用户名: 密码: 验证码:
稀土锰氧化物体系的相分离磁性及磁热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有类钙钛矿型结构的锰氧化物一直是人们研究的热点,这不仅是因为该类材料有着丰富的物理内涵,更为重要的是其在磁存储、磁传感以及磁制冷等方面有着广阔的应用前景。锰氧化物作为一种强关联电子材料,其自旋、轨道、电荷、晶格等自由度之间存在着强烈的耦合作用,导致了该体系呈现出复杂的电磁相图以及电荷有序、相分离等有趣的物理现象。人们通过各种实验手段直接或间接地证实了锰氧化物中相分离的存在,同时也研究了基于相分离的交换偏置效应。由于锰氧化物具有较高的饱和磁化强度,较小的矫顽力,而且材料的居里温度点可以通过不同的掺杂在一个很宽的温度范围内调节,因而在磁制冷方面有着潜在的应用价值。本论文主要研究了基于相分离的La_(1-x)Ca_xMnO_3(0.80≤x≤0.95)中的交换偏置效应及其对体系输运性质的影响;同时研究了La_(2/3)Sr_(1/3)MnO_3单晶不同方向的磁热效应等。此外,还探索了La_(2/3)Ca_(1/3)Mn_(1-x)Fe_xO_3(x = 0, 0.1, 0.2)磁输运性质和电子自旋共振行为。具体内容共分为四章并分别概括如下:
     第一章综述了锰氧化物的研究进展,介绍了其晶体结构、主要磁电物理机制、La_(1-x)Ca_xMnO_3和其它体系的电磁相图、基于相分离的交换偏置效应以及锰氧化物材料磁热效应的研究进展和电子顺磁共振(EPR)的研究结果。
     第二章详细研究了La_(1-x)Ca_xMnO_3 (0.80≤x≤0.95)的结构和磁特性。结构分析表明所用样品在室温下都是正交的晶体结构;随温度降低体系部分正交结构向单斜结构转变,在一定温度范围和掺杂区间正交结构和单斜结构共存于体系。磁测量结果表明La_(1-x)Ca_xMnO_3 (0.80≤x < 0.95)中存在交换偏置效应,而且体系交换偏置场在Ca的掺杂量x = 0.90时达到最大值,在体系完全为自旋倾斜G型反铁磁时(x = 0.95),交换偏置效应消失。分析表明由C型反铁磁本身电子相分离而导致的交换偏置效应以及C型反铁磁对自旋倾斜G型反铁磁钉扎而产生的交换偏置效应对体系均有贡献。磁输运测量结果表明,界面自旋对体系电荷输运有着重要的影响。
     第三章探索了用光学浮熔区法生长单晶,详细讨论了退火对La_(2/3)Sr_(1/3)MnO_3单晶结构的影响及单晶沿不同方向的磁热效应。没有经过退火处理的单晶,在ac面存在一定的无序排列,即a、c两轴形成无序;经过退火处理的样品,ac面内结晶度提高,但是在b方向单晶有结构重构现象,解离成片状晶体。La_(2/3)Sr_(1/3)MnO_3单晶在低场下表现出相对较大的磁热效应和一定的各向异性。测量结果表明,其在高温磁制冷方面有潜在的应用价值。
     第四章探讨了La_(2/3)Ca_(1/3)Mn_(1-x)Fe_xO_3(x = 0, 0.1, 0.2)磁输运性质和ESR的实验结果。磁输运结果表明,Fe掺杂破坏了体系双交换作用,导致巨磁电阻效应的产生;ESR的测量结果表明,体系存在磁的不均匀性,主要源于Fe~(3+)与周围Mn离子的反铁磁耦合而导致体系反铁磁绝缘相的出现。
The perovskite-like manganites have attracted a great interest from researchers in recent years not only due to their rich physics but also the application potential, such as magnetic storage, magnetic sensor, magnetic refrigeration and so on. The spin, orbit, charge, and lattice of the manganite are strongly coupled, which leads to very complex electronic and magnetic phase diagram and a lot of interesting phenomena, such as charge ordering and phase separation, etc.. The phase separation is observed by various direct or indirect manners, but a perfect explain about the origin is absent. Different magnetic phases may be coupled, which leads to an exchange bias effect. The manganites have high saturation magnetization and small coercive force, and the Curie temperature of the system can be tuned in a large temperature range by different doping level, which makes it valuable in the magnetic refrigeration. The thesis mainly focuses on the exchange bias effect based on the phase separation and its influence on the transport properties; meanwhile the magnetocaloric effect is investigated in different direction of the La_(2/3)Sr_(1/3)MnO_3 single crystalline. Furthermore, the magnetic transport properties and electron paramagnetic resonance (EPR) behaviors were studied in La_(2/3)Ca_(1/3)Mn_(1-x)Fe_xO_3(x = 0, 0.1, 0.2). The main contents in the disstation are summarized as follows:
     In chapter 1, the research progress of the manganite, including the crystal structure, the main magnetic and electronic transport physical mechanism, the electronic and magnetic phase diagrams of La_(1-x)Ca_xMnO_3 and other systems, the exchange bias effect based on phase separation, the research progress of the magnetocaloric effect as well as the result of the electron paramagnetic resonance were briefly introduced.
     In chapter 2, the structure and magnetism of La_(1-x)Ca_xMnO_3 (0.80≤x≤0.95) were discussed in detail. The analysis of the structure show that all samples are of orthorhombic phase at room temperature. With the temperature decreasing, part of orthorhombic phase transforms to monoclinic phase in compounds for 0.85≤x < 0.95. The exchange bias effect is observed in the samples, which shows a peak around for x = 0.90 and vanishes for only pure spin canted G type anti-ferromagnetism (AFM) existing in system (x = 0.95). We came to a conclusion that the exchange bias effect in the C-AFM due to the electron pahse separation and the pinning of C-AFM to spin canted G-AFM both contribute to the exchange bias effect observed in the system. The magnetic transport result indicated that the interfacial spins play an important role in the system.
     In chapter 3, the crystal growth by optical floating-zone was studied. The annealing effect on the structure and the magnetocaloric effect were investigated along different directions in the single crystal. There exists some missarrangment of the a and c-axes in the La_(2/3)Sr_(1/3)MnO_3 single crystal without annealing. After annealing, the missarrangment disappeared in the ac-plane while the crystal dissociated into sheet crystal along the b-direction. A relatively large magnetic entropy change in low magnetic field was found, which show a small anisotropy. The result shows that La_(2/3)Sr_(1/3)MnO_3 single crystal is potential valuble in the magnetic refrigeration.
     In chapter 4, the magnetic transport properties and the electron paramagnetic resonance spectrum of La_(2/3)Ca_(1/3)Mn_(1-x)Fe_xO_3 (x = 0, 0.1, 0.2) polycrystals were investigated. The doping of Fe destroyed the double exchange and induced colossal magnetoresistance. The paramagnetic resonance result shows inhomogeneous magnetism in the system, which results from the anti-ferromagnetic coupling of Fe with the surrounding Mn ions.
引文
[1] G. H. Jonker, J. H. Van Santen, Physica, 16, 337 (1950).
    [2] J. H. Van Santen, G. H. Jonker, Physica, 16, 559 (1950).
    [3] G. H. Jonker, J. H. Van Santen, Physica, 19, 120 (1953).
    [4] G. H. Jonker, Physica, 20, 1118 (1954).
    [5] J. Volger, Physica, 20, 49 (1954).
    [6] C. Zener, Phys. Rev. 2, 403 (1951).
    [7] J. B. Goodenough, Phys. Rev. 100, 564 (1955).
    [8] E. O. Wollman, W. C. Koehler, Phys. Rev. 100, 545 (1955).
    [9] T. Kasuya, Prog. Theor. Phys. 22, 227 (1959).
    [10] T. Kasuya and A. Yanase, Rev. Mod. Phys. 40, 684 (1968).
    [12] N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford), 1971.
    [13] T. Holstein, Ann. Phys. (N. Y.) 8, 343 (1959).
    [14] J. Kanamori, Suppl. J. Appl. Phys. 31, 14S (1960).
    [15] P. De Gennes, Phys. Rev. 118, 141 (1960).
    [16] A. Morrish, B. Evans, J. Eaton, L. Leung, Can. J. Phys. 47, 2691 (1969).
    [17] J. Tanaka, M. Umehara, S. Tamura, M. Tsukioka and S. Ehara, J. Phys. Soc. Jpn. 51, 1236 (1982).
    [18] R. Von. Helmolt, J. Wecker and B. Holzapfel, Phys. Rev. Lett. 71, 2331 (1993).
    [19] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science 264, 413 (1994)
    [20] M. McCormack, S. Jin, T. H. Tiefel, R. M. Fleming and J. M. Phillips, Appl. Phys. Lett. 64, 3045 (1994).
    [21] J. B. Goodenough and J. S. Zhou, Nature 386, 229 (1997).
    [22] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garsia, A. Del Moral and Z. Aronld, Nature 386, 256 (1997).
    [23] D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B. 72, 174422 (2005).
    [24] T. Qian, G. Li, T. Zhang, T. F. Zhou, X. Q. Xiang, X. W. Kang, X. G. Li, Appl. Phys. Lett. 90, 012503 (2007).
    [25] M. H. Phan, S. C. Yu, N. H. Hur, Y. H. Jeong, J. Appl. Phys. 96, 1154, (2004).
    [26] P. Sarkar, P. Mandal, P. Choudhury, Appl. Phys. Lett. 92, 182506 (2008).
    [27] B. C. Zhao, Y. P. Sun, X. B. Zhu, W. H. Song, J. Appl. Phys. 101, 053920 (2007).
    [28] H. A. Jahn and E. Teller, Proc. Roy. Soc. A161, 220 (1937).
    [29] Y. Tokura, Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
    [30] P. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    [31] A. Millis, P. Littlewood, B. Shraiman, Phys. Rev. Lett. 74, 5514 (1995).
    [32] Y. Tokura, Colossal Magnetoresistance Oxides (Gordon and Breach Science Publisher, New York) 2000
    [33] J. Y. T. Wei, N. C. Yeh and R. P. Vasquez, Phys. Rev. Lett. 79, 5150 (1997).
    [34]郑兆勃,非晶固态材料引论,科学出版社,1987
    [35] L. Sudheendra, V. Moshnyaga and K. Samwer, Contemporary Physics 48, 349 (2007).
    [36] X. G. Li, R. K. Zheng, G. Li, H. D. Zhou, R. X. Huang, J. Q. Xie, and Z. D. Wang, Europhys. Lett. 60, 670 (2002)
    [37] S. Mori, C. H. Chen, S-W. Cheong, Nature (London) 392, 743 (1998).
    [38] Y. Tokura, and N. Nagaosa, Science 288, 462 (2000).
    [39] E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa and Y. Tokura, Nature 410, 180 (2001).
    [40] J. Hemberger, A. Krimmel, T. Kurz, H.–A. Krug van Nidda, V. Yu. Ivanov, A. A. Mukhin, A. M Balbashov, and A. Loidl, Phys. Rev. B. 66, 094410 (2002).
    [41] C. Martin, A.Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B. 60, 12191 (1999).
    [42] J. Witins, P. Wachter, Phys. Rev. B. 12, 3829 (1975).
    [43] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C.Ritter, C. Marquina, J. Blasco, J. Garsia, A. Del Moral, and Z. Aronld, Nature 386, 256 (1997).
    [44] J. B. Goodenough and J. S. Zhou, Nature 386, 229 (1997).
    [45] M. Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, J. A. Mydosh, Science 285, 1540 (1999).
    [46] James C. Luodon, Neil D. Mathur and Paul A. Midgley, Nature 420, 797 (2002).
    [47] James C. Luodon, Neil D. Mathur, Paul A. Midgley, J. Magn. Magn. Mater. 13, 272 (2004).
    [48] Casey Israel, Maria, JoséCalderón, and Neil D. Mathur, Materialstoday 10, 24 (2007).
    [49] Wu. W, et al, Nat. Mater. 5, 881 (2006).
    [50] C. D. Ling, E. Granado, J. J. Neumeier, J. W. Lynn, and D. N. Argyriou, Phys. Rev. B. 68, 134439 (2003).
    [51] M. Hennion, F. Moussa, G. Biotteau, J. Rodriguez-Carvajal, L. Pinsard and A. Revcolevschi, Phys. Rev. Lett. 81, 1957 (1998).
    [52] G. Allodi, R. De Renzi, G. Guidi, F. Licci, and M. W. Pieper, Phys. Rev. B. 56, 6036 (1997).
    [53] G. Allodi, R. De Renzi, G. Guidi, F. Licci, and M. W. Pieper, Phys. Rev. Lett 81, 4736 (1998).
    [54] G. Papavassiliou, M. Fardis, M. Belesi, T. G. Maris, G. Kallias, M. Pissas and D. Niachos, C.Dimitropoulos, J. Dolinsek, Phys. Rev. Lett. 84, 761 (2000).
    [55] K.–Y. Choi, H. D. Zhou, P. L. Kuhns, A. P. Reyes, Naresh S. Dalal, Physic B. 405, 390 (2010)
    [55] Hong-Ying Zhai, J. X. Ma, D. T. Gillaspie, X. G. Zhang, T. Z. Ward, E. W. Plummer, J. Shen, Phys. Rev. Lett. 97, 167201 (2006).
    [56] G. Singh-Bhalla, A. Biswas, and A. F. Hebard, Phys. Rev. B. 80, 144410 (2009)
    [57] T. Nakajima, T. Tsuchiya, Y. Ueda, and T. Kumagai, Rev. B. 80, 020401 (2009)
    [58] P.–H. Xiang, H. Yamada, A. Sawa, and H. Akoh, Appl. Phys. Lett. 94, 062109 (2009).
    [59] W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102, 1413 (1956).
    [60] W. H. Meiklejohn, C. P. Bean, Phys. Rev. 105, 904 (1957).
    [61] D. Mauri, E. Kay. D. Scholl and J. K. Howard, J. Appl. Phys. 62, 2929 (1987).
    [62] A. P. Malozemoff, Phys. Rev. B. 35, 3679 (1987).
    [63] A. P. Malozemoff, Phys. Rev. B. 37, 3679 (1987).
    [64] A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988).
    [65] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997).
    [66] I. Panagiotopoulos, C. Christides, M. Pissas and D. Niarchos, Phys. Rev. B. 60, 485 (1999)
    [67] P. Prieto, M. E. Gómez, G. Campillo, A. Berger, E. Baca, R. Escudero, F. Morales, J. Guimpel, and N. Haberkorn, Phys. Stat. Sol. (a) 201, 2343 (2004).
    [68] N. Moutis, C. Christides, I. Panagiotopoulos, and D. Niarchos, Phys. Rev. B. 64, 094429 (2001)
    [69] Shilpi Karmarkar, S. Taran, Esa Bose, and B. K. Chaudhuri, Phys. Rev. B. 77, 144409 (2008).
    [70] X. H. Huang, J. F. Ding, G. Q. Zhang, Y. Hou, Y. P. Yao, X. G. Li, Phys. Rev. B. 78, 224408 (2008).
    [71] V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, D. Mogilyansky, L. Titelman, Phys. Rev. B. 77, 054410 (2008).
    [72] B. T. Xie, Y. G. Zhao, C. M. Xiong, S. Park, and W. W., Appl. Phys. Lett. 92, 232109 (2008).
    [73] B. T. Xie, Y. G. Zhao, C. M. Xiong, Appl. Phys. Lett. 93, 072112 (2008).
    [74] S. J. Zhu, J. Yuan, B. Y. Zhu, F. C. Zhang, B. Xu, L. X. Cao, X. G. Qiu, and B. R. Zhao, Appl. Phys. Lett. 90, 112502 (2007).
    [75] M. Izumi, Y. Ogimoto, Y. Okimoto, T. Manako, P. Ahmet, K. Nakajima, T. Chikyow, M. Kawasaki, and Y. Tokura, Phys. Rev. B. 64, 064429, (2001).
    [76] M. Ziese, H. C. Semmelhack, and K. H. Han, Phys. Rev. B. 68, 134444, (2003).
    [77] V. Markovich, E. S. Vlakhov, Y. Yuzhelevski, B. Blagoev, K. A. Nenkov, and G. Gorodetsky, Phys. Rev. B. 72, 134414, (2005).
    [78] S. J. Zhu, B. R. Zhao, B. Xu, B. Y. Zhu, L. X. Cao, and X. G. Qiu, J. Phys. D: Appl. Phys. 41, 215007 (2008)
    [79] M. Patra, K. De, S. Majumdar, and S. Giri, Eur. J. B. 58, 367 (2007).
    [80] K. De, M. Patra, S. Majumdar, and S. Giri,, J. Phys. D: Appl. Phys. 41, 175007 (2008)
    [81] Christian Binek, Phys. Rev. B. 70, 014421 (2004).
    [82]陈利民,新型室温磁制冷材料,北京工业大学出版社,2002.
    [83] S. M. Benford, J. Appl. Phys. 52(3), 2110 (1981).
    [84]王宝珠,温明,曹晓明,金属功能材料,7(4),24 (2000).
    [85] M. P. Annaorazov, A. S. Nikitin, L. A. Tyurin, A. K. Asatryan, J. Appl. Phys. 79, 1689 (1996).
    [86] J. HERBST, C. D. Fuerst, D. R. McMichael, J. Appl. Phys. 79, 5998, (1996).
    [87]韩鸿兴,寿卫东,低温工程, 2,13 (1991)。
    [88]张晓玲,李峰,金属材料研究,18(3), 135 (1992).
    [89] V. K. Pecharsky, A. K. Gschneidner Jr, Phys. Rev. Lett. 78, 4494 (1997).
    [90] V. K. Pecharsky, A. K. Gschneidner, Advanced Materials, 13, 683 (1999).
    [91] Z. B. Zhao, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett, 78, 1142 (1997).
    [92] Donald T. Morelli, A. M. Mance, J. V. Mantese, and A. L. Micheli, J. Appl. Phys. 79, 373 (1996).
    [93] L. E. Hueso, P. Sande, D. R. Miguéns, and J. Rivas, J. Appl. Phys. 91, 9943 (2002).
    [94] M. D. Mukadam, and S. M. Yusuf, J. Appl. Phys. 105, 063910 (2009)
    [95] M. El-Hagary, Y. A. Shoker, M. Eman-Ismail, A. M. Moustafa, A. Abd EI-Aal, A. A. Ramadam, Solid State Communications 149, 184, (2009).
    [96] N. S. Bingham, M. H. Phan, H. Srikanth, M. A. Torija, and C. Leighton, J. Appl. Phys.106, 023909 (2009).
    [97] S. Karmakar, E. Bose, S. Taran, and B. K. Chaudhuri, J. Appl. Phys. 103, 023901 (2008).
    [98] J. Yang, Y. P. Lee, Y. Li, J. Appl. Phys. 102, 033913 (2007).
    [99] M. H. Phan, S. C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).
    [100] Y. Sun, J. Kamarad, , Z. Q. Kou, and Z. H. Cheng, Appl. Phys. Lett. 88, 102505 (2006).
    [101] R. F. Yang, Y. Sun, N. L. Di, Q. A. Li, Z. H. Cheng, J. Magn. Magn. Mater. 309, 149 (2007).
    [102] S. B. Oseroff, M. Torikachvili, J. Singley, and S. Ali, Phys, Rev. B. 53, 6521 (1996).
    [103] A. Shengelaya, G. M. Zhao, H. Keller, and K. A. Müller, Phys. Rev. B. 61, 5888 (2000).
    [104] A. Shengelaya, G. M. Zhao, H. Keller, and K. A. Müller, Phys. Rev. Lett. 77, 5296 (1996).
    [105] L. S. Ling, J. Y. Fan, L. Pi, Y. Ying, S. Tan, and Y. H. Zhang, J. Phys.: Condens. Mater. 20, 125214 (2008).
    [1] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
    [2] J. Nogués, D. Lederman, T. J. Moran, and Ivan K. Schuller, Phys. Rev. Lett. 76, 4624 (1996).
    [3] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suri?ach, J.S. Mu?oz and M.D. Baró, Phys. Rep. 422, 65 (2005).
    [4] P. Miltény, M. Gierlings, M. Bamming, U. May, G. Güntherodt, J. Nogués, M. Gruyters, C. Leighton and I. K. Schuller. Appl. Phys. Lett. 75, 2304 (1999).
    [5] R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr., and S. Foner, Phys. Rev. Lett.77, 394 (1996).
    [6] Lucia Del Bianco, Dino Fiorani, Alberto M. Testa, Ennio Bonetti, and Luca Signorini. Phys. Rev. B.70, 052401 (2004).
    [7] A. Berger, O. Hovorka, G. Friedman and E. E. Fullerton, Phys. Rev. B. 78, 224407 (2008).
    [8] Shilpi Karmakar, S. Taran, Esa Bose, B. K. Chaudhuri, C. P. Sun, C. L. Huang and H. D. Yang, Phys. Rev. B. 77, 144409 (2008).
    [9] K. De, M. Patra, S. Majumdar and S. Giri, J. Phys. D: Appl. Phys. 41, 175007 (2008).
    [10] Yan-kun Tang, Young Sun and Zhao-hua Cheng, J. Appl. Phys. 100, 023914 (2006).
    [11] R. Ang, Y. P. Sun, X. Luo, C. Y. Hao, X. B. Zhu, and W. H. Song, Appl. Phys. Lett. 92, 162508 (2008).
    [13] Yan-kun Tang, Young Sun and Zhao-hua Cheng, Phys. Rev. B. 73, 174419 (2006).
    [14] Wan-ju Luo and Fang-wei Wang , Appl. Phys. Lett. 90, 162515 (2007).
    [15] D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B. 72, 174422 (2005).
    [16].T. Qian, G. Li, T. Zhang, T. F. Zhou, X. Q. Xiang, X. W. Kang, and X. G. Li, Appl. Phys. Lett. 90, 012503 (2007).
    [17] W. G. Huang, X. Q. Zhang, H. F. Du, R. F. Yang, Y. K. Tang, Y. Sun and Z. H. Cheng, J. Phys.: Condens. Matter. 20, 445209 (2008).
    [18] P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
    [19] J. J. Neumeier and D. H. Goodwin, J. Appl. Phys. 85, 5591 (1999).
    [20] J. J. Neumeier and J. L. Cohn, Phys. Rev. B. 61, 14319 (2000).
    [21] C. D. Ling, E. Granado, J. J. Neumeier, J. W. Lynn, and D. N. Argyriou, Phys. Rev. B. 68, 134439 (2003).
    [22] M. Pissas and G. Kallias, Phys. Rev. B. 68, 134414 (2003); M. Pissas, G. Kallias, M. Hofman, and D. M. T?bbens, Phys. Rev. B. 68, 064413 (2002).
    [23] El′ad N. Caspi, Maxim Avdeev, Simine Short, James D. Jorgensen, Maxim V. Lobanov, et al.,Phys. Rev. B. 69, 104402 (2004)
    [24] S.-W. Cheong and H.Y. Hwang, in Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon and Breach, London, 1999).
    [25] F. Rivadulla, M. A. López-Quintela and J. Rivas, Phys. Rev. Lett. 93, 167206 (2004).
    [26] Wei Bao, J. D. Axe, C. H. Chen and S-W. Cheong, Phys. Rev. Lett. 78, 543 (1997).
    [27] M. Patra, S. Majumdar, S. Giri, Solid State Communications. 149, 501 (2009).
    [28]黄晓桦,2010,La1-xCaxMnO3体系的交换偏置效应及铁磁团簇玻璃态行为[D]: [博士] .合肥:中国科学技术大学.
    [29] Geshev. J, J. Magn. Magn. Mater. 320, 600 (2008)
    [30] M. Patra, M. Thakur, S. Majumdar and S. Giri, J. Phys.: Condens. Matter. 21, 236004 (2009).
    [31] N. Moutis, C. Christides, I. Panagiotopoulos, and D. Niarchos, Phys. Rev. B. 64, 094429 (2001).
    [32] X. H. Huang, J. F. Ding, G. Q. Zhang, Y. Hou, Y. P. Yao, and X. G. Li, Phys. Rev. B. 78, 224408 (2008).
    [33] Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
    [34] R. H. Kodama and A. E. Berkowitz, Phys. Rev. B. 59, 6321 (1999).
    [35] A. P. Malozemoff, Phys. Rev. B. 35, 3679 (1987).
    [36] K. Moorjani and J. M. D. Coey, Magnetic Glasses (Elsevier, Amsterdam, 1984).
    [37] M. Gruyters, Phys. Rev. B. 79, 134415 (2009).
    [38] Steven Brems, Kristiaan Temst and Chris Van Haesendonck, Phys. Rev. Lett. 99, 067201 (2007).
    [39] D. Paccard, C. Schlenker, O. Massenet, R. Montmory, and A. Yelon, Phys. Status Solidi 16, 301 (1966).
    [40] Christian Binek, Phys Rev. B. 70, 014421 (2004).
    [41] M. Patra, K. De, S. Majumdar and S. Giri, Eur. Phys. J. B. 58, 367 (2007).
    [42] J. Q. Zao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992).
    [43] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Yuong, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, G. Thomas, Phys. Rev. Lett. 68, 3745 (1992).
    [1] W. F. Giauque, D. P. MacDougall, Phys. Rev. 43, 768 (1933).
    [2] Manh-Huong Phan, Seong-Cho Yu, Yoon-Hee Jeong, J. Appl. Phys. 96, 1154 (2004).
    [3] E. Bruck, J. Phys. D: Appl. Phys. 38, R381 (2005).
    [4] F. X. Hu, B. G. Shen, J. R. Sun, G. H. Wu, Phys. Rev. B. 64, 132412 (2001).
    [5] Q. Tegus, E. Bruck, K. H. Buschow, F. R. de BOER, Nayure 415, 150 (2002).
    [6] W. Zhong, W. Cheng, W. P. Ding, N. Zhang, A. Hu, J. Magn. Magn. Mater. 195, 112 (1999).
    [7] Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, D. Feng, Phys. Rev. Lett. 78, 1142 (1997).
    [8] J. Mira, J. Rivas, L. E. Hueso, F. Rvadulla, M. A. Lopez Quintela, J. Appl. Phys. 91, 8903 (2002).
    [9] N. Chau, H. N. Nhat, N. H. Luong, D. L. Minh, N. D. Tho, N. N. Chau, Phsica B 327, 270 (2003).
    [10] J. Geck, B. Büchner, M. Hücker, R. Klingeler and R. Gross, Phys. Rev. B. 64, 144430 (2001)
    [11] J. Z. Liu, Y. X. Jia, P. Klavins and R. N. Shelton, J. Downey and D. J. Lam, J. Cryst. Growth, 109, 432 (1991).
    [12]周贵恩,聚合物射线衍射,中国科学技术大学出版社,1989.
    [13] V. K. Pecharsky and K. A. Gschneidner. Jr., J. Magn. Magn. Mater. 200, 44 (1999).
    [14] R. F. Yang, Y. Sun, N. L. Di, Q. A. Li, Z. H. Cheng, J. Magn. Magn. Mater. 309, 149 (2007)
    [15] W. Zhong, W. Cheng, W. P. Ding, N. Zhang, Y. W. Du, Q. J. Yan, Solid State Commun. 106, 55 (1998).
    [16] T. Tang, K. M. Gu, Q. Q. Cao, D. H. Wang, S. Y. Wang, S. Y. Zhang, Y. W. Du, J. Magn. Magn. Mater. 222, 110 (2000).
    [17] D. T. Morelli, A. M. Mance, J. V. Mantese, A. L. Micheli, J. Appl. Phys. 79, 373 (1996).
    [18] N. H. Luong, D. T. Hanh, N. Chua, N. D. Tho, T. D. Hiep, J. Magn. Magn. Mater. 290, 690 (2005).
    [19] M. H. Phan, S. B. Tian, S. C. Yu, A. N. Ulyanov, J. Magn. Magn. Mater. 256(2003), 306.
    [20] A. Wang, G. Cao, Y. Liu, Y. Long, Y. Li, Z. Feng, J. H. Ross Jr., J. Appl. Phys. 97(2005), 103906.
    [21] A. Rebello, R. Mahendiran, Appl. Phys. Lett. 93(2008), 232501.
    [22] Young Sun, M. B. Salamon, S. H. Chn, J. Appl. Phys. 92(2002), 3235.
    [23] I. S. Lee, Phys. Status Solidi B 241(2004), 1756.
    [1] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
    [2] A. Moreo, S. Yunoki and E. Dagotto, Science. 283, 2034 (1999).
    [3] A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun and E. E. Fullerton, J. Phys. D: Appl. Phys, 35, R157 (2000).
    [4] C. Zener, Phys. Rev. 81, 440 (1951).
    [5] G. P. De Gennes, Phys. Rev. 118, 141 (1960).
    [6] A. J. Millis, Boris I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
    [7] T. Mizokawa, I. D. Khomskii and A. G. Sawatzky, Phys. Rev. B. 63, 24403 (2001).
    [8] E. Dagotto, T. Hotta and A. Moreo, Phys. Rep. 344, 1 (2001).
    [9] V. Moshnyaga, L. Sudheendra, O. I. Lebedev, et al., Phys. Rev. Lett. 97, 107205 (2006).
    [10] N. D. Mathur and P. B. Littlewood, Solid State Commun. 119, 271 (2001).
    [11] J. M. D. Coey, M. Vriet and M. Molnar, Adv. Phys. 48, 167 (1999).
    [12] D. N. H. Nam, N. V. Dai, T. D. Thanh, L. T. C. Tuong, L. V. Hong and N. X. Phuc, Phys. Rev. B. 77, 224420 (2008).
    [13] T. S. Zhao, W. X. Xianyu, B. H. Li, Z. N. Qian, Journal of Alloys and Compounds. 459, 29-34 (2008).
    [14] Z. B. Yan, S. Dong, K. F. Wang, C. L. Lu, H. X. Guo and J. M. Liu, Phys. Rev. B. 104, 013916 (2008).
    [15] K. H. Ahn, X. W. Wu, K. Liu and C. L. Chien, J. Appl. Phys. 81, 5505 (1997).
    [16] J. W. Cai, C. Wang, B. G. Shen, J. G. Zhao ang W. S. Zhan, Appl. Phys. Lett. 71, 1227 (1997).
    [17] S. M. Yusuf, M. Sahana, K. D?rr and K. H. Müller, Phys. Rev. B. 62, 1118 (2000).
    [18]裘祖文,电子顺磁谱,科学出版社,1980.
    [19] Y. L. Chang, et al., Appl. Phys. Lett. 82, 1721 (2003)
    [20] A. Shengelaya, Guo-meng Zhao, H. Keller and K. A. Müller, Phys. Rev. Lett. 77, 5296 (1996).
    [21] K. Kawasaki, Prog. Theor. Phys. 39, 285 (1967)
    [22] S. Harkrishnan, C. M. Naveen Kumar, S. S. Rao, H. L. Bhat and Sujia Elizabeth, J. Appl. Phys. 104, 023902 (2008).
    [23] E. Granado, N. O. Moreno, H. Martinho, A. García, J. A. Sanjurjo, I. Torriani, C.Rettori, J. J. Neumeier and S. B. Oseroff, Phys. Rev. Lett. 86, 5385 (2001).
    [24] Janhavi. P. Joshi, K. Vijaya Sarathy, A. K. Sood, S. V. Bhat and C. N. R. Rao, J. Phys.:Condens. Matter. 16, 2869 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700