用户名: 密码: 验证码:
四川盆地震旦系储层特征及其形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以四川盆地震旦系灯影组储层为研究对象,探讨了四川盆地灯影组岩相古地理、沉积相、储层岩石学及物性特征、晶洞内流体充注期次、储层致密化过程等,总结了现今灯影组储层在平面上及纵向上展布特征;确定了灯影组孔洞内部多期流体充注序列;建立灯影组不同地区成岩演化序列;揭示了灯影组优质储层发育机制。取得了以下的主要研究成果:
     四川盆地灯影期岩相古地理以局限台地为主;夹有少量蒸发台地中的萨布哈盐沼泽沉积,其主要分布于研究区的西南部地区,微相主要为:①藻泥坪,②藻坪,③泻湖,④藻粒屑滩,⑤藻礁滩,⑥浅水台盆,⑦半深水盆地。台地内陆源物质主要来自于川西松潘古陆及滇中古陆。
     灯影组储集岩石类型有15种之多,乐山-龙女寺古降起地区较川东南地区复杂,其以藻结构白云岩为主,晶粒结构与粒屑结构为次;川东南地区则以晶粒白云岩为主,粒屑与藻屑结构为次。白云岩储层主要发育在灯二-灯四段,靠近风化面储层物性较好。在重点井及剖面储层内部均见有不同程度沥青,表明四川盆地灯影组有过油气充注。
     灯影组岩石基质孔隙度一般位于1%-2%之间。川东南地区岩石类型与孔渗相关不大,泥-粉晶白云岩与粉-细晶含硅质白云岩相对较好,藻团粒白云岩与残余砂屑白云岩次之,而细-中晶白云岩最次。但古隆起地区藻粘结白云岩类和藻粒屑白云岩类对储层发育最有利。基质孔隙度与全直径孔隙度分布区域特征差异明显。基质孔隙度测试表明,川中地区最好,川东南与川西南地区则较差;全直径分析表明,资阳-威远地区最好,川中次之。
     灯影组现今主要储集空间为裂缝或溶蚀孔洞,具有区域性特征,储层发育程度与乐山-龙女寺古隆起相关。平面上,溶蚀孔洞以资阳地区最为发育,威远次之,川中地区及川东南地区相对较差。在纵向上,除少量孔洞分布在灯四段外,绝大多数分布在灯三段至灯二段上部,风化面附近70m以内。但在残存有灯四段的地区,灯四段储集物性稍优于灯三段及灯二段。灯影组裂缝以构造裂缝为主,裂缝的形成是多期的,而且同一条裂缝可以经过早期破裂-充填-复活破裂-再充填等多期改造,岩芯上可见部分裂缝经历至少两期-三期活动期。裂缝以威远地区最为发育,资阳其次,高石梯-安平店次之,川东南地区最次。有效储层厚度(Φ>3%)以乐山-龙女寺古隆起有效储层相对较厚,往斜坡区变薄;纵向上以灯二段顶部及灯三段底部较发育。
     四川盆地不同地区震旦系储层溶孔或溶洞中的充填矿物序列具有相似性,流体具有跨层流动特征,均具有多期次的盐水流体。研究区代表性的较十分完整的晶洞充填矿物顺序为:围岩(泥-微晶白云岩)→第一世代细晶晶粒状白云石→第二世代粗晶白云石→第三世代粗晶-巨晶白云石→第四世代沥青→第五世代方解石+石英/方解石/石英→第六世代沥青。裂缝充填常缺少第一世代的细晶晶粒状白云石。围岩和充填物的碳氧同位素地球化学揭示盐水流体不是来自于围岩自身,极可能来自于烃源岩。
     灯影组成岩作用复杂多样,多达35种之多。其主要成岩作用有藻泥晶化作用、压实压溶作用、胶结作用、溶蚀作用、重结晶作用、白云石化作用及热液蚀变、硅化作用等。灯影组白云岩以准同生期白云岩化为主,少量成岩白云岩化,且四川瓮地灯影组存在发生深埋白云石及热液白云石的条件。灯影组可分辨出五种硅化作用,初步确定了五种形态发生相对序列。灯影组存在表生岩溶(包据层间岩溶)、深埋岩溶及构造(包括褶皱)岩溶。
     灯影组多期流体充注及成岩改造致使其致密化过程复杂。灯影组晶粒白云岩致密化过程为:成岩早期压实及窗格孔内亮晶胶结(孔隙度约降低40%-45%)→早期硅化/重结晶作用(孔隙度变化不大)→抬升溶蚀/填充作用(或持续深埋)→(再次埋藏)压溶/重结晶(油气充注)→深埋溶蚀作用→充填及重结晶作用→构造抬升破裂/角砾化作用(或持续埋深)→淡水淋滤/硅化/去白云石化作用(或持续埋深)→充填作用;颗粒白云岩致密化过程为:淡水、海水、混合水各类成岩胶结作用(少量溶蚀作用)(孔隙度约降低10%-20%)→压实变形→表生岩溶→硅化作用/重结晶作用→压溶/构造岩溶/重结晶作用/深埋溶蚀/充填(油气充注)→抬升/构造破裂作用(或持续埋深)→溶蚀/硅化/充填作用。
     震旦系灯影组储层形成机理:表生岩溶作用、侵蚀性流体的溶解-重结晶作用、破裂作用、低的含油饱和度与适宜的构造位置。
This paper focuses on the Denying formation reservoirs in Sinian system.Based on a detailed observation of its characters of lithofacies, paleaogeography, sedimentary facies, petrography, fluid pack-injection in cavity, the densification process of the formation etc, the present paper summed up its spatial distribution feature and made sure there were multistages fluid pack-injection within the cavity system. In addition, the paper also constructed the sequence of diagenetic evolution of the Denying formation, thus found out the mechanism that made the reservoirs of fine quality. Through these processes, the paper finally gets some significant results below:
     Restricted platform is the main sedimentary environment of the Denying formation, the south-west part of which contains minor sabkha deposit of evaporative platform. The microfacies of the Denying formation includes algal-bearing muddy flat, algal flat, lagoon, algal grain bank, algal reef, shallow platform and semi-deep platform. It is proved that the terrestrial materials contained were mainly from Songpan ancient block mass of western Sichuan and central Yunnan.
     The lithological types of reservoir in Dengying formation are 15, and it is more complex in Leshan-longnvshi palaeohigh than in southeast Sichuan basin. The main type of reservoir in Leshan-longnvshi palaeohigh appears to be algal structure with some crystalline granular structure and grain structure, but in southeast Sichuan basin, it becomes mainly with crystalline granular structure partly with algal structure and grain structure. The second and forth members of the Denying formation are the most potential reservoirs, especially those close to weathering surface are more better. It is attractive that more or less bitumen, which presents at the reservoir displayed by significant wells and field sections, indicates the hydrocarbon infilling taken place in Dengying formation of Sichuan basin.
     Generally, they are characterized to be tight with low matrix porosity, usually between l%-2%. The types of reservoir are not much correlative with porosity and permeability in the southeast Sichuan. The whole characters of pore and throat structure indicate that the quality of micrite dolomite and fine crystal siliceous dolomite are comparatively better, argal aggregate dolomite or residual dolarenite follows, and the worst is the fine-medium crystal dolomite. But the algal boundstones and algal grainstones are most suitable for the development of reservoir. Matrix porosity and whole core analysis bulk porosity characters has obvious difference in different districts. Matrix porosity test indicates that the quality of reservoir of central Sichuan is the best, and the inferior distributes at the southeast and southwest part of Sichuan basin. Bulk method suggests that Ziyang-Weiyuan district is best, and the Central Sichuan region follows.
     The main reservoir spaces of Dengying formation are cracks, solution pores and cavities. This is regional and correlate with Leshan-longnvshi palaeohigh . In the plane, corrosion holes most developed in ZiYang, followed by Weiyuan, and relatively poor in the central and southeast part of Sichuan basin. Vertically, except some developed in the fourth member, most of them distribute from the member III to the top of member II, 70 meters near to the surface weathering. But in the remaining area of the Dengying formation member IV, the reservoir of Dengying formation member IV is slightly better than that of member II and member III. Most of the cracks in Dengying formation are structural cracks formed by multi-stage,and maybe underwent multi-phase transformation(early broken—filling—re-broken—re-filling). Part of the cracks seen on the sore experienced at least two or three active stages. Cracks in Weiyuan developed best, followed by Ziyang, and then Gaoshiti - Anping stores and the southeast of Sichuan basin is the worst. The thickness of effective reservoir (porosity is bigger than 3%) becomes thin from Leshan-Longnusi paleohigh to the slope. It developed better at the top of the Dengying formation member II and bottom of the formation member III vertically.
     The characters of infillings in pores and cavities in the formation are similar with different region of Sichuan Basin. The multistage salt fluids are characterized by cross formation migration. The typically relatively complete mineral filling sequences are as following: wall rock (micrite dolomite)→1~(st) generation fine crystalline granular dolomite→2~(nd) generation coarse crystal granular dolomite→3~(rd) generation coarse crystal or megacryst dolomite→4~(th) bitumen→5~(th) calcite and quartz/calcite/quartz→6~(th) bitumen. The 1~(st) generation fine crystalline granular dolomite often lack of cracks. The geochemical characteristics of host rocks and filling minerals reveal that the salt fluid is not from host rocks, but most likely from source rock.
     The diagenesis of Dengying Formation is complicated and contains more than 35 kinds. The main diagenesis includes algae-micrite, compaction, pressure solution, cementation, dissolution, recrystallization, dolomitization, hydrothermal alteration, silicatization,etc. The main dolomitization in the formation is penecontemporaneous and burial dolomitization. Further more there are conditions for hypergene dolomitization and hydrothermal dolomitization in the formation. The Dengying Formation can divide as five kinds of silicatization and the five relative sequences are initially established. The Dengying Formation contains hypergene karstification (includes interbedding karstification), burial dissolution and (folding) structure karstification.
     In the Dengying Formation, diagenesis and multistage fluid complexs its densification. The densification processes of the crystalline dolomite are following: the compaction during early diagenesis and the sparry cementation in fenestra (reducing about 40%~45% of the porosity)→early silicatization / recrystallization (little or no change of the porosity)→the uplifted dissolution / infilling (or standing burial)→-Kreburial) presolution / recrystallization (hydrocarbon infilling)→the dissolution during deep burial-Mnfilling and recrystallization→the fracturing of tectonic uplift/brecciation ( or standing burial )→the leaching of the freshwater / silicatization / dedolomitization ( or standing burial)→infilling. The densification processes of the grain dolomite are following: the cementation (minor dissolution) of the freshwater, seawater and the mixing water of freshwater and seawater (reducing the 10%~20% of the porosity )→compaction→ypergene karstification→silicatization / recrystallization→presolution / tectonic karstification / recrystallization / dissolution during deep burial/infilling (hydrocarbon infilling)→uplift/tectonic crack (or standing burial) dissolution / silicatization / infilling.
     The information mechanism of the Sinian system Dengying formation reservoirs are is mainly controlled by diagenesis. Its characteristics include the crust karstification, dissolution-recrystallization of chemically corrosion-fluids, cracking, the low oil saturation and the proper structural situation.
引文
[1]宋文海.对四川盆地加里东期古隆起的新认识[J].天然气工业,1987,7(3):23-27.
    [2]康义昌.川中古隆起的形成、发展及其油气远景[J].石油实验地质,1988,10(1):12-23.
    [3]罗启后.乐山-龙女寺古隆起震旦寒武奥陶系与上三叠统含气性评价研究[R].内部资料,1990.
    [4]张声瑜,唐创基.四川盆地灯影组区域地质条件及含气远景[J].天然气工业,1986,6(1):3-9.
    [5]汤良杰,吕修祥,金之钓等.中国海相碳酸盐岩层系油气地质特点、战略选区思考及需要解决的主要地质问题[J].地质通报,2006,25(9-10):1032-1035.
    [6]李国辉,李翔,杨西南.四川盆地加里东古隆起震旦系气藏成藏控制因素[J].行油与天然气地质,2000,21(1):80-82
    [7]罗志立,刘顺,徐世琦.四川盆地震旦系含气层中有利勘探区块的选择[J].石油学报,1998,19(4):1-7
    [8]徐世琦.加里东古隆起震旦系-寒武系成藏条件[J].天然气工业,1999,19(4):7-10
    [9]邓涛.四川盆地加里东古隆起的构造机制和成藏模式[J].石油实验地质,1996,18(4):356-360
    [10]陈宗清.展望四川地区海相地层非构造油气藏勘探前景[J].石油实验地质,1986,8(4):301-305
    [11]黄籍中,陈盛吉.四川盆地震旦系气藏形成的烃源地化条件分析:以威远气田为例[J].天然气地球科学,1993,4期,16-20.
    [12]罗啸泉,郭东晓,蓝江华.威远气田震旦系灯影组古岩溶与成藏探讨[J].沉积与特提斯地质,2001,21(4):54-60.
    [13]戴金星.威远气田成藏期及气源[J].石油实验地质,2003,25(5):473-480.
    [14]唐俊红,张同伟,鲍征宇,等.四川盆地威远气田碳酸盐岩中有机包裹体研究[J].地质论评,2004,50(2):210-214.
    [15]侯方浩,方少仙,王兴志,等.四川盆地灯影组天然气藏储渗体再认识.石油学报[J],1999,20(6):16-21.
    [16]王兴志,侯方浩,刘仲宣,等.资阳地区灯影组层状白云岩储集层研究[J].石油勘探与开发,1997,24(2):37-40.
    [17]王兴志,穆曙光,方少仙,等.四川资阳地区灯影组滩相沉积及储集性研究[J].沉积学报[J],1999,17(4):578-583.
    [18]张林,魏国齐,汪泽成,等.四川盆地高石梯-磨溪构造带震旦系灯影组的成藏模式[J].天 然气地球科学,2004,15(6):584-588.
    [19]张若祥,王兴志,蓝大樵等.四川盆地资阳地区震旦系灯影组油气成藏条件分析[J].重庆科技学院学报(自然科学版),2006,8(1):14-17.
    [20]唐泽尧.威远气田震旦系储层结构特征[J].石油学报,1984,5(4).
    [21]文华川.威远气田气水关系[J].天然气工业,1986,6(2):14-19.
    [22]徐世琦,李天生.四川盆地加里东隆起震旦系古岩溶型储层的分布特征[J].天然气勘探与开发,1993,22(1):14-19.
    [23]王兴志,穆曙光,方少仙,等.四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J].沉积学报,2000,18(4):549-554.
    [24]向芳,陈洪德,张锦泉.资阳地区震旦系灯影组白云岩中葡萄花边的成因研究[J].矿物岩石,1998,18卷(增刊):136-138.
    [25]翟永红,郭成贤.中扬子台地北缘灯影组碳酸盐岩成岩作用序列及成岩模式[J].地质地球化学,1997,2期:45-52.
    [26]王勇.“白云岩问题”与“前寒武纪之谜”研究进展[J].地球科学进展,2006,21(8):857-862.
    [27]雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究[J].沉积学报,1992,10(2):69-78.
    [28]王士峰,向芳.资阳地区震旦系灯影组白云岩成因研究[J].岩相古地理,1999,19(3):21-29.
    [29]黄志诚,陈智娜,杨守业,等.中国南方灯影组峡期海洋碳酸盐岩原始δ~(13)C和δ~(18)O组成海水温度[J].古地理学报,1999,1(3):1-7.
    [30]方少仙,侯方浩,董兆雄.上震旦统灯影组中非叠层石生态系兰细菌白云岩[J].沉积学报,2003,21(1):96-105.
    [31]胡守志,王廷栋,付晓文等.四川盆地中部震旦系天然气勘探前景研究[J].石油实验地质,2005,3(27):224-226.
    [32]朱光有,张水昌,梁英波等.四川盆地高含H_2S天然气的分布与TSR成因证据[J].地质学报,2006,8(80):1209-1217.
    [33]汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002.
    [34]包茨.天然气地质学[M].北京:科学出版社,1988.361-365.
    [35]Enos,P.and Sawatsky,L.H.1981.Pore network in Holocene carbonate sediments[J].J.petrol,51:961-985.
    [36]罗志立,赵锡奎,刘树根,等.“中国地裂运动观”的创建和发展[J].石油实验地质,2001,23(2):232-241.
    [37]马永生,刘树根.中国海相碳酸盐岩层系深层油气成藏机理[R].成都,2007.
    [38]Illing LV.Bahaman calcareous sands[J].AAPG Bull 38,1954,38(1):1-95.
    [39]Gus Archie.Classification of carbonate reservoir rocks and petrophysical cansoderations[J]. AAPG Bull,1952,36(2):278-298.
    [40]Murray RC.Origin of porosity in carbontate rocks[J].J Sediment petroleum.1960,30:59-84.
    [41]Roehl RO,Choquette PW.Carbonate petroleum reservoirs[M].Springer,Berlin Heidelberg New York,PP622.
    [42]Lucia FJ,Murray RC.Origin and distribution of porosity in crionoidal rocks[M].Proc 7~(th)World petroleum congress,Mexico city,Mexico,1966,pp:409-423.
    [43]James L.Wilson.Carbonate facies in geologic history[M].1975,Springer-verlag,berlin Heidelberg New York.
    [44]Kerans C,Fitchen WM.Sequence hierarchy and facies architecture of a carbonate-ramp systemn:San Andres Formation of Algerita Escarpment and western Guadalupe Mountains,West Texas and New Mexico.The University of Texas at Austin,Bureau of Economic Geology Report of Investigation No 235,1995,pp86.
    [45]John C.Van Wagoner,Dave C.The combined use of sequence stratigraphy and stochastic modelling to reservoir management of the Ness Formation,Statfjord Field,Norwegian North Sea;Part 1,Sequence stratigraphy(in American Association of Petroleum Geologists 1995annual convention,Anonymous,)Annual Meeting Abstracts - American Association of Petroleum Geologists and Society of Economic Paleontologists and Mineralogists,1995,4-100.
    [46]Arthur N.Palmer and Margaret V.Palmer.The Kaskaskia paleokarst of the Northern Rocky Mountains and Black Hills,Northwestern U.S.A.(in Macroscopic dissolution features in the rock record;proceedings of the Paleokarst field conference,Friedman)[J].Carbonates and Evaporites,1995,10(2):148-160.
    [47]Volker C.Vahrenkamp.The post-Rotliegend reservoirs of Auk Field,British North Sea;subaerial exposure and reservoir creation(in Unconformities and porosity in carbonate strata).AAPG Memoir.1995,63 197-211.
    [48]F.Jerry Lucia.Carbonate Reservoir Characterization[M].Springer,1999.
    [49]Osborne MJ,Swarbrick RE.Mechanisms for generating overpressure in sedimentary basins:a reevaluation[J].AAPG Bull,1997,81(6):1023-1041.
    [50]Quigley.T.M.and A.S.Mackenzie.The temperatures of oil and gas formation in the sub-surface Nature(London),1998,333(6173):549-552
    [51]S.J.Mazzullo and P.M.Harris.Mesogenetic dissolution;its role in porosity development in carbonate reservoirs[J],AAPG Bulletin,May 1992;76:607-620.
    [52]钱铮,赵澄林,刘孟慧.济阳坳陷深层天然气致密砂岩储集空间成因[J].石油大学学报(自然 科学版),1994,18(6):21-25.
    [53]郑凤云,黄盛波,李早红,等.渤海湾盆地深层潜山储集层中H_2S成因及其地质意义.石油勘探与开发,2004,31(4):19-22.
    [54]何海清;王兆云;程玉群.渤海湾盆地深层石油地质条件分析[J].沉积学报,1999,17(2):273-279.
    [55]康竹林.中国深层天然气勘探前景[J].大然气工业,2000,20(5):1-4.
    [56]王涛.中国深盆气田.北京:石油工业出版社,2002.
    [57]王一刚.四川盆地古生界-上元古界天然气成藏条件及勘探技术[M].北京:石油工业出版社,1999.
    [58]陈宏德,田景春.中国南方海相震旦系-中三叠统构造-层序岩相古地理研究及编图[M].成都:沉积地质研究所,2002.
    [59]赵澄林,陈丽华,涂强,等.中国天然气储层[M],北京:石油工业出版社,1999.
    [60]龚昌明,罗玉宏,范涛,等.四川盆地川中安平店-高石梯震旦系至下古生界含油气评价研究报告[R].四川石油管理局川中石油天然气勘探开发公司,1994.
    [61]徐世琦,张光荣.四川盆地资阳地区震旦体系气藏储层分布与控制因素[J].天然气勘探与开发,1999,22(3):1-5.
    [62]包强,肖梅,施文.资阳地区震旦系古岩溶储层特征及测井评价[J].矿物岩石,1999,19(3):52-55.
    [63]Steven J.Ings,R.Aandrew Macrae,John W.Shimeld et al.Diagenesis and porosity reduction in the late cretaceous Wyandot formation,offshore nova scotia:a comparision with Norwegian north sea chalks[J].Bulletin of Canadian petroleum geology,2005,53(3):237-249.
    [64]Ezat Heydari.Porosity loss,fluid flow,and mass transfer in limestone reservoirs:application to the upper Jurassic Smacheover formation,Mississippi[J].AAPG,2000.84(1):100-118.
    [65]Lloyd,R.M.Porosity reduction by chemical compaction-stable isotope model(abstract):AAPG,1977,V.61,P.809.
    [66]Wong,P.K.,and Oldershaw,A.Burial cementation in the Devonian,Kaybob Reef Complex,Alberta,Canada[J].Journal of Sedimentary Petrology,1981,v.51,p.507-520.
    [67]Niktin,A.A.Patterns of styolite-formations in sedimentary and metamorphic rocks[J].International Geology Review,1985,v.27,p.659-668.
    [68]Bathurst,R.G.C.Carbonate sediments and their diagenesis[M].Amsterdam:Elsevier,1975,658p.
    [69]Bathurst,R.G.C.Burial diagenesis of limestones under simple overburden.Stylolites,cementation and feedback[J].Societé Géologique de France,Bulletin,1995,v,166,p.181-192.
    [70]Trurnit,P.Pressure solution phenomena in detrita rocks[J]Sedimentary Geology,1968,2,p.89-114.
    [71]Wagner,G.Stylolithen und Druchsuturen:Geologische und Palaontologische Abhandlungen[J].Neue Folge,1913,11(2):101-128.
    [72]Beiersdorf,H.Druchspannungen in Karbonategesteinen Sud-Niedersachsens,Ost-Westfalens und Nord-Hessens[J].Geologische Mitteilungen,1969,v.8.p.217-262.
    [73]Schmoker.J.W.,and R.B.Hally,1982.Carbonae porosity vs.depth:a predictable relation for south Florida[J]A.APG Bulletin,v.66,p.2561-2570.
    [74]Warren J..Dolomite:Occurrence,evolution and economically important associations[J].Earth Science Reviewa,2000,52:1-81.
    [75]Machel H G.Saddle dolomite as a by-product of chemical compaction and thermochemical reduction[J].Geology,1987(15):936-940
    [76]Graham R.Davies and Langhorne B.Smith Jr.Structurally controlled hydrothermal dolomite reservoir facies[J].An overview.AAPG Bulletin,v.90,no.11(November 2006),pp.1641-1690
    [77]Dana,E.S..A textbook of mineralogy[M].London,John Wileyand Sons,1955,851 p.
    [78]Radke,B.M..and R.L.Mathis.On the formation and occurrence of saddle dolomite[J].Journal of Sedimentary Petrology,1980,v.50,no.4,p.1149- 1168.
    [79]Gregg,J.M..On the formation and occurrence of saddle dolomite- Discussion[J].Journal of Sedimentary Petrology,1983,v.53,p.1025-1033.
    [80]Barber,D.J.,R.J.Reeder,and D.J.Smith.A TEM microstructural study of dolomite with curved faces(saddle dolomite)[J].Contributions to Mineralogy and Petrology,1985,v.91,p.82-92.
    [81]Searl,A..Saddle dolomite:A new view of its nature and origin[J].Mineralogical Magazine,1989,v.53,p.547-555.
    [82]Kretz,R..Carousel model for the crystallization of saddle dolomite[J].Journal of Sedimentary Petrology,1992,v.62,no.2,p.190-195.
    [83]王奖臻,李朝阳,李泽琴,等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学,2001,29(2):41-45.
    [84]芮宗瑶,叶锦华,张立生,等.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质,2004,31(4):339-346.
    [85]Bathurst,R.G.C.Carbonate sediments and their diagenesis(developments in sedimentology 12)[M],620pp.Amsterdam-London-New York:Elsevier,1971.
    [86]Ezat Heydari and William J.Wade.Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks:Implications for organic acids as factors in diagenesis[J].AAPG Bullitin,2002,86(7):1285-1303.
    [87]Hill C A..H_2S-related porosity and sulfuric acid oil-field karst[J].AAPG Memoir 63.1995,301-306.
    [88]鲍根德,黄德佩,汪依凡.长江口邻近陆架表层沉积物中自生黄铁矿的成因探讨[J].矿物学报,1984(2):167-172.
    [89]岳长涛,李术元,秦胜飞,等.碳酸盐岩系TSR系统中铁的硫化物生成模拟实验研究[J].沉积学报,2004,22(4):743-749
    [90]宋文海等.乐山-龙女寺古隆起大中型气国成藏条件研究[R],四川石油管理局.1995.
    [91]包强,徐世琦:刘仲宣,等.资阳地区震旦系裂缝特征及控制因素初探.天然气工业,1996,16(5):28-31.
    [92]Scholle,P.A.Chalk diagenesis and its relation to petroleum exploration:oil from chalks,a modern miracle?[J].AAPG Bulletin,v.61,p.982-1009.
    [93]Coogan,A.H.Measurements of compaction in oolitic grainstones[J].Journal of Sedimentary petrology,1970,v.40.0.921-929.
    [94]Rittemnhouse,G.Pore-space reduction by solution and cementation[J].AAPG Bulletin,v.55,p.80-91.
    [95]Manus,R.W.,and A.H.Coogan.Bulk volume reduction and pressure-solutin derived cement[J].Jourmal of Sedimentary Petrology,v.44,p.466-471.
    [96]Coogan,A.H.,and R.W.Manus.Compaction and diagenesis of carbonate sands,in G.S.Chilingarian and K.H.Woif,eds.,Compaction of coase-grained sediments Ⅰ.Developments in sedimentology 18A[M],p.79-166.New York:Elsevier.
    [97]Allan,J.R.,and W.D.Wiggins.Dolomite reservoirs geochemical techniques for evaluating origin and distribution[C].AAPG continuing education course note series #36.Published by the American Association of Petroleum Geologists Tulsa,Oklahoma,U.S.A.Printed in the U.S.A.
    [98]梅冥相,张丛,张海,等.上扬子区下寒武统的层序地层格架及其形成的古地理背景[J].现代地质,206.20(2):195-208.
    [99]Ezat Heydari and Clyde H.Moore.Burial diagenesis and thermochemical sulfate reduction,Smackover Formation,southeastern Mississippi salt basin[J].Geology,1989,17:1080-1084.
    [100]王建宝,肖贤明,郭汝泰.四川盆地早古生代地层中沥青的成因及其生气潜.天然气工业,2003,23(5):126-129.
    [101]肖贤明,刘德汉,傅家谟.应用沥青反射率推算油气生成与运移的地质时间.科学通报,2000;45(19):2123-2127
    [102]Hunt J.M.Petrolem geochemistry and geology[M].San Francisco,W.H.Freeman and Company,1979,617p.
    [103]Tissot,B.,B.Durand,J.Espitatié,and A.Combaz.Influence of nature and diagenesis of organic matter in formation of petroleum[J].AAPG Bulletin,1974,v.58,p.499-506.
    [104]Charles S.Spirakis and Allen V.Heyl.Possible effects of thermal degradation of organic matter on carbonate paragenesis and fluorite precipitation in Mississippi Valley-type deposits[J].Geology,1988,v.16,p.1117-1120.
    [105]Ezat Heydari and William J.Wade.Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks:Implications for organic acids as factors in diagenesis[J].AAPG Bullitin,2002,86(7):1285-1303.
    [106]Meshri,I.D.On the reactivity of carbonic and organic acids and generation of secondary porosity,in Gautier,D.L.,ed.,Roles of organic matter in sediment diagenesis[M].Society of Economic Paleontologists and Mineralogists Special Publication 38,p.123-128.
    [107]Hortenbach,R.Druchlosungserscheinungen in karbonaten und ihre Bedeutung[J].Zeitschrift der Geologishcen Wissenschafter,v.5,p.617-621.
    [108]王兴志,方少仙,侯方浩,等.四川盆地灯影组储层原生孔隙内胶结物研究[J].西南石油学院学报,1998,20(3):1-6
    [109]张月华,王一刚.构造期溶蚀作用对储层改造及其意义[J].石油学报,1991,12(1):17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700