用户名: 密码: 验证码:
湿式磨矿中钢球磨损机理与磨损规律数学模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究属原化工部科技发展计划项目“球磨机中钢球磨损机理与磨损规律的研究”(化科计发[1996]107号)和湖北省人事厅专家基金项目“湿式磨矿过程中助磨—缓蚀技术研究”(鄂人专字[2001]118号)中的重要内容。论文系统探讨了磨矿工艺条件、矿浆流变特性、磨矿电化学环境、助磨—缓蚀剂对钢球磨损的影响规律和作用机理:开发了旨在降低钢球磨损率、提高磨矿效率的助磨—缓蚀节能新技术,并在磷块岩浮选工业试验中得到了应用;在理论分析和试验研究的基础上,建立了钢球磨损规律的动力学模型和统计学模型,并在扩大连续性试验中进行了验证。
     分别考查了磨矿方式、磨矿气氛、矿浆浓度、装球率等磨矿条件的变化对钢球磨损率和磨矿效率的影响规律。干式磨矿、湿式磨矿(水介质)和有机液介质磨矿条件下,钢球磨损率R增大的次序为R_有机>R_湿式>R_干式;磨矿产物中新增-0.043mm粒级产率F增大的次序为F_湿式>F_有机>F_干式。钢球的磨损率随磨机中氧气分压的增加而增大,研磨铁矿石时,增大的幅度较大:研磨石英岩和磷灰石矿时,增大的幅度较小。充氮气时研磨石英岩、铁矿石和磷灰石矿,钢球的磨损率依次减小。在有氧存在的条件下研磨铁矿石,由于其中的硫化矿物与钢球之间形成腐蚀电偶,从而加速了钢球的腐蚀磨损速度。钢球的磨损率在矿浆体积浓度约为25%时出现最大值;随着矿浆体积浓度的增大,磨矿产物中新增-0.043mm粒级的产率增大,但当矿浆体积浓度增大到50%以后反而略有下降。钢球的磨损率在装球率约为25%时出现最大值:随着装球率的增大,磨矿产物中新增-0.043mm粒级的产率增大,但是增大的幅度随装球率的增大而减小。
     探讨了矿浆流变特性对钢球磨损行为的影响。矿浆的流变特性在矿浆体积浓度为50%时发生显著变化,即当矿浆体积浓度小于50%时,随着矿浆体积浓度的增大,矿浆粘度缓慢增加;当矿浆体积浓度大于50%时,矿浆粘度急剧增加,添加化学助剂能改善高浓度矿浆的流变性。矿浆粘度对钢球磨损率的影响存在一临界值(约为200 mPa.s,剪切速率22.4l s~(-1)),当矿浆粘度处于临界值时,
    
    摘要
    钢球的磨损率出现最大值。钢球表面罩盖层厚度随矿浆体积浓度的增大而增大。
    当罩盖层厚度较小时,钢球的磨损率较大;随着罩盖层厚度的增大,钢球的磨损
    率减小,磨矿效率提高;当罩盖层厚度超过最佳值时,磨矿效率反而降低。
     电化学实验结果表明,当钢球与黄铁矿接触时将形成腐蚀电偶,钢球的电位
    相对较负为阳极,黄铁矿的电位相对较正为阴极。黄铁矿与钢球电极之间在充氧
    气条件下的初始电位和电流大于充空气条件下的初始电位和电流,随着充气时间
    的延长,充氧气条件下的接触电位和电流下降的幅度比充空气条件下下降的幅度
    要大。模拟磨损差异电池实验结果表明,表面有磨损差异的钢球电极间有电流的
    存在,但比黄铁矿与钢球电极间的电流小。不同磨矿时间条件下,由钢球的腐蚀
    量根据法拉第定律计算得出的腐蚀电流密度与根据黄铁矿和钢球的极化曲线所
    获得的电偶腐蚀电流密度基本接近,但是总是大于根据极化曲线所获得的腐蚀电
    流密度值。X一射线衍射分析结果显示,钢球表面的腐蚀产物为a FeOOH和Fe,q
    的混合物。研究结果表明,钢球的腐蚀一磨损作用具有“同时性”、“交替性”和
     “协同性”特征,即(l)腐蚀作用和磨损作用同时存在并分别遵循各自的作用
    规律;(2)腐蚀作用与磨损作用交替进行;(3)腐蚀作用与磨损作用相互促进。
     助磨一缓蚀效应结果显示,在湿式磨矿中加入某种化学助剂,既能起到助磨
    剂的作用,又能起到缓蚀剂的作用。单一型助磨一缓蚀剂碳酸钠、硅酸钠、铬酸
    钠和复配型助磨一缓蚀剂铬酸钠一三聚磷酸钠、碳酸钠一硅酸钠具有良好的助磨
    一缓蚀作用,能明显提高磨矿效率、降低钢球磨损率。水玻璃对磷灰石矿的助磨
    作用具有选择性,即对磷酸盐类矿物的助磨作用比较显著,而对硅酸盐类矿物不
    存在助磨作用。在磷块岩浮选工业试验中,将部分碳酸钠和水玻璃加入磨矿过程
    中作为助磨一缓蚀剂,磨矿效率提高2%,钢球的磨损率降低12.7%,精矿中PZOS
    的回收率提高3.22%,企业每年直接经济效益将达到319.2万元。助磨一缓蚀效
    果的好坏可以用助磨一缓蚀效应评价函数F(x,y,z)来评判,如果△F>0,则说明
    存在助磨一缓蚀作用,△F值越大,助磨一缓蚀效果越好;反之亦然。
     在湿式磨矿过程中,钢球的磨损符合迭加原理,即钢球的总磨损量为冲击磨
    
    中南大学博士学位论文湿式磨矿中钢球磨损机理与磨损规律数学模型的研究
    损量、磨剥磨损量和腐蚀磨损量之和,在此基础上建立了钢球磨损的动力学模型;
    在实验室磨矿条件下,对动力学模型参数进行了优化估计;扩大连续性试验结果
    表明,所建立的动力学模型真实地描述了钢球磨损的客观规律性o’以动力学模型
    为基础,通过理论分析和推导,建立了钢球磨损的统计学模型,并且通过实例,
    详细说明了统计学模型在合理补加钢球中的应用。
     本研究的创新点在于:
     (1)论文系统探讨了磨矿工艺条件、矿浆流变特性、磨矿电化学环境、助磨一
    缓蚀剂对钢球磨损的影响规律和作用机理;开发了旨在降低钢球磨损率、?
This dissertation is the main contents of the projects, Wear Mechanisms and Laws of Steel Balls in Ball Mill, [1996] 107 supported by the Developmental Program of Science and Technology of the Ministry of Chemical Industry of China, and the Aiding Grinding-Inhibiting Corrosion Technique in Wet Grinding, [2001 ] 118 by the Specialist Foundation of the Personnel Department of Hubei Province, China. Effects of different grinding conditions, slurry rheological behaviors, electrochemical aspects and chemical additiVes on the wear of steel balls in wet grinding are systematically studied. A new technique of aiding grinding-inhibiting corrosion is developed to reduce the wear rate of steel balls and raise the grinding efficiency. It is applied in industrial test of phosphate ore flotation. A dynamic model and a statistical model of the wear of steel balls are established on the basis of theories and experiments. The models are examined to be satisfactory with trial data.
    Effects of such grinding conditions as grinding way, grinding atmosphere, pulp volume density and charge volume on the wear rate of steel balls and the grinding efficiency are respectively investigated in this thesis. Test results show that the wear rate of steel balls R is arranged in order: Rorganic>Rwet>Rdry, the net mass fraction of -0.043mm size in grinding products F: Fwet>Forganic>Fdry under different conditions, namely dry, wet and in the presence of an organic liquid. The wear rate increases more rapidly in grinding iron ore than in grinding quartzite or phosphorus ore as the oxygen partial pressure in the mill is increased. It decreases in order of grinding quartzite, iron ore and phosphate ore under nitrogen flushing condition. In the presence of oxygen (oxygen or air flushed into the mill), the corrosive wear of steel balls accelerates in grinding iron ore due to form galvanic coupling between sulfide minerals in iron ore and steel balls. The wear rate increases with either of the pulp volume den
    sity and the ball charge, and reaches a maximum at about 25%. The net mass fraction of -0.043mm
    IV
    
    
    material produced also increases with either of the pulp volume density and the ball charge, but it decreases slightly over pulp volume density of 50% and its growth speed decreases as the charge volume increases.
    Effects of slurry rheological characteristics on the wear performance of the balls are studied. Test results indicate that slurry rheological behaviors change outstandingly at pulp volume density of approximately 50%. Pulp viscosity increases gradually with pulp volume density under 50%, and does rapidly over 50%. The slurry rheological behaviors can be improved by adding some chemical additives into pulp with high volume density. The wear rate increases with pulp viscosity, and reaches a maximum at a critical viscosity of about 200mPa.s with a shear rate of 22.4Is"'.A law that the thickness of pulp layer coating on the balls varies with pulp volumetric solids content is found. The wear rate of steel balls with small pulp layer thickness is higher. The wear rate decreases and the grinding efficiency increases as the thickness increases, but the grinding efficiency decreases when it is over the best thickness.
    Electrochemical determining data demonstrate that the galvanic couples form between the pyrite particles and the steel balls when they contact with each other, because the rest potential of the steel ball electrode as an anode is lower and that of pyrite electrode as a cathode is higher. The initial combination potential and the initial galvanic current of a pyrite-steel ball couple in aeration of oxygen are greater than those in aeration of air. The combination potential and the galvanic current decrease more quickly with time in aeration of oxygen than they do in aeration of air. In an experiment of simulating wear differences, between two different balls in wear degree exists a galvanic current, which is smaller than that between pyrite and the ball. Under different grinding time conditions, the equivalent corrosion currents calcula
引文
[1] 程纠良、王宏勋等,我国新型磨矿介质材质研究、工业生产和推广应用综合述评,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:1~24.
    [2] 孙成林、王宏勋等,粗谈选择磨矿介质的技术—经济—社会考虑因素,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:25~28.
    [3] 王宏勋、孙成林等,磨机衬板用耐磨材料的技术进展,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:29~43.
    [4] 李茂林,国内外水泥粉磨介质评介,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:47~54.
    [5] 刘金贵,新型高铬多元合金高性能耐磨铸造磨球的磨矿生产实践,有色矿山,1996,4:32.
    [6] 敬守政、卯时敏,中、高碳钢钢球生产工艺及经济效应,金属矿山,1984,(1):37~40.
    [7] 王鹏、宋陆琴,浅谈如何评价磨矿介质,金属矿山,1990,(1):47~50.
    [8] 刘英杰、沈万慈,选矿用球磨机易磨损件的磨损和失效分析,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:74~78.
    [9] 邓海金,湿磨条件下磨球的磨损及其选材,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:383~391.
    [10] A. W. Lui and G. R. Hoey. Mechanisms of corrosive wear of steel balls in grinding hematite ore. Can. Metall. Q., 1975, 14 (3): 281~285.
    [11] 陈炳辰,磨矿原理,北京:冶金工业出版社,1989.
    [12] M. M. Krushchov and M. A. Babichev. Investigation of the wear of metals and alloys by rubbing on an abrasive surface. Friction and wear in machinery, 1956, 11: 12~21.
    [13] I. Iwasaki, J. J. Moore and L. A. Lindeke. Effect of ball mill size on media wear. Minerals and Metallurgical Processing, 1987, 8: 160~166.
    [14] C. C. Harris and N. Arbiter. Grinding mill operation and scale up: Theory and equations. Mineral Processing Technology Review, 1985,1: 249~265.
    [15] R. Blickensderfer and J. H. Tylczak. Evaluation of commercial US grinding balls by laboratory impact and abrasion tests. Minerals and Metallurgical Processing, 1989, 3: 60~68.
    [16] R. Blickensderfer, J. H. Tylczak, et al. A large scale impact spalling test. Wear, 1983, 84: 363~373.
    [17] F. P. Bowden and D. Tabor. The friction and lubrication of solids, Part Ⅰ (1960) and Part Ⅱ(1964).
    [18] J. F. Archard. Applied physics. 1953, 24: 981.
    [19] 邵荷生、张清,金属的磨料磨损与耐磨材料,北京:机械工业出版社,1988.
    [20] A. K. Gangopadhyay and J. J. Moore. Assessment of wear mechanisms in grinding
    
    media. Mineral and metallurgical processing, 1985, 8: 145~151.
    [21] E. Rabinowicz. Friction and wear of materials. 1966.
    [22] 邵荷生、曲敬信等,摩擦与磨损,北京:煤炭工业出版社,1992.
    [23] 史美堂,金属材料及热处理,上海:上海科学技术出版社,1980.
    [24] D. J. Dunn, and R. G. Martin, Measurement of impact forces in ball mills. Mining Engineering, 1978, 30(4): 384~388.
    [25] K. Adam and K. A. Natarajan. Grinding media wear and its effect on the flotation of sulfide minerals. Int. J. Miner. Process., 1984, 12: 39~54.
    [26] P. J. Guy and W. J. Trahar. The influence of grinding and flotation environments on the laboratory batch flotation of galena. Int. J. Miner. Process., 1984, 12: 15~38.
    [27] K. A. Natarajan. Ball wear and its control in the grinding of a lead zinc sulphide ore. Int. J. Miner. Process., 1992, 34: 161~175.
    [28] M. K. Yelloji Rao and K. A. Natarajan. Effect of grinding media mineral galvanic interaction on chalcopyrite flotation. Proc. Asian Mining, 88, Inst. Min. Metall., London, 1988a: 147~157.
    [29] A. W. Lui and G. R. Hoey. Corrosive and erosive wear of metals in mineral slurries. Can. Met. Q, 1973, 12: 185~191.
    [30] A. W. Lui and G. R. Hoey. Mechanisms of corrosive wear of steel balls in grinding hematite ore. Can. Met. Q., 1975,14(3): 281~285.
    [31] J. J. Pavlica and I. Iwasaki. Electrochemical and magnetic interactions in pyrrhotite flotation. Trans. SME/AIME, 1982, 272: 1885~1890.
    [32] 徐秉权,磨球的腐蚀及其对选矿的影响,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:79~87.
    [33] 徐秉权,磨矿过程对硫化矿矿浆电位的影响,湖南有色金属,1995,11(3):21~27.
    [34] K. Adam and I. Iwasaki. Pyrrhotite grinding media interaction and its effect on flotability at different applied potentials. Miner. Metall. Process., 1984,1: 81~87.
    [35] M. E. Learmont and I. Iwasaki. Effect of grinding media on galena flotation. Miner. Metall. Process.,1984,1: 136~143.
    [36] E. Thornton. Theeffect of grinding media on flotation selectivity. Proc. 5th Annu. Mtg. Canadian Mineral Processors, Dept. Energy, Mines and Resources, Ottawa, Ont., 1973: 224~238.
    [37] M. K. Yelloji Rao and K. A. Natarajan. Electrochemical aspects of grinding media mineral interaction on sulphide flotation. Bull. Mater. Sci., 1988b, 10: 411~422.
    [38] Vathsala and K. A. Natarajan. Some electrochemical aspects of grinding media corrosion and sphalerite flotation. Int. J. Miner. Process., 1989, 26: 193~203.
    
    
    [39] M. K. Yelloji Rao and K. A. Natarajan. Effect of galvanic interaction between grinding media and minerals on sphalerite flotation. Int. J. Miner. Process., 1989, 27: 95~109.
    [40] K. A. Natarajan. Laboratory studies on ball wear in the grinding of a chalcopyrite ore. Int. J. Miner. Process., 1996, 46: 205~213.
    [41] C. S. Gundewar, K. A. Natarajan, U. B. Nayak and K. Satyanarayana. Laboratory studies on ball wear in the grinding of a hematite magnetite ore. Int. J. Miner. Process., 1990, 26: 121~139.
    [42] K. A. Natarajan and I. Iwasaki. Electrochemical.aspects of grinding media mineral interaction in magnetite ore grinding. Int. J. Miner. Process. 1984, 13: 53~71.
    [43] M. K. Yelloji Rao and K. A. Natarajan. Factors influencing ball wear and flotation with respect to ore grinding. Miner. Process. Ext. Met. Rev., 1991,7: 137~173.
    [44] 化工部化工机械研究院,腐蚀与防护手册,北京:化学工业出版社,1989.
    [45] 梁成浩,金属腐蚀学导论,北京:机械工业出版社,1999.
    [46] G. R. Hoey and W. Dingley. Corrosive inhibitors reduce ball wear in grinding sulfide ore. CIM. Bulletin. 1975, 68: 120~123.
    [47] G. R. Hoey, W. Dingley and A. W. Lui. Inhibitors help to reduce ball loss. Canadian Chemical Processing, 1975, 5: 36~41.
    [48] I.Iwasaki等,球磨机研磨中腐蚀磨损与磨蚀磨损的特性,国外金属矿选矿,1990,27(12):22~29.
    [49] I.Iwasaki.磨剥与腐蚀在磨矿介质损耗中的作用及其对浮选的影响,国外金属矿选矿,1985,22(4):1~12.
    [50] 周放良,凡口铅锌矿磨矿过程对矿浆电位的影响:[硕士论文],长沙:中南工业大学矿物工程系,1991.
    [51] F. C. Bond. Metal wear in crushing and grinding. Chem. Eng. Progress. 1964, 60(2): 90~100.
    [52] F. C. Bond. New ideas clarify grinding principles. Chem. Eng. 1962, 5: 103~108.
    [53] I. Iwasaki, S. C. Riemer and J. N. Orlich. Corrosive and abrasive wear in ore grinding. Wear. 1985, 103: 253~267.
    [54] K. A. Natarajan, S. C. Riemer and I. Iwasaki. Influence of pyrrhotite on the corrosive wear of grinding balls in magnetite ore grinding. Int. J. Miner. Process. 1984a, 13: 73~81.
    [55] K. A. Natarajan and S. C. Riemer. Corrosive and erosive wear in magnetic taconite grinding. Minerals and metallurgical processing. 1984, 1: 10~14.
    [56] I. Iwasaki, S. C. Riemer and J. N. Orlich. Effect of percent solids and mill loading on ball wear in laboratory taconite grinding. Minerals and
    
    metallu gical processing, 1985,2: 185~192.
    [57] R. R. Klimpel. Slurry rheology influence on the performance of mineral/coal grinding circuits. Min. Eng., 1982, 34: 1665~1668, and 1983,35: 21~26.
    [58] P. Tucker. Rheological factors that affect the wet grinding of ores. Trans. Inst. Min. Metall., 1982,91: 117~122.
    [59] 杨小生、陈荩,选矿流变学及其应用,长沙:中南工业大学出版社,1995.
    [60] 杨小生、吕桂芝,磨矿流变效应研究,中国有色金属学报,1995,5(3):22~26.
    [61] R. R. Klimpel and R. D. Hansen. Chemistry of mineral slurry rheology control grinding aids. Minerals and metallurgical processing, 1989,2: 35~43.
    [62] R. R. Klimpel. Laboratory studies of the grinding and rheology of dense coal/water slurries. Powder Technology, 1982,32: 267~277.
    [63] C. E. Lemmings and J. M. Boyes. Plant trial evaluation of on stream measurement system for wet grinding mills. Int. Chem. Eng. Symposium series, 1977, 63: 1~12.
    [64] 杨文治等,缓蚀剂,北京:化学工业出版社,1989.
    [65] 黄淑菊,金属腐蚀与防护,西安:西安交通大学出版社,1988.
    [66] 陈旭俊、黄惠金、蔡亚汉,金属腐蚀与保护基本教程,北京:机械工业出版社,1988.
    [67] 邓舜扬,金属防腐蚀对话,北京:冶金工业出版社,1987:41~79.
    [68] D. A. Jones. Corrosive wear in wet ore grinding systems. Journal of Metals, 1985, 6: 20~23.
    [69] M. G. Fontana and N. D. Greene. Corrosion Engineering(Second Edition). McGraw Hill Book Company, 1978: 192~199.
    [70] 廖昌群,浅谈降低湿式磨矿钢耗的方法,金属矿山,1991,11:53~55.
    [71] D. W. Fuerstenau, K. S. Venkataraman and B. V. Velamakanni. Effect of chemical additives on the dynamics of grinding media in wet ball mill grinding. Int. J. Miner. Process., 1985, 15: 251~267.
    [72] M. J. Meulendyke and J. D. Purdue. Wear of grinding media in the mineral processing industry: An overview. Minerals and Metallurgical Processing, 1989, 11: 167~172.
    [73] E. W. Davis. Fine crushing in ball mills. Transactions, AIDE, 1919, 61: 250~296.
    [74] D. E. Norquist and J. E. Miller. Relative wear rates of various diameter grinding balls in production mills. Transactions, AIDE. 1950, 187: 712~714.
    [75] F. C. Bond. Wear and size distribution of grinding balls. Transactions, AIME, 1943, 153: 373~384.
    [76] L. G. Austin and R. R. Klimpel. Ball wear and ball size distribution in tumbling ball mills. Powder technology, 1985, 41: 279~286.
    [77] L. A. Yermeulen and D. D. Howat. Abrasive and impactive wear of grinding balls
    
    in rotary mills. Journal, South African Institute of Mining and Metallurgy, 1986, 85: 113~124.
    [78] E. Azzaroni. Copper ore grinding-secondary ball mill classification (mill C). Armco internal report, Armco grinding systems. Kansas City, MO. 1979.
    [79] E. Azzaroni. Copper ore grinding-secondary ball mill classification (mill S). Armco internal report, Armco grinding systems. Kansas City, MO. 1979.
    [80] G. R. Hocy, W. Oingley and C. Freemen. Corrosive behavior of various steels in ore grinding. CIM Bulletin, 1977, 11: 105~109.
    [81] 李启衡,碎矿与磨矿,北京:冶金工业出版社,1980.
    [82] 刘建国、吴一微,磨矿介质及降低磨矿介质耗暈途径的探讨,首届全国粉磨介质与耐磨材料技术研讨会论文集,1992:155~160。
    [83] 谢恒星、李松仁、张一清、李定或,磨矿条件对钢球磨损的影响,武汉化工学院学报,2000,22(1):34~36.
    [84] 张一清,湿式磨矿过程中钢球磨损机理的研究,硕士学位论文,武汉:武汉冶金科技大学,1999.
    [85] 吴一善,粉碎学概论,北京:中国建材出版社,1993.
    [86] B. Clarke and J. A. Kitchener. The influence of pulp viscosity on fine grinding in a ball mill. Br. Chem. Eng., 1968, 13(7): 991~995.
    [87] W. T. Yen and T. Salman. Pulp density of the ball mill and grindability. Canadian Mining Journal, 1969, 90(11): 63~66.
    [88] 韩式方,非牛顿流体连续介质力学,成都:四川科学技术出版社,1988.
    [89] 袁龙蔚,流变力学,北京:科学出版社,1986.
    [90] 谢恒星、张一清、李松仁、李定或,矿浆流变特性对钢球磨损规律的影响,武汉化工学院学报,2000,23(1):34~36.
    [91] 李松仕、谢恒星,钢球表面罩盖层厚度的影响因素研究,中国矿业,2000,9(6):47~49
    [92] M. Katzer, R. R. Klimpel and J. Sewell. An example of the laboratory characterization of grinding aids in the wet grinding of ores. Min. Eng., 1981, 33(10): 1471~1476.
    [93] R. R. Klimpel and L. G. Austin. Chemical additives for wet grinding of minerals. Powder Technology, 1982a, 31: 239~253.
    [94] R. R. Klimpel. Grinding aids based on slurry rheology control. Reagents in the Mineral Industries, P. Somasundaran and B. Moudgil eds., Marcel Dekker, New York, 1987: 179~194.
    [95] R. R. Klimpel and W. Manfroy. Chemical grinding aids for increasing throughput in the wet grinding of ores. Ind. Eng. Chem. Process Des. Dev., 1978, 17: 518~523.
    [96] F. W. Locher and H. M. V. Seebach. Influence of adsorption on industrial grinding. Ind. Eng. Chem. Process Des. Dev., 1972, 11: 190~197.
    
    
    [97] J.科拉茨,助磨剂对细磨的影响,国外金属矿选矿,1999,36(1):6~9.
    [98] 刘春明、李惠萍、程晓晶,助磨剂的试验研究,化工矿山技术,1998,27(2):21~23.
    [99] 孙春宝、卢寿慈、唐海,大冶铁矿铜铁矿石助磨剂的研究,金属矿山,2000,5:27~29.
    [100] 丁浩,矿物湿法超细磨矿中助磨剂的作用效应及其程度的研究,中国粉体技术,1999,5(2):1~4.
    [101] 温健康,流变学理论在高岭土助磨作用机理中的应用,中国矿业,1998,7(4):56~59.
    [102] 欧乐明,选矿综合评述:粉碎工程,有色金属(选矿部分),2001(增刊):1~9.
    [103] 胡茂圃,腐蚀电化学,北京:冶金工业出版社,1991.
    [104] 朱日彰,金属腐蚀学,北京:冶金工业出版社,1989.
    [105] 陈鸿海,金属腐蚀学,北京:北京理工大学出版社,1989.
    [106] 冯其明,硫化矿矿浆体系中的电偶腐蚀及对浮选的影响,国外金属矿选矿,1999,36(9):2~8.
    [107] X. Cheng and I. Iwasaki. Pulp potential and its implications to sulfide flotation. Mineral Processing and Extractive Metallurgy Review, 1992,11: 187~210.
    [108] R. L. Pozzo and I. Iwasaki. Effects of pyrite and pyrrhotite on the corrosive wear of grinding media. Miner. Metall. Process., 1987, 4(2): 166~171.
    [109] X. Cheng. Effect of pulp potentials and chalcopyrite pyrrhotite interaction on flotation separation. M. S. Thesis, University of Minnesota, 1991.
    [110] X. Li. Electrochemical study of sulfide mineral grinding medium contact and the relevance to flotation. Ph.D. Thesis, University of Minnesota, 1991.
    [111] H. Nakazawa and I. Iwasaki. Galvanic contact between nickel arsenide and pyrrhotiteand its effect on flotation. Int. J. Miner. Process., 1986, 18: 203~215.
    [112] 冯其明、陈荩,硫化矿物浮选电化学,长沙:中南工业大学出版社,1992.
    [113] M. K. Yelloji Rao and K. A. Natarajan. Effect of electrochemical interactions among sulfide minerals and grinding medium on the flotation of sphalerite and galena. Int. J. Miner. Process., 1990, 29: 175~194.
    [114] M. K. Yelloji Rao and K. A. Natarajan. Effect of electrochemical interactions among sulfide minerals and grinding medium on chalcopyrite flotation. Miner. Metall. Process., 1989, 6(3): 146~151.
    [115] J. H. Ahm and J. E. Gebhardt. Effect of grinding media chalcopyrite interaction on the selfinduced flotation of chalcopyrite. Int. J. Miner. Process., 1991, 33: 243~262.
    
    
    [116] M. K. Yelloji Rao and K. A. Natarajan. Electrochemical effects of mineral mineral interactions on the flotation of chalcopyrite and sphalerite. Int. J. Miner. Process., 1989, 27: 279~293.
    [117] 王英华,X光衍射技术基础,北京:原子能出版社,1987.
    [118] 杨于兴、漆璿,x射线衍射分析,上海:上海交通大学出版社,1994.
    [119] X. H. Wang and Y. Xie. Effect of grinding media and environment on the surface properties and flotation behavior of sulfide minerals. Mineral Processing and Extractive Metallurgy Review, 1990,7: 49~79.
    [120] 谢恒星、李松仁,球磨机中钢球磨损规律数学模型的研究,金属矿山,1988,4:36~40.
    [121] 王栋知、张加,国外化学药剂对磨碎过程影响的研究,第二届全国破碎与磨碎学术会议论文集,中国选矿科技情报网,1985,341~347.
    [122] 胡为柏,浮选(修订本),北京:冶金工业出版社,1989.
    [123] 朱建光,浮选药剂,北京:冶金工业出版社,1993.
    [124] 彭儒、罗廉明,磷矿选矿,武汉:武汉测绘科技大学出版社,1992.
    [125] 谢恒星、王玉林等,钢球磨损动力学模型的建立,武汉化工学院学报,1993,15(1):1~7.
    [126] Xie Hengxing, Li Songren and Li Dinghuo. Wearing performance of steel balls in wet grinding. Trans. Nonferrous Met. Soc. China, 1998, 8(4): 673~676.
    [127] 孙家枢,金属的磨损,北京:冶金工业出版社,1992.
    [128] 薛嘉庆,最优化原理与方法,北京:冶金工业出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700