. Chander S. and Aplan E.F. Characterization of Pyrite from coal source,in Process Metallurgy ,Ⅶ, Transaction of Metallurgical Society/American Institute of mining Engineers,pp475-493
    40 Salvador P. Tafalla D. Reaction Mechanism at n-FeS_2/I interface,Journal of the Electrochemical Society, 1991 ,Vol. 132(6)p 1350-1356
    41 Mishra K. Journal of the Electrochemical Society. 1992, Vol.139 (6)p749-752
    42 Richardson P.E. and Yoon R.H. and Y-Q Li ,The Photoelectrochemistry of Pyrite and Galena.ⅩⅢInternational Mineral Processing Congress, 1993.5,Sydney, p757-766
    43 陈建华,电化学调控浮选能带理论及其在有机抑制剂研究中的应用,博士论文,1999年5月,中南工业大学;
    44 陈述文,八种不同产地黄铁矿晶体特性与可浮性关系,硕士论文,1982,中南矿冶学院
    45 凌竞宏,胡熙庚,黄铁矿半导体性质与可浮性关系,中南矿冶学院学报,1988,19(1):10
    46 Cata M.,Ciccu R.,Delfa G.,Improvement in electric separation and flotation by modification of energy level in surface layers,10th International Mineral Processing Confess, 1973,London,Vol. 1,1-22
    47 Buckley. Hamilton and Woods, Investigation of the surface oxidation of sulfide minerals by linear potential sweep voltammetry and X-ray photoelectron spectroscopy, 1985. Flotation of Sulfide Minerals (Ed. K.S.E. Forssberg).p 41-60.
    48 Buckley. A.N. and Woods, R.. X-ray photoelectron spectroscopic and electrochemical studies of the interaction of xanthate with galena in relation to the mechanism 1990.IJMP, 28, 301-311.
    49 Buckley, A.N.; Woods, R Relaxation of the lead-deficient sulfide surface layer on oxidized galena., Journal of Applied Electrochemistry 26 9 Sep 1996 Chapman & Hall Ltd
    
    p 899-907 0021-891X In English
    50 Buckley, A.N.; Woods, R Identifying chemisorption in the interaction of thiol collectors with sulfide minerals by XPS: adsorption of xanthate on silver and silver sulfide. Source: Colloids and Surfaces A: Physicochemical and Engineering Aspects 104 2-3 Nov 20 1995
    51 冯其明,硫化矿物浮选矿浆电化学理论及工艺研究,博士论文,1992,中南工业大学;
    52 冯其明,硫化矿物浮选电化学讲座,有色金属.选矿部分,1992,1-6
    53 冯其明,硫化矿物浮选电化学,中南工业大学,1992
    54 Kelsall G.H.Q. Yin etc. Electreochemical oxidation of pyrite in aqueous electrolytes Jour. Of Electro analytical Chemistry 1999 Vol.471,116-125
    55 覃文庆 硫化矿物颗粒的电化学行为和电位调控浮选技术 博士论文 中南工业大学 1998
    56 孙水裕 硫化矿浮选的电化学调控剂无捕收剂浮选 博士论文 中南工业大学 1990
    57 Brion, D., "Etude Par Spectroscopie de photoelectrons de la Degradation Superficielle deFeS_2, CuFeS_2, ZnS et PbS a 1'air et Daus 1'eau," Applications of Surface Science 5 (1980),pp.133-152.
    58 胡庆春 方铅矿-毒砂浮选分离的电化学 硕士论文 中南工业大学 1988
    59 王云楚 黄铜矿-黄铁矿诱导浮选研究硕士论文 中南工业大学 1989
    60 Nass, D.E., "Steel Grinding Media Used in the United States and Canada," Materials for the Mining Industry, Climax Molybdenum Co., P. 173 (1979).
    61 Avlica, J.J., "Electrochemistry of Pyrrhotite in Flotation," M.S. Thesis, University of Minnesota (1974).
    62 Pavlica, J.J., Iwasaki, I., "Electrochemical and Magnetic Interactions in Pyrrhotite Flotation," Submitted for Publication in Trans SME/AIME 1981.
    63 G.R. Hoey Mechanisms Of Corrosive Wear Of Steel Balls In Grinding Hematite Ore. Canadian Metallurgical Quarterly v 14 n 3 Jul-Sep 1975 p 281-285
    64 Diesburg, D.E. and F. Borik, "Optimizing Abrasion Resistance and Toughness in Steels and Irons for the Mining Industry," Materials for the Mining Industry, Climax Molybdenum Co., P. 15 (1974).
    65 Farge, S.C. and G.A. Barclay, "Properties and Performance of Cast-Iron Grinding Balls," Materials for the Mining Industry, Climax Molybdenum Co., P. 189 (1974).
    66 Durman, R.W., "The Application of Alloyed White Cast Irons in Crashing, Grinding and Material Handling Process," British foundryman, 14, P. 141-149 (1976).
    67 Norman, T.E. and E.R. Hall, "Abrasive Wear of Ferrous Materials in Climax Operations,"
    
    American Society for Testing Materials, Special Technical Publication 446 (1969).
    68 Steigerwald, R.F, "Corrosion Principles for the Mining Engineer," Climax Molybdenum Co., P.93.
    69 Fairhust, W., and Rohrig, k., "Abrasion-resistant High-Chromium White Cast Irons," Foundry Trade Journal, P.685 (1974).
    70 Hoey, G.R., W. Dingley and C. Freeman, "Corrosion Inhibitors Reduce Ball Wear in Grinding Sulfide Ore," CIM Bull., P. 120 (March 1975).
    71 Hoey, G.R., W. Dingley and C. Freeman, "Corrosion Behaviour of Various Steels in Ore Grinding," CIM Bull., P. 105 (February 1977).
    72 Perez, R., "The role of Wear in Grinding Media," M.S. Thesis, University of Minnesota, (1982).
    73 Perez, R., J.J. Moore, "The Influence of Grinding Ball Composition and Wet Grinding Conditions on Metal Wear," Int. Conference on Wear of Metals, ASME, Reston, VA, April (1983).
    74 Natarajan, K.A.. S.C. Riemer and I. Iwasaki, "Corrosive and Erosive Wear in Ore Grinding," Submitted for publication in Trans. Inst. Min.Met. (London).
    75 Natarajan. K.A., S.C. Riemer and I. Iwasaki. "Corrosive and Erosive Wear in Magnetic Taconite Grinding," Pewpeint, SME/AIME Annual Tech. Meeting, Atlanta, Georgia (1983).
    76 Natarajan, K.A.. S.C. Riemer and I. Iwasaki. "Influence of Pyrrhotite on the Corrosive Wear of Grinding Balls in Magnetic Ore Grinding," Submitted for publication in Int' I J. Mineral Processing.
    77 Rey, M. and V. Formanek, "Some Factors Affecting the Selectivity in the Differential Flotation of Lead-Zinc Ores in the Presence of Oxidized Lead Mineral," Proc. 5th Int. Min. Proc. Congr., Inst. Mining and Met., London. P.343 (1960).
    78 Thornton, E., "The Effect of Grinding Media on Flotation Selectivity," Proc. 5th Annual Meeting of Canadian Mineral Processors, Ottawa, P.224 (1973).
    79 Fahlstrom. P. H. Autogenous Grinding Of Base Metal Ores At Boliden Aktiebolag. Can Min Metall Bull v 67 n 743 Mar 1974 p 128-141
    80 Fahlstrom, P.H.. O. Fagremo and A.S. Gjerdrum, "Autogenous Grinding at Boliden's. Aitik Plant, Parts Ⅰ and Ⅱ," Mining world, P.42 (March 1975).
    81 Rao, S.R., K.S. Moon and J. Leja, "Effect of Grinding Media on the Surface Reactions and Flotation of Heavy Metal Sulfides," in Flotation, A.M. Gaudin Memorial Volume (C.C. Fuerstenau, ed.), P.509 (1976).
    
    
    82 Harris. P.J. 1988. Reagents in Mineral Technology (Eds. P. Somasundaran and B.M. Moudgil). Marcel Dekker: New York. Ch 11, 371-384.
    83 原田种臣 磨矿行为对硫化矿浮选表面氧化的影响 国外金属矿选矿 1985 8 p39
    84 A·N·Beyzavi复杂硫化矿优生浮选特别是关于比表面积,氧化还原电位和氧含量的相互影响国外金属矿选矿 1989 2 p39
    85 Lui, A.W. and G.R. Hoey, "Corrosive and Erosive Wear of Metals in Mineral Slurries," Can. Met. Quart., 12, P.185 (1973).
    86 Lui, A.W. and G.R. Hoey, "Mechanism of Corrosive Wear of Steel Balls in Grinding Hematite Ore," Can. Met. Quart., 14, P.281 (1975).
    87 Natarajan, K.A. and I. Iwasaki, "Electrochemical Aspects of Grinding Media-Mineral Interactions in Magnetic Ore Grinding," Submitted for publication in Int. J. of Min. Proc.
    88 Perez, R., and J.J. Moore, "The A[[lication of the scanning Electron Microscope in Determining the Interaction of Abrasion and Corrosion in Mineral Grinding Media," Presented at the International Metallographic Conference and published in Microstructural Science, Vol. Ⅱ. 1982.
    89 Rowland. C.A.. Jr. and D.M. Kjos, "Autogenous and Semi-Auto-genous Mill Selection and Design," Paper presented in AIME Fall Meeting, Acapulco, Mexico (1974).
    90 Uhlig, H.H., "Corrosion and Corrosion Control," J. wiley, New York, 1971.
    91 Remark, J., and O.J. Wick, "Theoretical Aspects of Electrochemical Corrosion in Ball Mills," Presented at the Annual Intermountain Minerals Conference Sponsored by AIME (July 1975).
    92 Hoey, G.R., W. Dingley and C.T. Miles, "Test Installation for Studying Erosion Corrosion of Metals for Coal Washing Plants," CANMET report 79-19.
    93 Adam, K., K>A. Natarajan and I. Iwasaki, "Grinding Media Wear and its Effect on the Flotation of Sulfide Mineral," Accepted for publication in Int'1 J. of Mineral Processing.
    94 Hoar, T.P. and U.R. Evans, J.Chem. Soc., 2476 (1932).
    95 Natarajan, K.A., "Electrochemical Aspects of Grinding Media Corrosion in Relation to Taconite Grinding," Annual Progress Report for National Science Foundation, March 1982.
    96 Legault, R.A. and M.S. Walker, Kinetics Of The Atmospheric Corrosion Of Aluminized Steel "Corrosion." 20:2827 (1964).
    97 Macpherson, A.R. and R.R. Turner, "Autogenous Grinding from Test work to Purchase of a Commercial Unit," in Mineral Processing Plant Design (A.L. Mular and R.B. Bhappu, eds.).
    
    
    98 Johnson, N.W., A. Jowett and G.W. Heyes, "Oxidation-reduction Effects in Galena Flotation: Observations on Pb-Zn-Fe Sulphides Separation," Trans. Inst. Min. Metal., 91:C32-C37 (1982).
    99 Woods, R., "The Oxidation of Ethyl Xanthate on Platinum, Gold, Copper, and Galena Electrodes. Relation to the Mechanism of Mineral Flotation," Journal of Physical Chemistry, Vol.75, pp.354-362 (1971).
    100 Iwasaki, I., "Grinding Media Corrosion and its Effect on Flotation," Research Proposal to National Science Foundation, October, 1980.
    101 Cline, W.A., L.P. Connolly and G.A. Grandy, "Marcona Pyrrhotite Flotation from Magnetite," SME/AIME Preprint 74-B-47.
    102 Bruce, R.W., "The Effect of Grinding Media on the Selective Flotation of Copper-Lead-Zinc Ores," SME/AIME Preprint 76-B-338.
    103 Iwasaki, I.. K.J. rid, H.A. Lex and K.A. Smith. "The Effect of Autogenous and Ball Mill Grinding on Sulfide Flotation," Submit-ted for publication in Trans SME/AIME (1981).
    104 Majima. H.. "How Oxidation Affects Selective Flotation of Complex Sulfide Ores," Can. Met. Quart., 8.269-73 (1969).
    105 周方良 凡口铅锌矿磨矿过程对矿浆电位影响的研究 硕士论文 中南工业大学 1990.
    106 Chander. S.. 1999. Advances in Flotation Technology_(Eds. B.K. Parekh and J.D. Miller). SME: Littleton (CO). 129-145.
    107 ander. S.. Pang. J. and Briceno. A.. 1988 Proc. Intl. Svmp. Electrochem. in Mineral and Metal Process. Ⅱ(Eds. RE. Richardson and R. Woods). ECS: Pennington (NJ). 247-263.
    108 Lepetic. V.M.. 1974. CIM Bulletin. 67. 71.
    109 Finkelstein. N.P. and Poling, G.W.. 1977. Minl Sci, Engg. 9(4),177-197.
    110 Finkelstein. N.P. Allsion, S.A.. Lovell, V.M. and Stewart, B.V., 1975. Advances in Interf Pheno. of Particulate/Solution/Gas Systems (Eds. R Somasundaran and R.B. Grieves). AIChE: New York. 71(150), 165-175.
    111 Chander.S. and Briceno, A.. 1988. SME Annual Meeting, Phoenix(AZ). SME: Littleton (CO).
    112 Chander, S.; Khan, A. Effect of sulfur dioxide on flotation of chalcopyrite International Journal of Mineral Processing 58 1 2000 Elsevier Science Publishers B.V. p 45-55
    113 Woods, R.; Basilio, C.I.; Kim, D.S. Yoon, R.-H. Chemisorption of ethyl xanthate on silver-gold alloys Colloids and Surfaces A: Physicochemical and Engineering Aspects v 83 n 1 Mar 2 1994 p 1-7 0927-775
    
    
    114 Woods. R.. Yoon. R.-H.. Chemisorption of ethyl xanthate on copper electrodes 1990. IJMP. 30, 17-33. International Journal of Mineral Processing 423-4 Dec 1994 p 215-223
    115 Trahar, W.J., 1984. Principles of Mineral Flotation, The Wark Symp. AusIMM.
    116 王淀佐 浮选理论的新进展 科学出版社 1992 1~14
    117 王淀佐 浮选工艺剂浮选剂发展和新概念 湖南冶金 1983(5) 60~64
    118 王淀佐 矿物浮选与浮选剂 中南工业大学出版社 1986 6-70
    119 M.; Rao, S.R.; Finch, J.A.; Gervais, V.; Labonte, G.; Ounpuu, M.; Kim, J.; MacMinn, N. Collectorless flotation in the processing of complex sulphide ores Leroux, Proceedings of an Engineering Foundation Conference Dec 3-8 1989 1989 p 65-70
    120 Lekki, Janusz; Drzymala, Flotometric analysis of the collectorless flotation of sulphide materials Colloids and Surfaces v 44 Mar 1990 p 179-190
    121 Ekmekci, Z.; Demirel, H. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite International Journal of Mineral Processing v 52 n 1 Nov 1997 Elsevier Sci B.V. p 31-48 0301-7516
    122 Yekeler. Meftuni; Sonmez, Ibrahim Effect of the hydrophobic fraction and particle size in the collectorless column flotation kinetics Colloids and Surfaces A: Physicochemical and Engineering Aspects v 121 n 1 Mar 10 1997 Elsevier Science B.V. p 9-13 0927-7757
    123 Lynch, A. J.; Johnson, N. W.; McKee, D. J.; Thorne, G. C,.Behaviour Of Minerals In Sulphide Flotation Processes, With Reference To Simulation And Control.Journal of The South African Institute of Mining and Metallurgy v 74 n 9 Apr 1974 p 349-361
    124 Natarajan, K. A.; Iwasaki. I. Significance Of Mixed Potentials In Eh Measurements With Platinum Electrodes. Transactions of the Society of Mining Engineers of AIME v 256 n 1 Mar 1974 p 82-86
    125 Natarajan, K. A.; Iwasaki I., Practical Implications Of Eh Measurements In Sulfide Flotation Circuits.Transactions of the Society of Mining Engineers of AIME v 254 n 4 Dec 1973 p 323-328
    126 孙水裕 王淀佐 硫化矿浮选电化学Ⅰ总论 国外金属矿选矿 1992 2 p1-10
    127 孙水裕 王淀佐 硫化矿浮选电化学Ⅱ硫化矿浮选发展方向 国外金属矿选矿 1992 2 p11-15.
    128 孙水裕 王淀佐 硫化矿浮选电化学Ⅲ可浮性新分类 国外金属矿选矿 1992 2 p15-19.
    129 孙水裕 王淀佐 无捕收剂浮选在硫化矿石分离种的应用研究 有色金属 1992 51-5
    130 Wang D Z & Sun S Y Quantum chemical mechanism on surface oxidation and flotation of sulfide minerals Transaction of NFSOC 1990 Vol. 1.1
    131 Wang D Z & Sun S Y Hu Y H Collectorless Flotation [资源处理技术] 第3卷 第1号
    
    1992 4
    132 王淀佐等 硫化矿物捕收剂浮选基本规律及其分离方案设计 有色金属 1992 6 1-7
    133 王淀佐等 黄铜矿自诱导浮选的研究 有色金属 1992 5.
    134 王淀佐等 硫化矿浮选抑制的电化学研究 有色矿冶 1990 2.
    135 王淀佐等 黄铜矿-方铅矿浮选分离的电化学研究 中南矿冶学院学报 1992 10.
    136 王淀佐等 黄铁矿物捕收剂浮选的电化学及量子化学研究 中南矿冶学院学报 1991 11.p43
    137 王淀佐等 硫化矿物捕剂浮选 中南矿冶学院学报 1990 10
    138 Fuerstenau, M,C.. Kuhn, M.C. and Elgillani, D.A., Role of dixanthogen in xanthate flotation of pyrite 1968. Trans SME/AIME. 241, 148-156.
    139 Gardner. J. R. and Woods, R, Electrochemical Investigation Of The Natural Flotability Of Chalcopyrite. 1974. Aust J. Chem., 27. 2139.
    140 Goold. L.. A. And Finkelstein. N.P., Product of reaction between galena and aqueous xthante solutions1972. Report No. 1439, NIM. South Africa.
    141 Natarajan. K.A. and Iwasaki. I., behavior of Pt electrodes as redox potential indicators in some systems of metallurgyinterest 1970. Trans SME/AIME. 247.317.
    142 Natarajan, K. A.: Iwasaki, Ieffect Of Poisoning Of Platinum Electrodes On Eh Measurements.. Transactions of the Society of Mining Engineers of AIME v 254 n 1 Mar 1973 p 22-28.
    143 Richardson. P.E. and Eldelstein, D.L., Redox potential measurements in hydra metallurgy systems 1978. Information Circular 8818. USBM. 72-99
    144 Richardson. P.E. and Maust. E.E., Jr., 1976. Flotation-Gaudin Memorial Volume (Ed. M.C. Fuerstenau). AIME: New York. 1,364.
    145 Woods. R.. Oxidation of ethyl-xthanthate on Pt,gold,copper and galena electrodes 1971, J. Phy. Chem., 75(3). 354-362.
    146 Brinceno.A and Chander S. An electrochemical characterization of p,vrite from coal and ore sources,IJMP 1988,24:73-80.
    147 Eadington. P. Prosser A.P. Oxidation of lead sulfides in aqueous suspensions, Transaction of Institute of Mining and Metallurgy, Section C:74-82.
    148 Woodcock J.T. Jones M.H., Chemical environments in Australian lead-zinc flotation plant pulp:I. PH, redox potential and oxgen concentrations. Proc. Australians. Inst. Min. Metall., 1970, 235:45-60
    149 Trahar W.J. A laboratory study of the influence of sodium sulfide and oxgen on the collectorless flotation of chalcopyrite, 1983, IJMP, 11:57-54
    150 Rubio J. and Kitchener J.A. Electrochemical study of galena-Xanthate-oxgen flotation
    
    system. Trans. Ins.Min.Metall., 1964,73:313-322.
    151 Hanson J. S. and Fuerstenau D.W. the electrochemical and flotation behavior of chalcocite and mixed oxide/sulfide ores, IJMP, 1991,33:33-47
    152 Yoon R.H. and Woods. R Eh-pH diagrams for stable and metastable phases in the copper-sulfur-water system, IJMP, 1986.20:109-121.
    154 Heimals S., Proceeding Int Sump. P.E.Richardson (Ed.) Electro-chemistry in Mineral and Metal processing electrochemistry Science 1988,pp 170-182
    155 US. Patent. 5295585A,1993.
    156 Palsson B.I.,Computer-assisted calculations of chemical equilibria with relevance to the chromate depresson of galena, IJMP, 1991,33:207-221
    157 Eriksson G.A. An agorithm for the computation of aqueous multicomponent, multiphase equilibria. Anal. Chim.Acta. 1979,112:375-383
    158 Palsson B.I. Computer-assisted calculations of thermodynamic equilibria galena-xanthate system, IJMP, 1988,23:93-121
    159 Garrels R.M. and Christ C.L. Solutions. Minerals and Equilibria, Freeman, San Fracisco, CA,450pp
    160 沈慕昭,电化学基本原理及其应用,北京:北京师范大学出版社,1987
    161 (美)巴德等著,电化学方法:原理及应用,北京:化学工业出版社,1986
    162 杨文治,电化学基础,北京:北京大学出版社,1982
    163 刘永辉,电化学测试技术,北京:北京航空学院出版社,1987
    164 周伟舫,电化学测量,上海:上海科学技术出版社,1985
    165 藤岛 著;陈震译,电化学测定方法,北京:北京大学出版社,1995
    166 (英)塞勒著:曾实译,电化学的实验方法,北京:科学出版社,1985
    167 田昭武,电化学实验方法进展,福建:厦门大学出版社,1988.5
    168 朱元保,电化学数据手册,长沙:湖南科学技术出版社,1985
    169 (英)南安普顿电化学小组;柳厚田等译;周伟舫校,电化学中的仪器方法,上海:上海复旦大学出版社,1992.2
    170 田昭武,电化学研究方法,北京:科学出版社,1984.
    171 Marabini A.M. New reagents in sulfide mineral flotation 1991 33:291-306
    172 Granville A.F. Review of reactions in the flotation system galena-xanthate-oxgen, Trans. IMM, 81:1-30
    173 Fuerstenau M.C. the role of dixanthogen in the pyrite flotation. Trans.AIME,241:148-156
    174 Poling G.W. the role of dithiolates of sulfide minerals, MSE 9:177-197
    175 Adam K. and Iwasaki I. Grinding Media wear and its effect on the flotation of sulfide
    
    minerals, IJMP, 1984,1984,12:39-54
    176 Guy P.J and Trahar W.J. the Influence of grinding and flotation environments on the batch flotation of galena, IJMP, 1984,12:15-38.
    177 曹楚南,腐蚀电化学,中国腐蚀与防护学会主编,北京:化学工业出版社,1994.9
    178 曹楚南,腐蚀电化学原理,北京:化学工业出版社,1985
    179 (美)方坦纳(Fontana,G.M.),格林(Greene,N.D.),左景伊译,腐蚀工程,北京:化学工业出版社,1982
    180 李金桂,腐蚀和腐蚀控制手册,国防工业出版社,1988
    181 马特松著;黄建中等译,腐蚀基础,北京:冶金工业出版社,1990
    182 兰州化学公司化工机械研究所编,腐蚀试验方法,北京:燃化工业出版社,1974
    183 吴荫顺,腐蚀试验方法与防腐蚀检测技术,北京:化工出版社,1996
    184 胡茂圃,腐蚀电化学,北京:冶金工业出版社,1991
    185 肖纪美应力作用下的金属腐蚀:应力腐蚀·氢致开裂·腐蚀疲劳·摩耗腐蚀,北京:化学工业出版社,1990
    186 肖纪美,腐蚀总论:材料的腐蚀及其控制方法,北京:化学工业出版社,1994.5
    187 (英)斯库里(Scully,J.G.)著:李启中译,腐蚀原理,北京:水利电力出版社,1984
    188 兰州化工机械研究所,电化学保护及缓蚀剂,北京:燃化工业出版社,1973
    189 伊丽莹著,矿物分析化学,北京:科学出版社,1994.6
    190 卢寿慈,矿物浮选原理,北京:冶金工业出版社,1988
    191 彭文世,矿物红外光谱图集,科学出版社,1982
    192 C J Casewit K S Colwell Application of a Universal Force Field to Organic Molecules J.Am.Chem.Soc. 1992,114 p10035-10046
    193 C J Casewit K S Colwell Application of a Universal Force Field to Main Group Compounds J.Am.Chem.Soc. 1992,114 p10046-10055
    194 蔡东建,矿物学,台北:教育部,1981
    195 陈丰,矿物物理学概论,北京:科学出版社,1994.12
    196 南京地质学校主编,矿物学,北京:地质出版社,1979
    197 蔡爱莉,矿物学,北京:地质出版社,1999
    198 Tibor Zoltai Mineralogy :concepts and principles, Minneapolis, Burgess Publishing Comp. 1995
    199 E.A. Kneer Electrochemical Measurements during the CMP of Tungsten Thin films J. Electrochem. S 1997,144:3041-3049
    200 K. Tkacova Mechanical Activation of minerals, Newyork, Elsevier, 1989
    201 Jan Leja硫化矿浮选的基本原理 国外金属矿选矿 1989,2,41-49
    
    
    202 李维华,段玉然,矿物激光显微光谱分析,北京:地质出版社,1981
    203 李高山,矿物中的电子—空穴心及其在找矿勘探中的应用,北京:地质出版社,1993.7
    204 (美)史密斯著:高鼎三等译半导体,北京:科学出版社,1987
    205 (苏)古列维奇等著;彭瑞伍译,半导体光电化学,北京:科学出版社,1989
    206 孙瑛,张长桥,半导体化学,济南:山东科学技术出版社,1993.6
    207 德意志联邦共和国)西格(Seeger,K.),徐乐,钱建业译,半导体物理学,北京:人民教育出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700