用户名: 密码: 验证码:
四川盆地三叠系嘉陵江组沉积—成岩特征与孔隙演化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为四川盆地油气勘探的重点层段嘉陵江组主体为一套克拉通台地相沉积,其中灰岩和白云岩储层发育。针对嘉陵江组的油气勘探截止2009年底,探明储量达1141.15亿方,占四川盆地天然气总探明储层的7.09%。嘉陵江组天然气勘探主要集中在川南、川东及川北地区。目前,嘉陵江组中尚有85%的资源量有待发现。为此,本博士学位论文以国家重大专项《四川盆地二~三叠系构造演化、层序地层格架及有利相带分布研究》为依托,以大量的钻井、录井、取心薄片及各类地球化学分析测试等资料为基础,以川东地区、川南地区、川中地区三叠系嘉陵江组储层为研究重点,在沉积学、地球化学等多学科理论指导下,系统研究了嘉陵江组沉积相类型及特征;分析了嘉陵江组储层岩石学特征、储集空间类型、物性特征、成岩作用及孔隙演化;揭示了不同地区沉积相-成岩相演化特征及其主控因素,针对不同沉积环境、不同类型的储集岩,总结了其成岩-孔隙演化序列;综合分析了嘉陵江组储层发育主要控制因素及其分布特征;最终通过优势沉积-成岩相叠置关系,划分了嘉陵江组有利勘探地区。
     嘉陵江组自下而上可以分5段,五段地层对应T1j~1~T1j~2、T1j~3~T1j~4、T1j~5三个(三级)沉积层序。
     嘉陵江组从区域上可划分出陆相、海陆过渡相及碳酸盐岩台地3个沉积相相组,并可进一步分为:冲积平原、滨岸、混积潮坪、开阔海台地、局限海台地~蒸发潮坪5个相及若干岩相。在沉积相类型、特征研究的基础上,系统研究了不同时期沉积相的平面展布特征,并研究了沉积演化的主控因素。
     系统、深入研究了嘉陵江组储集岩类型及特征。储集岩主要为粒屑云岩、泥~细粉晶云岩、针孔灰岩等。储层总体表现为低孔、低渗,Ⅲ类储层为主,非均质性较强的特征。储集类型有孔隙型、裂缝~孔隙型及裂缝型三种,目前勘探开发中已获得的主要储层是裂缝~孔隙型和裂缝型储集层。综合研究了嘉陵江组成岩作用类型及特征。建设性成岩作用有白云石化、溶蚀(膏溶、岩溶作用)及构造破裂。白云石化具有多成因多期次特征,白云岩化和粒屑滩是嘉陵江组储层发育的重要控制因素。
     首次分析了不同岩石类型储层的孔隙演化与成岩作用的关系,并建立了相应孔隙演化史。嘉陵江组不同岩石类型的孔隙演化史与成岩作用关系密切。鲕粒灰岩孔隙度演化曲线在成岩早期均具有一个高峰值,与淡水溶蚀作用有关。嘉二段砂屑灰岩,孔隙度演化曲线呈“M”型,主要在同生-成岩早期出现一个峰值,在成岩晚期(岩石固结,胶结致密)降至最低点,在退后生期又一个峰值(表生岩溶作用)。结晶白云岩主要由于成岩期去膏化作用,溶蚀作用,增加孔隙,但经重结晶作用、压实作用后,孔隙度降低至3%左右;结晶灰岩,在沉积后未遭受过溶蚀,便进入埋藏环境,孔隙度演化较简单,呈单一下降趋势,经系列成岩压实、弱白云石化、石膏结晶等作用后,孔隙基本消失殆尽。
     分析了不同地区嘉陵江组沉积-成岩相展布规律。四川盆地嘉陵江组沉积-成岩相复杂多样,总体上,在川南地区,主要有:粒屑滩-负鲕孔相,潮坪-晶间孔-膏溶孔相,开阔台地-重结晶-溶蚀孔相,开阔台地-古岩溶缝洞相;在川中地区,主要有局限台地-白云岩化-粒内溶孔-铸模孔-晶间孔相,局限台地-重结晶-晶间孔相;局限台地-晶间孔-膏溶孔相;在川东北地区,主要有局限台地-混合水白云岩化-膏溶孔相-晶间-粒间溶蚀孔相,局限台地-膏溶孔相。不同地区嘉陵江组二段不同亚段沉积-成岩相展布特征明显不同。并据上述特征,确定了T1j~2_1~T1j~1、T1j~2_2、T1j~2_3、T1j~4_1~T1j~3、T1j~4_3、T1j~5六个层段的多个进一步勘探的有利区块。
As an important interval of oil-gas exploration in Sichuan basin and a set ofcratonic sedimentary rocks, Jialingjiang Formation developed limestones anddolomites. The natural gas reserves, accounting for7.09%of the total proven reserves,have been proved up to1141.15×10~8m~3till the end of2009. The natural gasexploration zones of Jialingjiang Formation are chiefly located in the south, east andnorth Sichuan and about85%resources here are waiting to be discovered. Supportedby the National Major Project---Study on Tectonic Evolution, Sequence StratigraphicFramework and Favorable Distribution of Permian-Triassic in Sichuan Basin; basedon multitudes of drilling, logging, core thin section as well as diverse geochemicalanalytical data, this dissertation, taking the reservoirs of Triassic JialingjiangFormation in the east, south and center Sichuan as research focus, studiessystematically the categories and characteristics of sedimentary facies of JialingjiangFormation; analyzes petrological features, types of reservoir space, physical property,diagenesis as well as the evolution of porosity under the theoretical instruction ofpetrology and geochemistry. It reveals the evolutionary characteristics of sedimentaryfacies and diagenetic phases as well as its dominant controlling factors in differentzones; summarizes the diagenetic-porosity evolutionary sequences in differentdepositional environments and sediments; comprehensively analyzes the majorcontrolling factors of reservoir development of Jialingjiang Formation and itsdistributive features; and eventually classifies the favorable exploration areasaccording to the superior superimposed correlation between sedimentation anddisgenesis.
     Jialingjiang Formation consists of five lithologic members corresponding tothree sequences (T1j~1~T1j~2, T1j~3~T1j~4, T1j~5).
     Jialingjiang Formation facies can be divided into three types of facies (terrestrialfacies, transitional marine-continental facies, carbonate platform facies), five types ofsubfacies (alluvial plain, shoreland, diamictic flat, open platform, restrictedplatform-evaporite flat) and several types of lithologic microfacies. Based on thedepositional setting types and characteristics, plane distribution of sedimentary faciesin different periods and the main controlling factors of sedimentary evolution havebeen systematically studied.
     The types and characteristics of reservoir rocks have also been further studied.The reservoirs chiefly include grain dolomite, mud-fine crystal powder dolostone,pinhole limestone. The III type of reservoir is developed, represented by low porosity,low permeability and strong heterogeneity. There are three types of reservoirs: pores, fracture-pore and fractures reservoirs. The last two types are commonly found incurrent exploration zone. The constructive diagenesis includes dolomitization,dissolution (gypsum dissolving, karst) and tectonic disruption. Jialingjiang Formationexperiences multiple genensis and multi-stages dolomitization. The dolomitization ofhigh porosity grainstone is related to mixed water. Dolomitization and shoal areimportant controlling factors of reservoir development of Jialingjia Formation.
     The relationship of pores evolution and diagenesis between different reservoirrocks has been analyzed for the first time in this paper, and corresponding poreevolution history has also been built. The pore evolutionary history of diversereservoir rocks has a close relation to diagenesis. Porosity evolution curve of ooliticlimestone, relating to fresh water dissolution, has a peak on early diagenetic stage.The evolutionary curve of grainstone limestone porosity is “M-shaped” in the2ndmember of Jialingjiang Formation, which means there are two peaks. One is related tothe syngenesis-early diagenesis dissolution and the other the epigenetic dissolution.As for crystalline dolomite, the porosity decreases to3%because of a set ofdiagenesis (such as deanhydrite, dissolution, recrystalline and compaction). Whilecrystalline limestone is very dense due to a set of compaction, weak dolomitizationand anhydritization.
     The sedimentary-diagenesis phase is very complicated. In a word, shoal-moldic(ooid) pore, tidal flat-recrystalline pore-dissolution pores of gypsum, open platform–recrystalline–dissolution pores, and open platform-pleaokarst cavies are developedin south Sichuan basin. Restricted platform–dolomitization-dissolution pores ingrain-moldic, pores-intercrystalline pores, restricted platform-recrystallization-intercrystalline pores and restricted platform-intercrystalline pores-dissolutionpores of gypsum are mainly developed in Central Sichuan basin. Restricted platform-mixing water dolomitization-dissolution pores of gypsum-intercrystalline/intergranular dissolution pores and restricted platform-dissolution pores of gypsumoccurred in east Sichuan basin. The distributive characteristics ofsedimentary-diagenesis phase are clearly different in submembers of JialingjiangFormation2ndmember. Several favorable exploration blocks of the six intervals(T1j~2_1~T1j1、T1j~2_2、T1j~2_3、T1j~4_1~T1j~3、T1j~4_3、T1j~5) have been determined accordingto the characteristics mentioned above.
引文
[1]车廷竹,孪其荣,畅坚,等.泸州古隆起嘉陵江组油气运聚规律与成藏[J].石油勘探与开发,2005,32(5):20~24.
    [2]储昭宏.川东北长兴组-飞仙关组碳酸盐岩储层研究[D].中国地质大学(北京),2006.
    [3]黄文明,刘树根,张长俊,等.川中磨溪构造下三叠统嘉二段储集物性及其控制因素[J].成都理工大学学报(自然科学版),2007,34(2):135-142.
    [4]何镜宇,等,沉积岩沉积模式与建造[M].地质出版社,1987
    [5]林雄,侯中健,田景春.四川盆地下三叠统嘉陵江组储层成岩作用研究[J].西南石油大学学报(自然科学版),2009,31(2):8~12.
    [6]刘宝珺.沉积岩石学[M].北京:地质出版社,1979.
    [7]李余生,张长俊,陈洪德.川东地区嘉陵江组有利区块展布研究[R].成都理工大学,2003.
    [8]李其荣,王廷栋,李延钧,等.泸州古隆起嘉陵江组油气成藏期的确定[J].天然气工业,2005,25(7):8~10.
    [9]梅冥相,马永生,等.碳酸盐岩沉积学导论[M].北京:地震出版社,1997
    [10]孟祥化.内源盆地沉积研究[M].北京:石油工业出版社,1993
    [11]王宓君,包茨,肖明德,等.中国石油地质志(卷十)四川油气区[M].北京:石油工业出版社,l989.
    [12]王维斌,苟洪才,邱彬,等.四川盆地东部下三叠统嘉陵江组储层特征[J].天然气工业,2005,25(10):30~32.
    [13]许效松.四川盆地沉积相研究[R].成都矿产与环境地质研究所,2009.
    [14]张奇.四川盆地嘉陵江组沉积相研究及有利勘探区带评价[R].西南油气田分司勘探开发研究院,2007.
    [15]朱其,李国蓉,乔占峰,等.四川盆地泸州古隆起嘉陵江组储层特征研究[J].四川地质学报,2008,2(1):30~34.
    [16]张长俊,林雄,黄文明.四川盆地嘉陵江组储层形成与演化的成岩作用研究[R].成都:成都理工大学,2006.
    [17]曾伟,强平,黄继祥.川东地区嘉陵江组嘉二段储层成因模式[J].石油实验地质,1997,19(1):82-86.
    [18]张月华.川东构造叠加作用[J].石油学报,1996,(18)4:
    [19]张月华,王一刚.构造期溶蚀作用对储层改造及其意义[J].石油学报,1991,12(1):17~22.
    [20]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001
    [21] Alsharhan A S and Nairn A E M. Sedimentary basins and petroleum geology of the middle East.Elsevier[M],1997.
    [22] Brasher J E and Vagle K R.1996. Influence of Lithofacies and Diagenesis on Norwegian NorthSea Chalk Reservoirs[J].AAPG Bulletin,80(5):746~769.
    [23] Brown A.1997.Porosity variation in carbonates as a function of depth: Mississippian MadisonGroup, Williston Basin. In Kupecz J A, Gluyas J and Bloch S, eds. Reservoir quality predictionin sandstones and carbonates[J]..AAPG Memoir69:29~46.
    [24] Claypool G E and Mancini E A.1989. Geochemical relationships of petroleum in Mesozoicreservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama[J]..AAPG Bulletin,73(7):904–924.
    [25] CrossT A,Baler M R,Chapin M A,et al. Application of high resolution sequence stratigraphy toreservoir analysis[A]. Eschard R, Dolgez B,eds, Subsurface reservoir characterizaion fromoutcrop observations[C]. Paris:Editions Technip,1993,11~33.
    [26] Davies G R, Langhorne B and Smith J.2006. Structurally Controlled Hydrothermal DolomiteReservoir Facies: An Overview[J].. AAPG Bulletin,90(11):1641~1690.
    [27] Dickson J A D and Saller A H.1995. Identification of Subaerial Exposure Surfaces and PorosityPreservation in Pennsylvanian and Lower Permian Shelf Limestones, Eastern Central BasinPlatform, Texas[J].AAPG Memoir,63:239~257.
    [28] Ehrenberg S N, and Nadeau P H.2005. Sandstone versus carbonate petroleum reservoirs: Aglobal perspective on porosity-depth and porosity-permeability relationships.[J]. AAPG Bulletin,89(4):435~445.
    [29] Ehrenberg S N, Nadeau P H and Steen.2009.Petroleum reservoir porosity versus depth:Influence of geological age[J]. AAPG Bulletin,93(9):1281~1296.
    [30] Esteban M, Taberner C.2003. Secondary Porosity Development during Late Burial in CarbonateReservoirs as a Result of Mixing and/or Cooling of Brines[J].Journal of GeochemicalExploration,78-79:355~359.
    [31] Esteban,M,and Klappa,C.F,1983.Subaerial exposure environment,in Scholle,P.A,Bebout,D.G,and Moore,C.H, eds.,Carbonate Depositoinal Environments:American Association of PetroleumGeologists[C].Memoir33,1~45.
    [32] Ezat Heydari.Porosity Loss,Fluid Flow,and Mass Transfer in Limestone Reservoirs: Applicationto the Upper Jurassic Smackover Formation,Mississippi[J].AAPG Bulletin.2000.84:100~118.
    [33] Ezat Heydari.Meteoric versus burial control on porosity evolution of the SmackoverFormation[J].AAPG Bulletin.2003.87:1779~1797.
    [34] Erik Flügel. Microfacies of Carbonate Rocks:Analysis,Interpretation and Application[M].BerlinHeidelberg:Springer-Verlag.2004.1~976.
    [35] F.Jerry Lucia.Lower Paleozoic cavern development. Collapse.and dolomitization.FranklinMountains.El Paso.Texas[J].(in Unconformities and porosity in carbonate strata)AAPGMemoir.1995.63:279~300.
    [36] Furrer M,Soder P.The Oligo-Miocene Marine Formation of the Qum Region, Central Iran [A].Proc.4th World Petroleum Congr[C]. Rome,1955.
    [37] George E.Claypool and Ernest A.Mancini.Geochemical relationships of petroleum in Mesozoicreservoirs to carbonate source rocks of Jurassic Smackover Formation,southwesternAlabama[J].AAPG Bulletin.1989.73(7):904~924.
    [38] Gluyas J G,Emery D,Grant SM et al.The link between pet ro leum emp lacement and sandstonecementation[J].Petroleum Geology of Northwest Europe.1993.1395~1402.
    [39] Goldhaber M B and Orr W L.1995. Kinetic controls on thermochemical sulfate reduction as asource of sedimentary H2S.[A] In:Vairava-murthy M A,Schoonen M A A,eds.GeochemicalTransformations of Sedimentary Sulfur. American Chemical Society Symposium Series[C],612:412~425.
    [40] Harris Cander.Interplay of water-rock interaction efficiency,unconformities,and fluid flow in acarbonate aquifer:Floridan Aquifer system[J].(in Unconformities and porosity in carbonate strata)AAPG Memoir.1995.63:103~124.
    [41] Hans G. Machel and Beate Elisabeth Buschkuehle.Diagenesis of the Devonian Southesk-CairnCarbonate Complex,Alberta,Canada:Marine cementation,burial dolomitization,thermochemicalsulfate reduction,anhydritization,and squeegee fluid flow[J].Journal of SedimentaryResearch.2008.78:366~389.
    [42] Hunt J.M.Petroleum geochemistry and geology[M].San Francisco:W.H.Freeman and Company,1979.
    [43] Heydari E.2000. Porosity Loss, Fluid Flow and Mass Transfer in Limestone Reservoirs:Application to the Upper Jurassic Smackover Formation, Mississippi.[J]. AAPG Bulletin,84(1):100~118.
    [44] Heydari E.2003. Meteoric versus Burial Control on Porosity Evolution of the SmackoverFormation[J]. AAPG Bulletin,87(11):1779~1797.
    [45] Hill C A.1995. H2S-Related Porosity and Sulfuric Acid Oil-Field Karst [J]. AAPG Memoir,63:301~306.
    [46] Hird,K., and Tucker,M.E.,1988.Constrasting diagenesis of two Carboniferous oolites from SouthWales:a tale of climatic influence[J].Sedimentology,35:587~602.
    [47] Hairuo Oing and Eric Mountjoy.Large-scale fluid flow in the Middle Devonian Presqu'ilebarrier, Western Canada Sedimentary Basin[J].Geology.1992.20:903~906.
    [48] James N P and Choquette P W.1984. Diagenesis9, Limestones-The Meteoric DiageneticEnvironment[J]. Geoscience Canada,11(4):161~194.
    [49] J.A. D.Dickson and Arthur H.Saller.Identification of subaerial exposure surfaces and porositypreservation in Pennsylvanian and Lower Permian shelf limestones, eastern Central BasinPlatform,Texas[J].(in Unconformities and porosity in carbonate strata)AAPGMemoir.1995.63:239~257.
    [50] Jeffrey J. Dravis.Deep-burial dissolution in dolostone reservoirs; similarities between theDevonian Keg River of Western Canada and the Ordovician Ellenburger of WestTexas[J].American Association of Petroleum Geologists.2004.13:36~37.
    [51] James W.Schmoker, Robert B. Halley.Carbonate Porosity Versus Depth: A Predictable Relationfor South Florida[J].AAPG Bulletin.1982,66(12):2561~2570.
    [52] Karen E. Higgs, Horst Zwingmann, Agnes G. Reyes, and Rob H. Funnell.Diagenesis, PorosityEvolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, NewZealand[J].Journal of Sedimentary Research.2007,77:1003~1025.
    [53] L.A.Anisimov.Conditions of abiogenic reduction of sulfates in oil-and-gas bearing basins [J].Geochemistry International.1978,15(6):63-71.[J]Geochemistry International.1978.15(6):63~71.
    [54] Laurent Lambert, Christophe Durlet, Jean-Paul Loreau, and Gerard Marnier.Burial dissolution ofmicrite in Middle East carbonate reservoirs (Jurassic-Cretaceous); keys for recognition andtiming[J].Marine and Petroleum Geology.2006.23(1):79~92.
    [55] Longman M W.1980. Carbonate Diagenetic Textures from Near surface DiageneticEnvironments[J]. AAPG Bulletin,64(4):461~487.
    [56] Lucia F J.1995. Lower Paleozoic Cavern Devolopment, Collapse,and Dolomitization, FranklinMountains El Paso,Texas[J]. AAPG Memoir,63:279~300.
    [57] Lee Y I and Friedman G M.1987. Deep Burial Dolomitization in the Ordovician EllenburgerGroup Carbonates,West Texas and Southeastern New Mexico[J].Journal of SedimentaryPetrology,57(3):544~557.
    [58] L.L.Sloss.Stratigraphic models in exploration[J]. Jounral of sedimentary Reseacrh,1962,32:415~422.
    [59] Melim,L.A,Swart,P.K.,and Maliva,R.G.,2001,Meteoric and marine-burial diagenesis in thesurface of Great Bank,in Ginsburg,R.N.,ed.,Surface Geology of a Prograding Carbonate platformMargin,Great Bahama Bank Results of the Bahamas Drilling Project[A]:SEPM,SepecialPublication70,p.137~162.
    [60] Mylroie,J.E,and Carew,J.L.,1995,Karst development on carbonate islands, inBudd,D.A.,Saller.A.H.,and Harris,P.M.,eds., Unconformities and porosity development incarbonate strata[J].American Association of Petroleum Geologists.Memoir63:55~76.
    [61] Moore,C. H. Carbonate diagenesis and porosity, Elsevier[J].Amsterdam Developments inSedimentology,1989,46:338.
    [62] Machel H G.Saddle dolomite as a by-product of chemical compaction and thermochemicalreduction[J].Geology,1987(15):936~940.
    [63] M.W.Longman and D.N. Brownlee.Characteristics of karst topography,Palawan,Philippines[J].Zeitschrift fuer Geomorphologie,1980.24(3):299~317.
    [64] Machel H G.1998.Gas souring by thermochemical sulfate reduction at140°C: discussion[J].AAPG Bulletin,82(10):1870~1873.
    [65] Melvyn R. Giles and James D.Marshall.Constraints on the development of secondary porosity inthe subsurface; re-evaluation of processes[J].Marine and Petroleum Geology,1986,3(3):243~255.
    [66] M.Esteban and C.Taberner.Secondary porosity development during late burial in carbonatereservoirs as a result mixing and/or cooling of brines (in Proceedings of Geofluids IV)[J].Journalof Geochemical Exploration,2003,78-79:355~359.
    [67] Nader F H, Swennen R. The hydrocarbon potential of Lebanon:New insights from regionalcorrelations and studies of Jurassic dolomitization[J].Journal of Petroleum Geology,2004.27(3):253~275.
    [68] Niktin A.A.Patterns of styolite-formations in sedimentary and metamorphic rocks[J].International Geology Review,1985,27:659-668.
    [69] Noel P.James and Philip W.Choquette.Diagenesis9: Limestones,the meteoric diageneticenvironment[J].Geoscience Canada,1984.11(4):161~194.
    [70] N.J.Hanocock.Possible cause of Rotliegend sandstone diagenesis in nort hern West Germany[J].Geological Society,1978,135(1):35~40.
    [71] Okhravi R,AminiA. An example of mixed carbonate-pyroclassic sedimentation (Miocene,Central Basin, Iran[J]. Sedimentary Geology,1998,118(1-4):37~54.
    [72] Pierson,B.J.,and Shinn,E.A,1985,Cement distribution and carbonate mineral stabilization inPleistocene limestones of Hogsty Reef,Bahamas,in Schneidermann,N.and Harris,P.M,eds.,Carbonate Cements[J]. SEPM, Special Publication36,p.153~168.
    [73] P.D.Wagner,D.R.Tasker,and G.P. Wahlman.Reservoir degradation and compartmentalizationbelow subaerial unconformities; limestone examples from West Texas. China,and Oman[J].(inUnconformities and porosity in carbonate strata)AAPG Memoir,1995,63:177~194.
    [74] P.K.Wong and A.E.Oldershaw.Burial cementation in Upper Devonian Kaybob Reef, Alberta,Canada[J].AAPG Bulletin,1981,65(5):1008~1009.
    [75] Peter Trurnit.Pressure solution phenomena in detrital rocks[J]. SedimentaryGeology,1968.2(2):89~114.
    [76] Philip W. Choquette. and Lloyd C. Pray.Geologic nomenclature and classification of porosity insedimentary carbonates[J].AAPG Bulletin,1970,54(2):207~244.
    [77] Philip W. Choquette.Late ferroan dolomite cement, Mississippian carbonates, Illinois Basin,U.S.A (in Carbonate cements)[J].Studies in Geology.1971.19:339~346.
    [78] Packard J J,Al-Aasm I,Samson I,Berger Z and Davies J. A Devonian Hydrothermal ChertReservoir: The225bcf Parkland Field, British Columbia, Canada[J]. AAPGBulletin,2001,85(1):51~84.
    [79] Rick Wierzbicki, Jeffrey J. Dravis, Ihsan Al-Aasm, and Nancy Harland.Burial dolomitizationand dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, NovaScotia, Canada[J].AAPG Bulletin,2006,90:1843~1861.
    [80] R. H. Worden, A. H. Ruffell, and C. Cornford.Surface temperature, sequence stratigraphy anddeep burial diagenesis[J].Clay Minerals,2000,35:13~23.
    [81] Robin G. C.Bathurst.Carbonate sediments and their diagenesis (Developments in Sedimentology12)[M].Elsevier,Amsterdam,1975
    [82] Robin G. C.Bathurst.Burial diagenesis of limestones under simple overburden:stylolites,cementation and feedback[J].Bulletin de la Societe Geologique de France,1995.166(2):181~192.
    [83] Robert B. Halley and James W. Schmoker.High-porosity Cenozoic carbonate rocks of SouthFlorida;progressive loss of porosity with depth[J].AAPG Bulletin,1983,67:191~200.
    [84] R. E. A. Midtbφ, J. M. Rykkje, and M. Ramm.Deep burial diagenesis and reservoir quality alongthe eastern flank of the Viking Graben. Evidence for illitization and quartz cementation afterhydrocarbon emplacement[J].Clay Minerals.2000.35:227~237.
    [85] Read,J.F,and Horbury,A.D,.eustatic and tectonic controls on porosity evolution beneathsequence-bounding unconformities and parasequence disconformities on carbonate platforms,inHorbury,A.D, and Robision,A,eds. Diagenesis and Basin Development[J].AAPG series,1993,61:349~353.
    [86] Read,J F Carbonate platform facies models.[J].AAPG Bull.1985,69:l~21.
    [87] Saller,A.H.,Budd,D.A.,and Harris,P.M.Unconformities and porosity development in carbonatestrata:ideas from a Hedberg conferences[J]. AAPG Bull.1994,78:857~872.
    [88] S. M. Hill, C.D.Ollier.and E.B.Joyce.Mesozoic deep weathering and erosion; an example fromWilsons Promontory,Australia Zeitschrift fuer [J].Geomorphologie.1995,39(3):331~339.
    [89] Soder P A.Detailed investigations on the mar ine formation of Qum[R]. N. I. O. C. Gr.1959.
    [90] Surdam R C. Crossey L J.Hagen E S et al. Organic-in-organic internation and sandstonediagenesis[J].AAPG Bull.1989.73:1~23..
    [91] Sadoon Morad, M, Ketzer,and L. F. De Ros.Spatial and temporal distribution of diageneticalterations in siliciclastic rocks; implications for mass transfer in sedimentary basins (inMillenium reviews)[J].Sedimentology,2000,47(Suppl.1):95~120.
    [92] Steven J.Ings,R.Andrew MacRae,John W.Shimeld,and Georgia Pe-Piper.Diagenesisand porosity reduction in the Late Cretaceous Wyandot Formation, Offshore Nova Scotia: acomparison with Norwegian North Sea chalks. Bulletin of Canadian PetroleumGeology[J].2005.53(3):237~249.
    [93] S. J. Mazzullo and P. M. Harris.Mesogenetic dissolution:its role in porosity development incarbonate reservoirs[J].AAPG Bulletin.1992.76:607-620.
    [94] Schmoker J W.1984. Empirical relation between carbonate porosity and thermal maturity: Anapproach to regional porosity prediction[J]..AAPG Bulletin,68(11):1697~1703.
    [95] Schmoker J W, Krystinik K B and Halley R B.1985.Selected characteristics of limestone anddolomite reservoirs in the United States[J].. AAPG Bulletin,69(5):733~741.
    [96] Scholle P A and Ulmer-Scholle D S.2003. A color guide to the petrography of carbonate rocks:grains,textures,porosity,diagenesis[J]. AAPG Memoir.77:305.
    [97] Tor Nedkvitne,Dag A,Karlsen, Knut Bjorlykke, and Steve R, Larter,Relationship betweenreservoir diagenetic evolution and petroleum emplacement in the Ula Field,North Sea[J].Marineand Petroleum Geology,1993,10(3):255~270.
    [98] Vail,RR.,Mitehum,R.M.andThompson, S. Seismic stratigraphy and global changes of sea level,Part3:Relative changes of sea level from coastal onlao. In: Payton,C.E.(ed.), Seismicstratigraphy-applications to hydrocarbon exploration[J].,AAPG memoir,1977,26:63~97.
    [99] Ward,W.C,.Influence of climate on the early diagenesis of carbonate eolianite[J].Geology,1973,1:171~174.
    [100] Walderhaug O..Kinetic modeling of quartz cementation and porosity loss in deeply buriedsandstone reservoirs[J]. AAPG Bulletin,1996,80(5):731~745.
    [101] Warren J.Dolomite: occurrence, evolution and economically important associations[J].Earth-Science Reviews,2000,52:1~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700