用户名: 密码: 验证码:
谐振耦合式电能无线传输系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年初,美国麻省理工学院的科研人员利用电磁谐振耦合原理,使用两个相距2米的铜线圈,成功地通过非接线的方式将能量传送给一个功率为60瓦的电灯泡,从而掀起了研究电能无线传输技术的热潮。
     谐振耦合式电能无线传输技术作为一种新型的电能传输技术,利用电磁谐振耦合原理,该技术综合应用高频逆变技术、谐振补偿技术、谐振耦合技术、高频整理滤波稳压技术等等,通过两个具有相同谐振频率的线圈产生高频交变耦合磁场实现电能在一定距离范围内传输。相对于传统的接线式电能传输技术,该技术更加灵活、安全、可靠,能实现供电设备和用电设备之间的中程距离电能传输,具有无方向性、穿透性强等优点。
     由于目前谐振耦合式电能无线传输技术仍处于发展起步阶段,国内对其理论分析和试验研究还不成熟,且影响系统传输特性的因素太多,在传输功率、传输效率和传输距离上离实际应用还有差距,为保证系统达到较好的传输效果,需要综合考虑系统各环节的选型与设计,分析各参数对传输特性的影响。
     基于此,本文详细的介绍了谐振耦合式电能无线传输系统主要环节的选型与设计,通过实验对比分析各参数对系统传输功率、传输效率和传输距离的影响,并制作试验样机进行验证。
     本文主要完成了以下内容:
     1.介绍了目前主要几种电能无线传输技术(包括电磁感应式、微波式、谐振耦合式)的国内外研究现状。针对目前国内相关理论和实验研究欠缺的现状,阐述了本文的研究目的和意义以及研究的主要内容。
     2.从物理学的角度阐述了谐振耦合式电能无线传输系统,将系统发射的电磁场划分为近区磁场和远区磁场。然后介绍谐振耦合式电能无线传输系统的工作原理和系统结构,分析涉及系统的关键技术:高频逆变技术、谐振补偿技术、谐振耦合技术、整流滤波技术。
     3.详细介绍了谐振耦合式电能无线传输系统各主要电路的选型与设计,并给出系统每部分的设计指导措施。
     4.主要通过对比实验来分析研究,分析了影响系统传输功率与传输效率的有关因素,对影响传输距离的各因素进行了实验研究分析。
     5.通过LTspice软件对系统发射端进行仿真分析,为具体器件选型提供直接依据。对第一阶段小型样机进行分析研究和实验测试,找出制约传输距离和传输效率的原因。第二阶段试验样机在第一阶段样机的基础上进行改进,预计能达到较好效果。最后设计了谐振耦合式电能无线传输驱动小型电机系统,并进行穿透性实验,实验结果验证了样机的可行性。
In2007,the Massachusetts institute of technology's scientists using electronmagnetic resonance principle,use two apart2meters of copper wire circle,successfully through wireless transmission light electric energy to power a60watt light bulb,thus raised the research wireless transmission of power technology boom.
     Resonance coupling is a new technology for wireless power transmission,which using the electromagnetic resonance coupling principle,this technology integrated application of high frequency inverter technology,resonant compensation technology,resonance coupling technique,high frequency voltage finishing filtering technology and so on,through the two have same resonance frequency of the coil produce high frequency magnetic alternating coupling realize power at a distance transmission range.Compared with the traditional connection type electric power transmission technology,this technology is more flexible,safe,reliable,can realize the power supply equipment and electric equipment of intermediate distance between power transmission,have no direction,through the gender is strong,etc.
     Because the present resonance coupling wireless power transmission technology is still in the initial stage of development,the domestic relevant theoretical analysis and experimental research is still relatively lack,and influence factors of the system transmission characteristic too much,the transfer of the power transmission efficiency and transmission,the distance from the practical application and gap,to ensure that the system to achieve good transmission effect,takes into account system of each section of type selection and design,analysis parameters on the effect of the transmission characteristics.
     Based on this,this paper introduces the resonance coupling wireless power transmission system of main link type selection and design,through the contrast analysis parameters on the system transmission power,transmission efficiency and the effect of the transmission distance,and production test mode is verified.
     This paper mainly completed the following content:
     1.This paper introduces the current several main power wireless transmission technology(including electromagnetic induction type,microwave type,resonance coupling type)at home and abroad and the research status.According to the current domestic related theory and the experimental research on the present situation of lacking,in this paper,this paper studies the purpose and the significance and the main contents.
     2.From the aspects of physics resonance coupling wireless power transmission system,the system emit electromagnetic fields is divided into the the near and far magnetic filed area.And then introduced resonance coupling wireless transfer system principle and system structure,and analyzes the key technologies involved system:high frequency inverter technology,resonant compensation technology,resonance coupling technique,rectifier filtering technology.
     3.Detailed introduces the resonance coupling wireless power transmission system and the main circuit of the selection of the design,and every part of the system is given general design guiding measures.
     4.Main through the contrast experiment to analysis,this paper analyzes the influence of power and the transmission efficiency of transmission system of relevant factors,the effect factors of the transmission distance experimental analysis.
     5.Through the LTspice software to launch the system simulation analysis for specific provide direct basis for the selection of the instruments.The first stage we analysis and test on small prototype,and find out the restricted the transmission distance and the cause of the transmission efficiency.The second stage test model in the first phase of the prototype based on improved,expected to achieve good results.Finally the resonant design of wireless transmission coupling power drive small motor system,and through experiment,the experimental results verify the feasibility of the prototype.
引文
[1]Aristeidis Karalis, J.D. Joannopoulos, Marin Soljacic. Efficient wireless non-radia tive mid-range energy transfer[J].Annals of physics,2008,323(1):34-38.
    [2]Andre Kurs,Aristeidis Karalis,Robert Moffatt,et al.Wireless power transfer via strongly couples magnetic resonances[J].Science,2007(317):83-86.
    [3]傅文珍,张波,丘东元等.自谐振线圈耦合式电能无线传输的最大效率分析与设计[J].中国电机工程学报,2009,29(18):21-26.
    [4]戴卫力,费峻涛,肖健康等.无线电能传输技术综述及应用前景[J].电气技术,2010,7:1-6.
    [5]Green A W,Boys J T.lOkHz inductively coupled power transfer-concept and control[C].5th International Conference on Power Electronics and Variable-Speed Drives,1994:694-699.
    [6]毛赛君.非接触感应电能传输系统关键技术研究[D].南京:南京航空航天大学,2006:2.
    [7]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56-59.
    [8]韩腾,卓放,刘淘等.可分离变压器实现的非接触电能传输系统研究[J].电力电子技术,2004,38(5):28-30.
    [9]韩腾,卓放,王兆安等.非接触电能传输系统频率分岔现象研究[J].电工电能新技术,2005,24(2):44-47.
    [10]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [11]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术,2005,24(3):5-8.
    [12]武瑛,严陆光,徐善纲.新型无接触能量传输系统[J].变压器,2003,40(6):1-5.
    [13]Chwei S W,Oskar H S,Grant A C.Design considerations for a contactless electric vehicle battery charger.IEEE Transactions on Industrial Electronics,2005,52(5):1308-1314.
    [14]P.E.Glaser.Power from the sun:its future[J].Science,1968:857-861.
    [15]W.C.Brown.The history of power transmission by radio waves[J].Trans. of microwave theory and techniques,1984,26-32.
    [16]吴嘉迅,吴俊勇,张宁等.基于磁耦合谐振的无线能量传输的实验研究[J].现代电力,2012,29(1):24-28.
    [17]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆:重庆大学,2010.
    [18]Avraham Klein,Nadav Katz. Strong coupling optimization with planar spiral resonators[J].2011,1-4.
    [19]黄俊博.ICPT系统频率稳定性分析及耦合传输功率研究[D].重庆:重庆大学,2010.
    [20]D.A.G.Pedder,A.D.Brown,J.A.Skinner.A contactless electrical energy transmission system.EEEE Transactions On Idustrial Electonics.1999,February,Vol.46:23-30.
    [21]Fumihiro Sato,Takashi Nomoto,Genki kano,Hidetoshi Matsuki,and Tadakuni Sato.A new contactless power-Signal transmission device for implanted functional electrical stimulation(FES)[J].IEEE Transactions on magnetics,2004,40(4):2964-2966.
    [22]朱军峰.非接触电能传输系统拾取技术研究[D].重庆:重庆大学,2009.
    [23]王小霞.非接触电能传输系统控制技术研究与实现[D].重庆:重庆大学,2009.
    [24]Nathan O.Sokal,Alan D.Sokal.Class E-A new single-ended class of high-efficiency tuned switching power amplifiers[J].IEEE Journal of solid-state circuits,1975,10(3):168-176.
    [25]江伟雄,刘修泉,黄平.基于IPT的无线能量传输系统的仿真分析[J].系统仿真学报,2010,22(4):1060-1063.
    [26]张青.谐振耦合式无线输电多载系统建模及特性研究[D].广州:华南理工大学,2011.
    [27]陆洪伟.谐振式强磁耦合无线能量传输及其在民用电安全方面的应用[J].低压电器,2011(24):25-29.
    [28]曲丽楠.磁耦合谐振式无线能量传输机理的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [29]朱允中,蒲玲,曾海强,黎英龙,沈韩.利用开关电路驱动的小功率高效无线能量传输系统[J].中山大学学报,2009,48(2):228-230.
    [30]王天宇.基于松耦合变压器的大功率感应电能传输技术研究[D].哈尔滨:哈尔滨工业大学,2010.
    [31]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报,2008,28(3):119-124.
    [32]Eun-Soo Kim,Hwan-Kook Song,Joo-Hun Kim,et al.Efficiency characteristics of a half-bridge series resonant converter for the contact-less power supply[C].Twenty-Third Annual IEEE Power Electronics Conference and Exposition,2008:1555-1561.
    [33]林宁,姚缨英.恒压输出的无线电能传输系统设计[J].电力电子技术,2011,45(2):66-68.
    [34]李正中.无接触电能传输中最大功率点的控制的研究[D].重庆:重庆大学,2007.
    [35]Ayano H,Yamamoto K,Hino N,et al.Highly efficient contactless electrical energy transmission system[C].Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society,2002,2:1364-1369.
    [36]马官营,颜国正,何秀.基于电磁感应的消化道内系统的无线供能[J].上海交通学报,2008,42(5):798-802.
    [37]马官营,颜国正.基于电磁感应的消化道内微系统无线能量传输问题研究[J].生物医学工程学杂志,2008,25(1):61-64.
    [38]刘修泉,曾昭瑞,黄平.空心线圈电感的计算与实验分析[J].工程设计学报,2008,15(2):149-153.
    [39]沈锦飞,惠晶,吴雷.E类高频谐振式DC/AC变换器[J].电力电子技术,2002,36(2):4-6.
    [40]Rafif E.Hamam,Aristeidis Karalis.Coupled-mode theory for general free-space resonant scattering of waves[J].The American physical society,2007,1-5.
    [41]黄辉,黄学良,谭林林等.基于磁场谐振耦合的无线电力传输发射机接收装置的研究[J].电工电能新技术,2011,30(1):32-35.
    [42]Ayano H,Nagase H,Inaba H.A highly efficient contactless electrical energy transmission system[J].Electrical Engineering in Japan,2004,148(1):66-74.
    [43]J.de Boeij, E.Lomonova,J.L. Duarte, A.J.A, Vandenput.Contactless power supply for moving sensors and actuators in high-precision mechatronic systems with long-stroke power transfer capability in x-y plane[J].Sensors and Actuators,2008,148:319-328.
    [44]Li H L,Hu A P,Covic G A,et al.Optimal coupling condition of IPT system for achieving maximum power transfer[J].Electronics Letters,2009,45(1):76-77.
    [45]马官营,颜国正,于连芝等.人体消化道内微机电系统线圈耦合系数分析[J].北京生物医学工程,2006,25(5):487-489.
    [46]Ho W C,Pong M H.Power loss and efficiency analysis of quasi-resonant converters[C].Proceedings of the Industrial Electronics,Control,and Instrumentation.1993:842-847.
    [47]Boy J T,Covic G A,Green A W.Stability and control of inductively coupled power transfer systems[J].IEEE Proceedings:Electric Power Applications 2000,147(1):37-43.
    [48]Byungcho C,Jaehyun N,Honnyong C,et al.Design and implementation of low-profile contactless battery charger using planar printed circuit board wingings as energy transfer device[C].IEEE Transaction on Industrial Electronics.2004,51(1):140-147.
    [49]Grover F W.Inductance calculations[M].New York:Courier Dover Publication 2004:88-93.
    [51]傅文珍,张波,丘东元.频率跟踪式谐振耦合电能无线传输系统研究[C].第三届中国高校电力电子与电力传动学术年会,北京,2009,4.
    [52]李贵强.非接触电能传输系统功率传输和控制研究[D].郑州:郑州大学,2009.
    [53]Tang C S,Sun Y,Su Y G,et al.Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system[J].IEEE Transactions on power Electronics,2009,24(1-2):416-425.
    [54]严沁.感应耦合能量传输系统关键技术的研究[D].上海:东华大学,2010.
    [55]张宇帆.非接触感应耦合电能传输系统的优化分析与频率跟踪控制[D].重庆:重庆大学,2011.
    [56]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2005,12.
    [57]潘冬婷.无接触电能传输系统的设计与实现[D].大连:大连理工大学,2010.
    [58]刁寅亮.产生均匀磁场的无线充电平台中初级线圈结构设计[D].北京:北京邮电大学,2011.
    [59]Takei,Ken.Use of adaptive reactance control in optimum antenna design for transmitting power in near-mid ranges[C].APMC 2009-Asia Pacific Microwave Conference,2009:1829-1832.
    [60]吴素文.空心圆柱线圈的电感计算[D].郑州:郑州大学,2003.
    [61]曹玲玲.自激式非接触谐振变换器的初步研究[D].南京:南京航空航天大学,2011.
    [62]张巍.人体植入式非接触电能传输系统的研究[D].南京:南京航空航天大学,2010.
    [63]何秀,颜国正,马官营.互感系数的影响因素及其对无线能量传输系统效率的影响[J].测控技术,2007,26(11):57-60.
    [64]李杨.三维无线能量传输技术在体内微机电系统中的实验研究[D].广州:华南理工大学,2011.
    [65]刘宿城,周雒维.近场磁谐振耦合能量传输系统的建模与分析[J].电源学报,2011(1):51-55.
    [67]傅文珍,张波,丘东元.基于谐振耦合的电能无线传输系统设计[J].机电工程,2011,28(6):746-749.
    [68]王敬苗.用于无线能量传输的高频电流测量技术研究[D].哈尔冰:哈尔滨工业大学,2010.
    [69]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术,2005,24(3):5-8.
    [70]Andre Kurs, Robert Moffatt, Marin Soljacic. Simultaneous mid-range power transfer to multiple devices[J].Applied physics letters,2010,96(4):044102-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700