用户名: 密码: 验证码:
山地城市污水中细砂特征及其处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区重庆段城镇污水细砂含量高且粒径偏小(平均粒径<250μm,属于特细砂),导致污水处理厂普遍存在动力设备磨损严重、活性污泥有机组分偏低、出水水质波动和剩余污泥产量高等系列问题,并对库区脆弱水体环境构成严重威胁。关于污水中细砂的研究较少,特别是三峡库区重庆段更加缺乏相关研究。论文结合重庆山地地貌特征、季节性降雨和排水管网特点,以污水中细砂为研究对象,通过设置采样点,构建小试和中试装置,开展了污水中细砂时空分布规律、初期冲刷效应及降雨场次污染物浓度(EMC)评价、粒径特征及分布、沉降性能、矿物成分、迁移过程和处理技术等研究。
     晴天各采样点生活污水含砂量变化规律基本一致,逐时波动存在一定差异,污水处理厂进水含砂量变化滞后于排水管网;涪陵污水处理厂进水含砂量183.9mg/L,其余采样点均小于50mg/L;污水厂上半年平均含砂量和日均进砂量分别为180mg/L,10507kg/d,高于下半年,是除砂控制重点时期。
     合流制采样点初期合流污水含砂量,江南居民区469.3mg/L、交通区394.5mg/L和江东居民区356.4mg/L;降雨强度11.7mm/h、5.6mm/h和1.6mm/h时,含砂量出峰时间分别为10min、15min和20min以上。降雨强度高,含砂量出峰时间早;雨前晴天数长,人口密集、交通量大和卫生条件差的用地类型,含砂量偏高。分流制(商业区)污水管含砂量和出峰时间为425.0mg/L和大于20min,雨水管为199.1mg/L和小于5min。分流制污水管,因少量雨水混入仍存在冲刷现象,出峰时间虽滞后于合流制,但其高含砂量不容忽视;整体上看,初期雨污水含砂量受降雨强度,雨前晴天数、用地类型和排水管网体制共同影响。
     初期冲刷效应评价M(V)曲线和幂函数b参数法分析表明,降雨强度>5mm/h降雨事件,初期50%雨污水约携带了80%-90%的污染负荷,存在初期冲刷效应;采用降雨场次污染物浓度(EMC)评价表明,初期合流污水含砂量EMC值为333mg/L,是晴天含砂量6倍以上。
     污水中细砂粒径特征分析表明,晴天各采样点污水中细砂平均粒径范围在150μm-210μm,初期雨污水中细砂平均粒径在180μm-240μm之间;其中80%细砂粒径小于325μm,60%细砂粒径小于225μm,40%细砂粒径小于150μm。针对污水中细砂的除砂系统设计时,应以粒径100μm作为除砂目标粒径,并以此粒径细砂去除效果来衡量除砂系统效率,能保证粒径累积分布特征曲线上70%-95%的细砂得到有效去除。对比国外污水细砂粒径特征,三峡库区重庆段污水中细砂、北美地区细砂和美国东南部“糖砂”,具有相似粒径特征,均因平均粒径小于250μm而很难被去除。
     矿物成分及来源分析表明,晴天污水细砂矿物石英54%、方解石27%,较地表和管道沉积砂样相近,与水泥路面风化和磨损等因素有关;初期合流污水细砂中石英含量高于70%,较土壤样品相近,与土壤侵蚀有关;沉砂池沉积砂样石英49%、长石类24%,较山涧风化岩石样品相近;分析认为污水中细砂主要来源是地表沉积细砂、风化岩石和库区砂质土壤。三峡库区山地城市污水中细砂迁移与岩石风化、水土流失、地表径流作用和利用边沟、小溪、山涧和冲沟截留生活污水等因素有关。
     污水中细砂的自然沉降性能及影响试验表明,以污水处理厂初沉池HRT为1.46h计,细砂去除率仅53.4%,仅靠初沉池除砂效果不够理想; pH、水温、Na+和Mg~(2+)等因素对细砂去除影响较小;剩余污泥投加对细砂去除影响试验表明,剩余污泥投加比5%时,去除效果较佳为73.7%。
     旋流沉砂和混凝沉淀试验表明,改进后旋流沉砂池除砂效率提升有限,仅为35%;混凝沉淀除砂效果较佳,去除率高达91.6%,COD去除率62.5%,存在碳源损失问题,因此后期需考虑碳源补偿以缓解脱氮除磷对碳源的竞争。
High concentration and small particle size grit in the urban sewage of Chongqingin Three Gorges Reservoir (average particle size <250μm can be classified to theultra-fine grit) led to widespread badly worn of power equipments, low level of organiccomponents of the activated sludge, water quality fluctuations and higher excess sludgeand other series of problems in wasterwater treatment plants, posing a serious threat onthe Reservoir Area’s fragile aquatic environment. There are no much researches onsewage fine grit, especially the relevant researches on sewage fine grit of Chongqing inThree Gorges Reservoir. This dissertation combines the characteristics of Chongqingmountain landforms, the seasonal rainfall and drainage pipe network, treats sewage finegrit as the research object, through setting sampling point, underbrush and pilot-plants,carries out the researches on sewage fine grit, including spatial and temporaldistribution, the first flush effects, EMC (event mean concentration), particle sizefeatures, distribution, settling performance, mineral composition, migration process,removal technology and such, drawing the following conclusions:
     In dry weather, the varying patterns at various sampling points are basically thesame. There are some differences in the hourly fluctuations, changes in water gritcontent of the sewage treatment plant lag behind that in the drainage network. The gritconcentration of Fuling wastewater treatment plant is183.9mg.L~(-1), and the gritconcentration of the rest sampling points is less than50mg.L~(-1). The annual average gritconcentration and daily inlet grit amount of the wastewater treatment plant in the firsthalf average were180mg.L~(-1), and10507kg.d-1respectively, higher than the second halfof the year, which is the major degritting period.
     For the initial combined sewage grit concentration of sampling points in the incombined sewer systems, Jiangnan residential area is469.3mg.L~(-1), the traffic area394.5mg.L~(-1), and Jiangdong residential area356.4mg.L~(-1); the rainfall intensity is11.7mm.h~(-1),5.6mm.h~(-1)and1.6mm.h~(-1), the grit peak value appearance time is10min,15min and20min. As for the grit content and appearance time of the sampling points inthe in separate sewer system, commercial area sewage pipe is425.0mg.L~(-1)and greaterthan20min, the commercial area rainwater pipe is199.1mg.L~(-1)and less than5min.Higher rainfall intensity leads to earlier appearance time of grit content. The longerlasting of the dry days before rain, high population density, higher traffic volume and poor sanitation shall lead to higher concentration of grit content. As for the sewage pipein separate sewer system, the flush exist due to a small amount of rain mixed, theappearance time is later than that in combined sewer systems, but its higherconcentration of grit content can not be ignored. Overall, the grit content of the first rainand sewage sand are subject to the combined influences from length of dry days beforerain, land type and drainage network system.
     The first flush effects evaluation M(V) curve and the power function“b”parametermethod analysis indicate that the rainfall intensity>5mm.h~(-1)rainfall, the grit contentload percentage curve is higher than45°angle bisector, b parameter values are lessthan1, determination coefficient r2is greater than0.8, the initial50%rain sewagecarries about80%-90%pollution load, and there exists a first flush effect. The rainfallscreenings pollutant concentration (EMC) evaluation shows that the early combinedsewage grit content EMC value is333mg.L~(-1), about6times than that in dry weather.
     Analysis on the sewage fine grit particle size features shows that the averageparticle size range of fine grit of the sewage in each sampling point during dry weatheris150μm--210μm, the average particle size in the early rain sewage fine grit is between180μm-240μm,80%of grit particle is less than325μm,60%less than225μm, and40%less than150μm. Compared with that in North America and the southeastern UnitedStates, the fine grits in Chongqing of Three Gorges Reservoir have similar particle sizeand difficult to be removed due to the average particle diameter of less than250μm.Sewage fine grit particle size characteristics and distribution in dry weather is mainlyaffected by the impact from land-use types, the rainfall intensity, dry days before rain,land-use type and drainage network system affects the sewage fine grit particle sizefeatures and distribution in the first combined sewage. When designing the fine gritdegritting system, if the grit with particle size of100μm is the degritting targets, andthese grits degritting results are considered as the system efficiency standards, thedegritting system can ensure that70%-95%of the fine grit on the cumulativedistribution characteristic curve will be effectively removed.
     Mineral composition and origin analysis shows that54%of quartz and27%ofcalcite in sewage fine grit minerals are similar with the surface and pipeline depositedgrit samples, which is related with cement road surface weathering and wear and otherfactors and the main sources of sewage fine grits. The mineral quartz in first combinedsewage fine grit is more than70%, similar with soil samples, which is related with soilerosion and the sandy soil is the main sources of sewage fine grits. About49%of quartz and24%of feldspars in grit chamber deposited grits are similar to the mountainweathered rock samples. It shows that some grits in the sewage come from thedeposited fine grits after the rocks are weathered which is also the major source ofsewage fine grits. The mountain urban sewage fine grits migration of the Three GorgesReservoir region is related to varied factors including rock weathering, soil erosion,surface runoff and type of collecting sewage through ditches, creeks, streams andgullies.
     Fine grit natural subsidence performance and impact tests show that given HRT1.46h meter of the primary settling tank of the sewage plant, the removal efficiency offine grits is only53.4%. So only relying on primary settling tank cannot bring idealeffect. These influencing factors of pH, water temperature, Na+and Mg2impact little onthe removal efficiency. Test on excess sludge’ impact on fine grit removal shows thatwhen the excess sludge dosing is than5%, the removal efficiency is good at73.7%. Dueto the remaining high content grit in the excess sludge, the removal results are unstable.
     The rotational flow grits and coagulating sedimentation tests show that thedegritting efficiency of the improved rotational flow grit chamber is limited, only standsat35%. Coagulating sedimentation has better degritting efficiency with the removal rateof up to91.6%, COD removal efficiency62.5%, but the carbon source losses are huge.So it is need to supple the carbon source for meeting the carbon source demands of latenitrogen and phosphorus removal and relieving the carbon source competitions.
引文
[1] Richard E. Finger, James Parrick. Optimization of grit removal at a wastewater treatment plant[J]. Journal WPCF,1980,52(8):2106–2116.
    [2] Metcalf and Eddy, Inc., G. Tchobanoglous, F.L. Burton, and H.D. Stensel. WastewaterEngineering: Treatment and Reuse [M].4th edition. McGraw Hill, New York,2003.
    [3] Water Environment Federation.Grit removal [J].Water Pollution Control Federation.1960,32(10):1132-1135.
    [4] Hides, S.P, Griffiths, E. C. Grit loadings and characteristics at wastewater treatment facilities inNew England. New England [J]. Water Environment Association,1997
    [5] Kwabena Osei, Robert Andoh. Optimal grit removal and control in collection systems and attreatment plants [C]. World Environmental&Water Resources Congress2008; May12-16,2008, Honolulu, Hawaii.
    [6]李中天,蒋伟文.城市污水处理中砂的影响及对策[J].给水排水,2004,30(6):26.
    [7]张波,高廷耀.初沉池取消后活性污泥法工艺的功能强化与局限性问题[J].中国给水排水,1996,12(2):29-31.
    [8] Majdala Mansour-Geoffrion, Peter L Dold, et al. Characterizing hydro-cyclone performance forgrit removal from wastewater treatment activated sludge plants [J]. Minerals Engineering,2010.23(4):359–364.
    [9]卞子敏,袁林江.生活污水悬浮体去除特性试验及对后续生化处理的影响研究[J].水资源与水工程学报,2009,20(2):87-91.
    [10] Bryan Smith, Leeds, United kingdom. Method and Appatatus for removing grit form sewage[P].United States Patent (5298172),1994,3.29.
    [11]潘礼东.初沉池在城市污水处理中的有效设置[J].建材技术与应用,2006,1:39-40.
    [12] United States Environmental Protection Agency.Wastewater Technology Fact Sheet--Screeningand Grit Removal [S].
    [13]孟昭富.特细砂混凝土技术[J].重庆建筑,1995.
    [14]中华人民共和国建筑工程部.特细砂混凝土配制及应用规程[S]. BJG19-65,1965.
    [15]刘长坤,吴启凤.特细砂混凝土分层的原因分析与防止措施[J].四川建筑科学研究,2006,32(4):111-114.
    [16]陈宗虎.论特细砂混凝土在施工中的质量控制[J].建筑技术开发,2005,32(4).
    [17] Yuanyuan zhang, Zongke Luo, Xiangbin Zhang. Effect of material properties on Plasticshrinkage of ultra-fine grit pumping concrete [J]. Advanced Materials Research,2010,(150-151):588-593.
    [18]沈晓钧.特细砂高性能混凝土研究与应用[D].陕西:西北农林科技大学,2008:2-3.
    [19]龙腾锐,姜文超.三峡库区城镇排水体制选择[J].重庆环境科学,1999,21:3-5.
    [20]刘翠云,车伍,董朝阳.分流制雨水与合流制溢流水质的比较较[J].给水排水,2007,33(4):51-55.
    [21]潘国庆,车伍.国内外排水体制的探讨[J].给水排水,2007.33(增刊):323-326.
    [22]蒋海燕,刘敏,顾琦等.上海城市降水径流营养盐氮负荷及空间分布[J].城市环境与城市生态,2002,15(1):15-17.
    [23]汪慧贞,李宪法.北京城区雨水径流的污染及控制[J].城市环境与城市生态.2002,15(2):16-18.
    [24]常静,刘敏,许世远等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究,2006,25(6):994-1001.
    [25]杨逢乐,赵磊.合流制排水系统降雨径流污染物特征及初期冲刷效应[J].生态环境,2007,16:1627-1632.
    [26] Geiger W. Flushing effects in combined sewer systems [J], Urban Storm Drainage,1987,4:40-46.
    [27] Lee J. First flush analysis of urban storm runoff [J]. The Science of the Total Environment,2002,293:163-175.
    [28] Wanielista M P, Yousef Y A. Stormwater management [M]: Wiley-Interscience,1993.
    [29] Stahre P, Urbonas B.Stormwater detention: for drainage, water quality, and CSO management[M].1990.
    [30] United States Environmental Protection Agency. Combined Sewer Overflows-Guidance ForLong-Term Control Plan[S]: EPA832-B-95-002.1995.
    [31] Saget A. The first flush in sewer systems [J]. Water science and technology,1996,33:101-108.
    [32]邱峰.新型旋流沉砂池砂粒和有机物去除效率研究[D].安徽:合肥工业大学,2007
    [33]张自杰.排水工程[M].北京:建筑工业出版社,2000.
    [34]邹启贤,张金松,曲志军.沉砂池类型及其应用[J].西南给排水,2005,27(4):8-11.
    [35] Smith&loveless Inc. Pista grit removal system [A].1999.
    [36] Jone Attwood. Jeta grit removal systems [A].1999.
    [37]许劲,孙俊贻,周幸儒等.不设初沉池时沉砂池的选型分析[J].重庆建筑大学学报,2005,27(2):61-64.
    [38]邵林广.圆形涡流式沉砂池除砂效率的探讨[J].给水排水,1998,24(12):38-40.
    [39]段存福,郑传林.沉砂池运行条件的改进[J].山东商业职业学院学报,2004,4(2):77-78.
    [40]李涛.沉砂池的设计及不同池型的选择[J].中国给水排水,2001,17(9):33-37.
    [41]王雪原.涡流沉砂池的特色与设计要点[J].中国给水排水,2001,17(8):36-38.
    [42]王燕红,邬素梅.比氏旋流沉砂池的运行控制[J].中国给水排水,2004,20(10):90.
    [43]龙干,颜振邦,赵华等.旋流沉砂池在上海白龙港污水处理厂的应用[J].中国市政工程.增刊,2001:26-31.
    [44]张金流,尹必霞.巢湖市污水处理厂的试运行[J].水处理技术,2005,31(7):78-79.
    [45]揭武,刘平珍,龚艳琴等.比氏旋流除砂系统除砂效果不佳的原因分析[J].湖北师范学院学报(自然科学版),2005,25(2):34-36.
    [46]蒋文韬.新型高效旋流沉砂池的模型试验研究.安徽:合肥工业大学.2006:4-6
    [47] Gary Hunter, Chrisde Barbadillo, Dean Pond Black and Veatch. The Testing of Grit Systems:Understanding Fact and Fiction [C]. NC AWWA-WEA,2007Annual Conference TechnicalProgram, Monday, December3,2007
    [48] Moss Kelley, Inc.Grit characterization in Florida wastewater plants [C].2006.
    [49]陆柱.水处理药剂[M].北京:化学工业出版社,2002.
    [50]王保栋.河口细颗粒泥砂的絮凝作用[J].黄渤海海洋,1994,12(1):71-76.
    [51]崔清晨译.化学海洋学[M].北京:海洋出版社,1985:460-469.
    [52] Tipping E, Ohnstad M. Colloid stability of iron oxide particles from a fresh water lake [J].Nature,1984,308:266-268.
    [53]陈庆强,孟翊,周菊珍等.长江口细颗粒泥砂絮凝作用及其制约因素研究[J].海洋工程,2005,23(1):74-82.
    [54]郭连起译.论水的混凝[M].北京,中国建筑工业出版社,1982
    [55]周世辉.城市污水强化一级处理的研究现状[J].云南环境科学,2000,19(3):50-54.
    [56] Harleman D R F, Murcott S. The role of physical-chemical wastewater treatment in themega-cities of developing world [J]. Wat.Sci. Tech,1999,40(4-5):75-80.
    [57] Poon C S,Chu C W.The use of ferric chloride and anionic polymer in the chemically assistedprimary sedimentation process.Chemosphere,1999,Vol.39(10):1573-1582
    [58]雄建英,杨海真,王闯等.铁盐处理上海合流一期污水试验研究[J].中国给水排水,2000,16(16):17-19.
    [59] Tambo N, Matsui Y, Kurotani K, et al.Control of coagulation process by dual wavelength articleanalyzer.Water Sci. echnol.1997,36(4):135-142
    [60] Tseng T, Segal B D, Edwards M.Increasing alkalinity to reduce turbidity [J]. Am.Water WorksAssoc.2000,92(6):44-54
    [61]金鹰,王义刚,李宁等.长江口粘性细颗粒泥砂絮凝试验研究[J].河海大学学报,2002,30(3):61-63.
    [62]王家生,陈立,刘林等.阳离子浓度对泥砂沉速影响实验研究[J].水科学进展,2005,16(2):169-173.
    [63]蒋国俊,姚炎明,唐子文.长江口细颗粒泥砂絮凝沉降影响因素分析[J].海洋学报,2002,24(4):51-57.
    [64]阮文杰.细颗粒泥砂动水絮凝的机理分析[J].海洋科学,1991,5:46-49.
    [65]汤鸿霄译.水化学-天然水体化学平衡导论[M].北京:科学出版社,1987:485-489.
    [66]林以安,唐仁友,李炎.长江口絮凝聚沉特征与颗粒表面物理化学因素作用-Ⅱ颗粒表面性质对聚沉的作用[J].泥砂研究,1997,4:76-84.
    [67]陈庆强,孟翊,周菊珍等.长江口细颗粒泥砂絮凝作用及其制约因素研究[J].海洋工程,2005,23(1):74-82.
    [68]刘春霞,李月臣,杨华.三峡库区(重庆段)石漠化敏感性评价及空间分异特征[J].长江流域资源与环境,2012,20(3):291-296.
    [69]何军,翟丹华,郝全成等.重庆地区大气可降水量的时空分布特征[J].热带气象学报,2012,28(2):96-103
    [70]程吉建.重庆三峡库区排水管网设计研究[D].重庆:重庆大学,2004:8-12.
    [71]马西军,张洪江,程金花等.三峡库区森林立地类型划分[J].东北林业大学学报.2011,39(12):109-113.
    [72]辜胜阻,侯伟丽.治理长江上游水上流失的对策[J].长江流域资源与环境,2000,9(2):260-264.
    [73]范建容,刘飞,郭芬芬等.基于遥感技术的三峡库区土壤侵蚀量评估及影响因子分析[J].山地学报,2011,29(3):306-311.
    [74]王效科,欧阳志云,肖寒等.中国水土流失敏感性分布规律及其区划研究[J].生态学报,2001,21:14-19.
    [75]王晖,廖炜.长江三峡库区水土流失现状及治理对策探讨[J].人民长江,2007,38:34-36.
    [76]黄闰泉,袁传武.长江上游水上流失对三峡工程的影响之探讨[J].湖北林业利技,1999,110(4):34-37.
    [77]刘燕,尹澄清,车伍等.合流制溢流污水污染控制技术研究进展[J].给水排水,2009,35(增刊):282-287.
    [78]高祥,龙腾锐.陈垚等.浅谈三峡库区山地小城镇排水体制的选择[J].三峡环境与生态,2010,32(6):21-23.
    [79]杨毅.山地城镇排水体制的选择研究[J].科技资讯,2010(25):104.
    [80]柳依莎,杨华,邓伟.基于GIS的重庆市涪陵区土地适宜性评价研究[J].安徽农业科学2012,40(5):3068-3071.
    [81] Norihito T, Yoshihiko M, Ken-ichi K, et al. Control of coagulation process by dual wavelengtharticle analyzer [J]. Water Science and technology,1997,36(4):135-142.
    [82] James M E, Philip L S, Sarah R O, et al. Evaluation of chemical coagulation/flocculation aidsfor the removal of suspended solids and phosphorus from intensive recirculating aquacultureeffluent discharge [J]. Aquacultural Engineering,2003,29:23-42.
    [83]国家环境保护局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [84]孙慧修.排水工程(上)[M].北京:中国建筑工业出版社,1999
    [85] Lee J, Bang K W. Characterization of urban storm-water runoff [J]. Water Research,2000,34:1773-1780.
    [86] Deletic A, Maksumovic C T. Evaluation of water quality factors in storm runoff from pavedareas [J]. J. Environ.Eng,1998,124:869-879.
    [87] Deletic A. The first flush load of urban surface runoff [J]. Water Research,1998,32:2462-2470.
    [88]李贺,李田.上海高密度居民区合流制系统雨水溢流水质研究[J].环境科学,2006,27:1565-1569.
    [89]何庆慈,李立青.武汉市汉阳区的暴雨径流污染特征[J].中国给水排水,2005,21:101-103.
    [90]国家环保总局.地表水环境质量标准[S].2002, GB3838-2002.
    [91] Sztruh¨¢r D. Comprehensive assessment of combined sewer overflows in Slovakia [J]. Urbanwater,2002,4:237-243.
    [92]刘翠云,车伍等,分流制雨水与合流制溢流水质的比较[J],给水排水,2007,33:51-55.
    [93]张福根,荣跃龙,周伟麟.粒径测量及用于磨料的各种颗粒仪器[J].中国粉体技术,2000,6(1):26-29.
    [94]张福根,荣跃龙.粒度性能评价方法探讨[J].中国粉体技术,2001,7(3):32-34.
    [95] Sartor J D, Boyd GB. Water pollution aspects of street surface contaminants [S]. WashingtonDC: The United States Environmental Protection Agency, EPA-R2-72-081.1972.
    [96]石油地质勘探专业标准化技术委员会.沉积岩黏土矿物和常见非黏土矿物X射线衍射分析方法[S].标准SY/T5163-2010.
    [97]熊毅,李庆逵.中国土壤(第二版).北京:科学出版社1987
    [98]李志洪,赵兰坡,窦森.土壤学(第一版).北京:化学工业出版社2005:33-35.
    [99] Ball J.E, Jenks R, Aubourg D. An assessment of the availability of pollutant constituents onroad surfaces. Science of the Total Environment,1998,209(2-3):243-254.
    [100] Hunter K A, Liss P S.The surface charge of suspended particles in estuarine and coastal waters[J]. Nature,1979,282:823-825.
    [101] Edzwald JK, Upchurch JB, Omelia CR. Coagulation in estuaries [J]. Environ.Sci.Technol.1974,8(1):58-63.
    [102]陈爱朝,张炯,钱亚芬等.剩余污泥回流至初沉池对A/O污水处理系统的影响[J].中国给水排水,2007,23(12):93-95.
    [103]李月臣,刘春霞,赵纯勇等.三峡库区重庆段水土流失的时空格局特征[J].地理学报,2008,63(5):502-513.
    [104]廖小勇,陈治谏,刘邵权等.三峡库区紫色上破土破耕地不同利用方式的水土流失特征[J].水上保持学报,2005,12(1):159-161.
    [105]张敬东,徐金兰,潘玲.生活污水混凝处理试验研究[J].环境科学与技术,2004,27(1):30-31.
    [106] Nathalie Olive. Design of a Chemieally Enhaneed Primary Treatment Plant for the city ofAlkenes [D].USA: Masssehusetts institute of Technology,2002.
    [107] Marco Guida, Marialuisa Mattei, Clauido Della Rocca, et al. Optimization ofalum-coagulation/flocculation for COD and TSS removal from five municipal wastewater [J].Desalination211,2007,113-127.
    [108]朱宝霞,李久义.城镇污水混凝强化一级处理的机理探讨[J].给水排水,2001,27(7):10-14.
    [109]伏培仟,孙力平,王少坡等. PAC与PAM复合絮凝剂在回用水处理中的应用[J].水处理技术,2008,34(9):58-60.
    [110] John J S, Jong-Y K. Suspended particle destabilization in retained urban stormwater as afunction of coagulant dosage and redox conditions [J]. Water Research,2008,42:909-922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700