用户名: 密码: 验证码:
磁耦合谐振式无线能量传输机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用电设备以非接触方式从固定电网获取电能的技术称为无线能量传输技术,用电设备与电源无电气连接,因此无线供电具有良好的安全性和便捷的使用方式等优点。
     与非接触感应式充电技术相比,磁耦合谐振式无线能量传输的传输距离更有优势;与电磁波形式的无线能量传输技术相比,磁耦合谐振式无线能量传输具有无敏感的方向性、无辐射等优点。
     本论文对磁耦合谐振式无线能量传输系统进行了研究,分析了系统的构成、工作原理、能量传输过程以及该过程中应遵循的准则;利用耦合模公式建立磁耦合谐振式无线能量传输系统的数学模型,并通过实验验证模型的正确性。
     研究了不同类型干扰源对磁耦合谐振式无线能量传输系统的影响,干扰源主要分为负载类干扰源与有源干扰源;分别从位置、大小、谐振频率三个角度研究了负载类干扰源与干扰度的关系;研究了有源干扰源发射不同频率电磁场/电磁波时对传输系统的影响。
     在对系统性能研究的基础上,针对具体的负载阻抗,以指定传输距离和传输功率为前提,提出了磁耦合谐振式无线能量传输系统的设计方案;在Matlab软件中编写程序执行设计方案,输入负载阻值、负载功率、传输距离,输出建议的传输系统参数:谐振频率、电源电压、线圈尺寸等;并举例进行了实验验证。
The technology of electrical equipment obtaining power from grid with non-contact way is wireless power transfer. Because there is no electrical connection between power source and load, the advantages of wireless power transmission are safety and convenience, etc.
     Compared with non-contact inductive charging, the distance of wireless power transfer based on magnetic resonances is longer; Compared with microwave power transmission, wireless power transfer based on magnetic resonances is omni-directional and nonradiative power transfer.
     In this paper, wireless power transfer based on magnetic resonances is developed, system structure, principle, process of power transmission as well as constraint equation in the process are analyzed. Theoretical model of the wireless power transfer is built used coupling-mode equations, and correctness of the model is verified experimentally.
     The interference on wireless power transfer is analyzed, including passive jamming and active jamming. The relationship between passive interference source and disturbance degree is studied according on different aspects, including position, size and resonance frequency. The effect of electromagnetic field emitted from active jamming with different frequency on wireless power transfer system is studied.
     On the basis of the study on the performance of the system, the design of wireless power transfer based on magnetic resonances is proposed for concrete load with given transfer distance and efficiency as higher as possible. Programming in Matlab, load impedance, transfer power and distance is input, and design parameters of the system is output, including resonance frequency, supply voltage and coil size, and so on. A design example is given also.
引文
1苏青,吴晓琦,田若松. 30项引领未来的科学技术.未来与发展. 2008, 29(8):44~48
    2 N. Tesla. Apparatus for transmitting electrical energy. U.S. patent number 1, 119, 732. 1914, December
    3 A. S. Marincic. Nikola Tesla and the Wireless Transmission of Energy. IEEE Transactions on Power Apparatus and Systems. 1982, October, PAS-101:4064~4068
    4 L. Cao, H.T. Wang, G. Li. A New High Voltage High Frequency Power Supply Using Tesla Transformer. Power and Energy Engineering Conference (APPEEC),2010 Asia-Pacific. 2010, March:1~4
    5 A. Kurs, A. Karalis, R. Moffatt. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science. 2007, July, Vol. 317:83~86
    6 G. Leyh, M. Kennan. Efficient Wireless Transmission of Power Using Resonators with Coupled Electric Fields. Power Symposium,2008. NAPS’08. 40th North Amercian. 2008 September:1~4
    7 D. A. G. Pedder, A. D. Brown, J. A. Skinner. A Contactless Electrical Energy Transmission System. IEEE Transactions On Industrial Electonics. 1999, February, Vol. 46:23~30
    8 W. BROWN. Status of the Microwave Power Transmission Components for the Solar Power Satellite. IEEE Transactions on Microwave Theory and Techniques. 1981, 29(12):1319~1327
    9 W. C. Brown. The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 1984, Vol. 32:1230~1242
    10 A. Karalis, J. D. Joannopoulos, M. Solja?i?. Efficient wireless non-radiative mid-range energy transfer. ANNALS of PHYSICS. 2007, April:45~56
    11 R. E. Hamam, A. Karalis, J.D. Joannopoulos. Efficient weakly-radiative wireless energy transfer: An EIT-like approach. ANNALS of PHYSICS. 2009, May:34~44
    12 A. Kurs, R. Moffatt, M. Solja?i?. Simultaneous mid-range power transfer to multiple devices. APPLIED PHYSICS LETTERS. 2010, January:23~30
    13 T. Imura, H. Okabe, Y. Hori. Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings. Vehicle Power and Propulsion Conference 2009 IEEE. 2009, Septermber:936~940
    14傅文珍,张波,丘东元.频率跟踪式谐振耦合电能无线传输系统研究.第三届中国高校电力电子与电力传动学术年会.北京. 2009,4
    15张小壮.用于无线能量传输的高频电流测量技术研究.哈尔滨工业大学硕士学位论文. 2009,7
    16任立涛.磁耦合谐振式无线能量传输功率特性及其测试系统研究.哈尔滨工业大学硕士学位论文. 2009,7
    17朱允中,蒲岭,曾海强.利用开关电路驱动的小功率高效无线能量传输系统.中山大学学报(自然科学版). 2009,7
    18 Y. Tak, J. Park, S. Nam. Mode-Based Analysis of Resonant Characteristics for Near-Field Coupled Small Antennas. Antennas and Wireless Propagation Letters, IEEE. 2009, November:1238~1241
    19 H. A. Haus. Waves and Fields in Optoelectronics. Prentice-Hall, New Jersey. 1984
    20冯慈璋,马西奎主编.工程电磁场导论.高等教育出版社,北京. 2005,12
    21刘修泉,曾昭瑞,黄平.空心线圈电感的计算与实验分析.工程设计学报. 2008,4
    22吴素文.空心圆柱线圈的电感计算.郑州大学硕士学位论文. 2003,5
    23马西奎.电磁场理论与应用.西安交通大学出版社,西安. 2000,1
    24 Stratton J.A.电磁理论.方能航译.科学出版社,北京. 1992
    25 B. L. Cannon, J. F. Hoburg, D. Stancil. Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers. IEEE TRANSACTIONS ON POWER ELECTRONICS. 2009, JULY, Vol. 24
    26 V. Christianto, F. Smarandache. A Note on Computer Solution of Wireless Energy Transmit. PROGRESS IN PHYSICS. 2008, January
    27路宏敏编著.工程电磁兼容.西安电子科大出版社,西安. 2003
    28 D.A.Weston.电磁兼容原理与应用.王守三译.机械工业出版社,北京. 2006
    29刘国强,赵凌志,蒋继娅编著. Ansoft工程电磁场有限元分析.电子工业出版社,北京. 2008,8
    30张志涌编著. MATLAB教程.北京航天航空大学出版社,北京. 2006,8
    31 F. O. M. Arruda, W. L. G. Eller, M. A. O. Schroeder. Calculation of the electromagnetic field irradiated by linear antennas considering the soil resistivity influence. Antennas and Propagation Society International Symposium 2006, IEEE. 2006, July
    32 X. Y. Ren, J. F. Ma, L. Y. Zhang. Operator theory for solving the eigenvalueproblem of electromagnetic field. Microwave Conference Proceedings, 1997. APMC '97, 1997 Asia-Pacific. 1997, December:2~5
    33 C. X. Yang, K. P. Liu, D. X. Wang. Harmonic Resonance Circuit's Modeling and Simulation. Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific. 2009, March
    34葛松华.通以交变电流的长直螺线管内部磁场和电场的分布.物理与工程. 2003, Vol. 13, No. 6
    35吴卫民,余燕忠.场论说给出长直螺线管复阻抗率的计算.泉州师范学院学报(自然科学). 2006, March, Vol. 24, No. 2
    36丁少春,朱石坚,刘凯.双振子系统的瞬态统计能量分析.武汉理工大学学报(交通科学与工程版). 2009 April, Vol. 33, No. 2
    37 C. B. Zhu, C. L. Yu, K. Liu. Research on the topology of wireless energy transfer device. Vehicle Power and Propulsion Conference, 2008. VPPC’08. IEEE. 2008
    38 C. B. Zhu, K. Liu, C. L. Yu. Simulation and experimental analysis on wireless energy transfer based on magnetic resonances. Vehicle Power and Propulsion Conference, 2008. VPPC’08. IEEE. 2008
    39樊华,郑小林,皮喜田.一种用于体内诊疗装置的无线能量传输方案.北京生物医学工程. 2004, 03:168~170
    40张海澜编著.理论声学.高等教育出版社,北京. 2007
    41 IEEE Std C95.1-2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300GHz(IEEE, Piscataway, NJ, 2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700