用户名: 密码: 验证码:
金纳米与磁纳米颗粒及其复合物的生物传感和细胞成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米颗粒具有独特的表面等离子体共振(surface plasmon resonance, SPR)吸收和散射性质,已被广泛用于生物传感、细胞成像及癌症治疗等生物化学领域。而磁纳米颗粒(MNPs),尤其是超顺磁性四氧化三铁(Fe304)纳米颗粒,也在磁分离、磁驰豫开关、磁治疗以及核磁共振成像(MRI)等生物医学领域引起了人们广泛关注。近年来,复合纳米材料,特别是核壳结构的纳米材料,由于其能克服单一材料存在的稳定性差、修饰较难、功能单一等缺陷,还能复合各种材料的性能,因而具有独特的优良性质。其中,金纳米包覆磁性纳米复合颗粒(Fe3O4@Au)合成简单、易修饰,且具有SPR和磁性双重性质,体现了巨大的应用潜力,已经逐渐成为人们研究的焦点。然而,这些纳米材料的应用仍存在一些问题,例如生物分子如何有效调控金属纳米颗粒SPR性质,使其能更好的应用于生物传感以及疾病诊断和治疗?纳米材料在细胞膜表面是否具有防御病毒功能?多功能纳米材料已有很多报道,但很少能集靶向、多模式成像及多治疗手段于一身。基于此,针对上述存在的问题,本文以金纳米颗粒(AuNPs)、MNPs、以及Fe3O4@Au复合纳米颗粒为代表,拓宽了其在生物传感的应用,分析了生物分子如何有效调控金属纳米颗粒等离子共振性质,以进一步用于癌细胞成像与治疗,并考察了纳米材料修饰的细胞膜是否具有防御病毒功能。具体的研究内容包括以下两部分:
     第一部分:基于AuNPs与MNPs在生物传感中的应用。利用AuNPs的SPR吸收性质,以正电AuNPs为探针实现了可视化检测三磷酸腺苷(ATP)与碱性磷酸酶(ALP);将核酸适配体aptamer)的高选择性与MNPs磁性分离的性质结合,利用银纳米颗粒(AgNPs)的SPR散射性质,建立了高灵敏、高选择性地测定溶菌酶(lysozyme)的方法。考察了生物分子如何有效调控贵金属纳米颗粒SPR性质。具体工作如下:
     1.ATP诱导正电AuNPs聚集的光学性质研究及定量检测ATP。实验发现,通过调节ATP浓度,可以有效调控AuNPs在可见区的SPR吸收性质。提出了ATP与AuNPs的作用主要通过两种方式:首先是ATP的磷酸根与AuNPs表面阳离子表面活性剂之间的静电作用,其次是金原子与ATP含N碱基之问的配位作用。基于AuNPs的SPR吸收用于定量检测ATP,方法简单、成本较低、耗时较短、选择性好,检测限达到0.82μM。进一步实验发现,ATP的类似物包括GTP, UTP, CTP, ADP,AMP等,诱导AuNPs聚集程度各不相同,由此可建立了一种简单的可视化分析方法区分ATP类似物。
     2.ALP经过脱磷酸化反应使ATP转化为腺苷,建立了一种基于AuNPs的免标记可视化方法检测ALP。该方法的检测范围可以通过加入金属离子动态调节,加入Ca2+或Pb2+可以使其线性范围从100-600unit/L分别调节至5.0-100unit/L及0.2-20unit/L,灵敏度得到极大提高。该方法具有高选择性、高灵敏度、检测范围动态可调的优点,用于检测人血清样品中ALP含量,与临床结果一致。
     3. Aptamer偶联MNPs用于lysozyme的富集与高灵敏分析检测。建立了一种基于MNPs与aptamer作为高选择性的分离富集载体,AgNPs作为散射信号探针的方法用于检测lysozyme。首先利用MNPs与aptamer偶联复合物特异性分离并富集lysozyme,再根据其正电荷性质,可与柠檬酸根包被的AgNPs通过静电作用结合,磁性分离上清液中AgNPs强烈的表面等离子共振散射光降低,可用于定量分析lysozyme。磁性分离下层吸附的AgNPs具有强烈的暗场散射光,可用暗场敞射成像对lysozyme进行半定量分析。方法结合了aptamer的高选择性以及lysozyme带正电荷的两个性质,为测定lysozyme设下双重开关,能提高方法的选择性及测定结果的准确性。以具有强散射信号的AgNPs作为信号探针,可以提高方法灵敏度,检测限可低至0.1nM。该方法设计具有普遍适用性,对于复杂样品的测定具有重要意义。
     第二部分:MNPs与Fe3O4@Au复合纳米颗粒在细胞成像中的应用。首先,以MNPs为例,考察了在细胞膜表而构建“铁笼子”是否具有防御病毒入侵的功能,拓宽了磁纳米材料在细胞成像及生物医学方而的应用。其次,我们结合了Au与Fe3O4各自优越的性能,制备成复合纳米颗粒,修饰靶向配体,构建了Fe3O4@Au多功能纳米材料用于癌细胞的靶向多模式成像与治疗。具体工作如下:
     1.细胞膜表面构建“铁笼子”用于抗病毒入侵。本文使用人喉癌上皮细胞(HEp-2),探讨了细胞膜外形成网状“铁笼子”是否能抑制呼吸道合胞病毒(RSV)的感染。MNPs可通过链霉亲和素与生物素的特异性反应吸附到细胞膜表面,利用颗粒表面修饰DNA的多价效应,通过杂交形成网状“铁笼子”,期望达到抑制病毒入侵的效果。实验采用扫描电镜(SEM)证实了“铁笼子”在细胞膜表面形成。其具有良好的生物相容性,能在一定程度上防御病毒侵染细胞。当病毒侵染MOI值为2时,有“铁笼子”保护的细胞,其细胞存活率能从24.1士4.4%提高到49.0±10.0%。利用免疫荧光显微技术,表明“铁笼子”抑制病毒入侵可能通过以下两种方式:其空间位阻效应阻碍了病毒与细胞膜的结合;降低细胞膜柔韧性,抑制病毒出胞以及在细胞间的扩散。本文利用纳米材料在一定程度上实现抗病毒入侵,为开发新的抗病毒药物以及其它防治病毒性疾病的新方法研究提供了思路。
     2.多功能Fe3O4@Au核壳纳米花靶向癌细胞双模式成像与治疗。发展能结合诊断与治疗于一身的多功能纳米材料在分子医学领域有极其重要的意义。本文将五个独特的功能有机地整合到了一个粒径为70nm的Fe3O4@Au纳米花上。Fe304核可作为MRI显影剂;表面包被金壳,使其具有近红外吸收,产生光热效应使细胞温度升高,可用于光热治疗。高温能促进负载的抗癌药物盐酸阿霉素(Dox)快速释放,产生红色荧光,可通过共聚焦荧光显微镜监测其释放过程。颗粒表面偶联aptamer可提高药物的靶向释放。该Fe3O4@Au多功能纳米材料结合了荧光成像与MRI双模式成像方式,可提高癌细胞诊断准确性,并有利于监测药物释放。当纳米材料负载0.8μM Dox时达到的治疗效果,可与单独使用2.0μM Dox时相当。因此,将化疗与光热治疗结合使用,可以减少药物用量,降低非特异性的毒副作用。总之,该多功能纳米材料同时具有靶向、双模式成像与双治疗手段结合的功能,对生物医学领域,尤其是癌症治疗具有潜在的意义。
     总之,本论文具有以下三个创新点:(一)利用生物分子实现了对金属纳米颗粒SPR性质的有效调节。(二)构建了与传统的小分子设计不同的病毒防御系统,以磁纳米颗粒在细胞膜表面形成“铁笼子”抗病毒侵染。(三)制备了同时具有靶向、双成像模式及双治疗手段五个功能的多功能纳米材料。该研究论文拓宽了金属纳米颗粒在化学与生物传感方面的应用,对于将金属纳米颗粒进一步应用于细胞成像及光热治疗领域提供了一定依据,在癌细胞诊断与治疗方面具有一定的临床价值。
Nobel metal nanoparticles, which possess unique surface plasmon resonance (SPR) absorption and scattering properties, have been widely used in biosensing, cell imaging, cancer cell therapy and other biochemical fields. Magnetic nanoparticles, especially superparamagnetic Fe3O4nanoparticles, have received much consideration because of their wide applications in biomedical fields such as magnetic separation, magnetic relaxation switches, magnetic therapy and magnetic resonance imaging (MRI). Recently, nanocomposites, especially core/shell nanoparticles, have been reported to exhibit excellent properties, since they can avoide the limitations of single nanoparticle and have synergistic effects. Among these nanocomposites, gold-coated Fe3O4(Fe3O44@Au) nanoparticles have attracted much attention owing to the advantages such as ease of synthesis and surface modification, unique SPR properties and magnetic properties. However, there are still some problems about the application of nanoparticles. For instance, how can the biomolecules tune the SPR properties of metal nanoparticles when using for cell imaging and cancer therapy? Are the nanoparticles able to protect the host against virus infection? Numbers of multifunctional nanoparticles have been reported, but very few of them offer several functions such as targeting, dual imaging and dual therapy on a single platform. Thus, in this paper, gold nanoparticles (AuNPs), MNPs and Fe3O4@Au nanocomposites were used for further application to solve the above problems. The main contents of this thesis include the following two parts:
     Part1. Applications of AuNPs and MNPs in biosensing. Firstly, a colorimetric detection assay based on the SPR absorption of positive-charged gold nanoparticles was established for adenosine triphosphate (ATP) and alkaline phosphatase (ALP), respectively. Secondly, a magnetic nanoparticle-based aptasensor was used for enrichment and highly sensitive determination of lysozyme. At last, we investigated how the biomolecules tune the SPR properties of metal nanoparticles. The details are as follows:
     1. Optical investigations on ATP-induced aggregation of positive-charged AuNPs and further application for ATP determination. It was found that the SPR absorption of AuNPs over a visible region can be tunable by ATP. Mechanism investigations showed that the aggregation of the AuNPs is likely induced by two interaction modes. One is the electrostatic interaction between the phosphate anions associated with the ATP and AuNPs owing to the cationic surfactant on the surfaces of AuNPs, and the other is the interaction between gold atom and nitrogen-containing bases. With the changes of SPR absorption of AuNPs, a new method for the determination of ATP has been developed with the detection limit of0.82μM. The proposed method is simple, rapid, and highly selective. Further investigations showed that other analogs of ATP, such as GTP, UTP, CTP, A DP, AMP and so on, can be visually distinguished by AuNPs based on the different affinity with AuNPs.
     2. A simple and label-free colorimetric assay was developed for detecting ALP. ATP induces the aggregation of cetyltrimethylammonium bromide (CTAB)-capped AuNPs and ALP stimulates the disaggregation of AuNPs by converting ATP into adenosine through an enzymatic dephosphorylation reaction. Hence, the presence of ALP can be visually observed (gray-to-red color change) and monitored by the shift of the SPR absorption band of AuNPs. Furthermore, the dynamic range of the method can be varied by addition of different metal ions (e.g.100-600unit/L to5.0-100unit/L and0.2-20unit/L in the presence of Ca2+and Pb2+, respectively). The feasibility of this sensitive and specific assay with a tunable dynamic range was demonstrated to be consistent even in human serum samples.
     3. Magnetic nanoparticle-based aptasensor for enrichment and highly sensitive determination of lysozyme. In this report, lysozyme was firstly enriched and separated by aptamer conjugated MNPs, and then silver nanoparticles (AgNPs) with strong light scattering signals, were absorbed by positive charged lysozyme through electrostatic interaction. The light scattering signal of AgNPs in the supernatant after magnetic separation was gradually reduced with the increasing concentration of lysozyme. In addition, after magnetic separation, since the lysozyme on the MNPs can enrich numbers of AgNPs, which showed strong dark-field light scattering, lysozyme can also be semi-quantified by dark-field light scattering images. The proposed method took advantage of both the high selectivity of aptamer and the positive charge of lysozyme; hence the selectivity and accuracy for lysozyme determination can be greatly improved, with the detection limit of0.1nM. This design is universal, and it has the potential to be used in analysing complex samples.
     Part2. Applications of MNPs and Fe3O4@Au in cell imaging. At first, we investigated whether an "iron cage" formed by DNA crosslinking on cell membranes can be used for inhibition of viral fusion and entry. Then by making use of the unique properties of Au and Fe3O4, we prepared a Fe3O4@Au nanorose with five different functions, which can be used for targeted dual molecular imaging (MRI/optical imaging) and dual therapy (photothermal/chemotherapy). The details are as follows:
     1. Inhibition viral entry and spread by crosslinking an "iron cage" on cell membranes. In this report, an "iron cage" was formed on the cell membrane of Human epidermoid cancer cell (HEp-2cell) to investigate whether it can inhibit respiratory syncytial virus (RSV) infection. MNPs modified with DNA probes wereattached on the cell membranes through the strong affinity between streptavidin and biotin, and then an "iron cage" was formed through the hybridization of DNA probes. Scanning electron microscope (SEM) was used to demonstrate the formation of "iron cage" on cell membrane. The "iron cage" was nontoxic to the cells under the conditions studied. If cells were infected by RSV at multiplicity of infection (MOI) of2, the cell viability can be improved from24.1±4.4%to49.0±10.0%once protected by "iron cage". The results from immunofluorescence imaging technique indicated that RSV infection may be inhibited by "iron cage" through two ways. One is by blocking the attachment of the virus to the cells as a result of the steric effect; the other is by altering mechanical properties of membrane lipid bilayers to less fusogenic, so that the cell-to-cell viral spread is inhibited. This research implicated the possibility of designing nanoparticles for alternative antiviral therapy and it may also provide some valuable information for developing antiviral drugs.
     2. Gold-coated Fe3O4nanoroses with five unique functions for cancer cell targeting, imaging and therapy. The development of nanomaterials that combine diagnostic and therapeutic functions within a single nanoplatform is extremely important for molecular medicine. Here, five different functions were synergistically integrated into a single platform by a Fe3O4@Au nanorose of about70nm in diameter. The inner Fe3O4core functions as an MRI agent, while the photothermal effect is achieved through near-infrared absorption by the gold shell, causing a rapid rise in temperature and also resulting in a facilitated release of the anticancer drug doxorubicin (Dox) carried by the nanoroses. Dox release is monitored by its fluorescent under confocal fluorescence microscope. Aptamers immobilized on the surfaces of the nanoroses enable efficient and selective drug delivery, imaging and photothermal effect with high specificity. The combination of dual-modality MRI and optical imaging has the potential to improve the specificity of cancer cell diagnosis and facilitate therapeutic drug monitoring. The results showed that0.8μM of Dox released from nanorose-sgc8-Dox was sufficient to reach the same killing efficiency with2.0μM of free Dox. Hence, it minimized the nonspecific toxicity and side effects based on a lower dosage of chemotherapy drugs when combined with photothermal therapy. We demonstrate the Fe3O4@Au nanoroses with five distinct functions, which integrate aptamer-based targeting, MRI, optical imaging, photothermal therapy and chemotherapy into one single probe. It is expected that this versatile theranostic system will have wide biomedical applications and may be particularly useful for cancer therapy.
     In summary, this research offers three attractive features. Firstly, the SPR properties of metal nanoparticles over a visible region can be tunable by biomolecules. Secondly, a new strategy for inhibition viral entry and spread by crosslinking an "iron cage" on cell membranes was proposed, which is different to the traditional small molecules. At last, a multifunctional nanomaterial with five distinct functions was prepared, which can be used for targeting, MRI, optical imaging, photothermal therapy and chemotherapy to cancer cells. Overall, this thesis broadens the application of metal nanoparticles in chemical and biosensing, and provides the scientific basis for their further application in cell imaging and photothermal therapy, which is significant for clinic cancer cell diagnosis and therapy.
引文
[I]Kelly, K. L.; Coronado, E.; Zhao, L. L., et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2002,107, 668-677.
    [2]Yguerabide, J.; Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Anal. Biochem.1998,262,137-156.
    [3]Murphy, C. J.; Sau, T. K.; Gole, A. M., et al. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications. J. Phys. Chem. B 2005,109,13857-13870.
    [4]Zhang, Q.; Ge, J.; Pham, T., et al. Reconstruction of silver nanoplates by UV Irradiation: tailored optical properties and enhanced stability. Angew. Chem. Int. Ed.2009,48, 3516-3519.
    [5]Nusz, G J.; Marinakos, S. M.; Curry, A. C., et al. Label-free plasmpnic detection of biomolecular binding by a single gold nanorod. Anal. Chem.2008,80,984-989.
    [6]Liu, J.; Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed.2006,45,90-94.
    [7]Chen, L. Q.; Xiao, S. J.; Peng, L., et al. Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J. Phys. Chem. B 2010, 114,3655-3659.
    [8]Hu, P.; Huang, C. Z.; Li, Y. F., et al. Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization. Anal. Chem.2008,80,1819-1823.
    [9]Cho, M. H.; Lee, E. J.; Son, M., et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat Mater 2012,11,1038-1043.
    [10]Bamrungsap, S.; Chen, T.; Shukoor, M. I., et al. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 2012,6,3974-3981.
    [11]Mikhaylov, G.; Mikac, U.; Magaeva, A. A., et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nano 2011,6, 594-602.
    [12]Fan, Z.;Shelton, M.; Singh, A. K., et al. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACSNano 2012,6,1065-1073.
    [13]Hu, S.-H.; Liao, B.-J.; Chiang, C.-S., et al. Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv. Mater.2012,24,3627-3632.
    [14]Dong, W.; Li, Y; Niu, D., et al. Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater.2011,23,5392-5397.
    [15]Shi, D.; Bedford, N. M.; Cho, H.-S. Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics, small 2011,7,2549-2567.
    [16]Bardhan, R.; Lai, S.; Joshi, A., et al. Theranostic nanoshells:from probe design to imaging and treatment of cancer. Acc. Chem. Res.2011,44,936-946.
    [17]Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004,16,1685-1706.
    [18]Li, Z.; Li, J. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures. Chinese Sci Bull (Chinese Ver) 2011,56,2631-2661.
    [19]Sherry, L. J.; Jin, R.; Mirkin, C. A., et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett.2006,6,2060-2065.
    [20]Ozbay, E. Plasmonics:merging photonics and electronics at nanoscale dimensions. Science 2006,311,189-193.
    [21]Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003,424,824-830.
    [22]Millstone, J. E.; Park, S.; Shuford, K. L., et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc.2005,127,5312-5313.
    [23]Zhang, L.; Huang, C. Z.; Li, Y. F., et al. Morphology control and structural characterization of Au crystals:from twinned tabular crystals and single-crystalline nanoplates to multitwinned decahedra. Cryst. Growth Des 2009, P,3211-3217.
    [24]Liu, Y.; Huang, C. Z. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles. Nanoscale 2013,5,7458-7466.
    [25]Sato, K.; Hosokawa, K.; Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc.2003,125,8102-8103.
    [26]Wei, H.; Li, B.; Li, J., et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun.2007,3735-3737.
    [27]Medley, C. D.; Smith, J. E.; Tang, Z., et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem.2008,80,1067-1072.
    [28]Wang, J.; Zhu, G.; You, M., et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6,5070-5077.
    [29]Xiao, Z.; Ji, C.; Shi, J., et al. DNA self-assembly of targeted near-infrared-responsive gold Nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed.2012,51,11853-11857.
    [30]Wang, X.; Xu, Y.; Chen, Y., et al. The gold-nanoparticle-based surface plasmon resonance light scattering and visual DNA aptasensor for lysozyme. Anal Bioanal Chem 2011,400, 2085-2091.
    [31]He, W.; Li, Y. F.; Huang, C. Z., et al. A one-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal. Chem.2008,80,8424-8430.
    [32]Wu, L. P.; Li, Y. F.; Huang, C. Z., et al. Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal. Chem.2006,78,5570-5577.
    [33]Qi, W. J.; Wu, D.; Ling, J., et al. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chem. Commun 2010,46,4893-4895.
    [34]Ling, J.; Li, Y. F.; Huang, C. Z. Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles. Anal. Chem.2009,81, 1707-1714.
    [35]Ling, J.; Li, Y. F.; Huang, C. Z. A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator. Anal. Biochem.2008,383,168-173.
    [36]Zhang, L.; Zhen, S. J.; Sang, Y., et al. Controllable preparation of metal nanoparticle/carbon nanotube hybrids as efficient dark field light scattering agents for cell imaging. Chem. Commun.2010,46,4303-4305.
    [37]Liu, Y.; Huang, C. Z. Digitized single scattering nanoparticles for probing molecular binding. Chem. Commun.2013,49,8262-8264.
    [38]Wei, H.; Chen, C.; Han, B., et al. Enzyme colorimetric assay using unmodified silver nanoparticles. Anal. Chem.2008,80,7051-7055.
    [39]Daniel, M.-C.; Astruc, D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293-346.
    [40]Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev.2005,105, 1547-1562.
    [41]Huang, C.-C.; Huang, Y.-F.; Cao, Z., et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 2005,77,5735-5741.
    [42]Wang, W.; Chen, C.; Qian, M., et al. Aptamer biosensor for protein detection using gold nanoparticles. Anal. Biochem 2008,373 213-219.
    [43]Chen, S.-J.; Huang, Y.-F.; Huang, C.-C., et al. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens. Bioelectron.2008,23 1749-1753.
    [44]Wang, Y; Li, D.; Ren, W., et al. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem. Commun.2008, 2520-2522.
    [451 Storhoff, J. J.; Elghanian, R.; Mucic, R. C., et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc.1998,120,1959-1964.
    [46]He, X.; Liu, H.; Li, Y., et al. Gold nanoparticle-based fluorometric and colorimetric sensing ofcopper(Ⅱ) ions. Adv. Mater.2005,17,2811-2815.
    [47]He, F.; Tang, Y; Wang, S., et al. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer:a platform for homogeneous potassium detection. J. Am. Chem. Soc.2005,127,12343-12346.
    [481 Zhao, W.; Ali, M. M.; Aguirre, S. D., et al. Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem.2008, 80,8431-8437.
    [491 Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Nati. Acad. Sci. USA 2004,101, 14036-14039.
    [50]Wang, J.; Wang, L.; Liu, X., et al. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater.2007,19,3943-3946.
    [51]Liu, J.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directcd assembly of gold nanoparticles.J. Am. Chem. Soc.2003,125,6642-6643.
    [52]Wang, L.; Liu, X.; Hu, X., et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun.2006,3780-3782.
    [53]Zhao, W.; Chiuman, W.; Lam, J. C. F., et al. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc.2008,130,3610-3618.
    [54]Liu, C.-W.; Hsieh, Y.-T.; Huang, C.-C., et al. Detection of mercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun.2008, 2242-2244.
    [55]Zhao, W.; Chiuman, W.; Brook, M. A., et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chem BioChem 2007,8, 727-731
    [56]Pavlov, V.; Xiao, Y.; Shlyahovsky, B., et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc.2004,126,11768-11769
    [57]Zhao, W.; Chiuman, W.; Lam, J. C. F., et al. Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun.2007, 3729-3731.
    [58]Liu, G. D.; Mao, X.; Phillips, J. A., et al. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem.2009,81,10013-10018.
    [59]Wang, J.; Li, Y. F.; Huang, C. Z., et al. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal. Chim. Acta 2008,626,37-43.
    [60]Zhao, W.; Gonzaga, F.; Li, Y., et al. Highly stabilized nucleotide-capped small gold nanoparticles with tunable size. Adv. Mater 2007,19,1766-1771
    [61]Jv, Y.; Li, B. X.; Cao, R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun.2010,46, 8017-8019.
    [62]Niidome, T.; Nakashima, K.; Takahashi, H., et al. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun.2004, 1978-1979.
    [63]Cao, R.; Li, B. X.; Zhang, Y. F., et al. Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun.2011,47, 12301-12303.
    [64]Zheng, J. M.; Zhang, H. J.; Qu, J. C., et al. Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal Methods 2013,5,917-924.
    [65]Zhang, M.; Liu, Y.-Q.; Ye, B.-C. Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst 2011,136, 4558-4562.
    [66]Cao, R.; Li, B. X. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun.2011.47, 2865-2867.
    [67]Ren, S.; Li, B. X.; Zhang, L. Visual detection of hexokinase activity and inhibition with positively charged gold nanoparticles as colorimetric probes. Analyst 2013,138,3142-3145
    [68]Su, J.; Zhou, W.; Xiang, Y., et al. Target-induced charge reduction of aptamers for visual detection of lysozyme based on positively charged gold nanoparticles. Chem. Commun.2013, 49,7659-61.
    [69]Patil, V; Mayya, K. S.; Pradhan, S. D., et al. Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on silver colloidal particles. J. Am. Chem. Soc.1997,119,9281-9282.
    [70]Cheng, W.; Dong, S.; Wang, E. Studies of electrochemical quantized capacitance charging of surface ensembles of silver nanoparticles. Electrochem. Commun 2002,4412-416.
    [71]Wu, A.; Cheng, W.; Li, Z., et al. Electrostatic-assembly metallized nanoparticles network by DNA template. Talanta 2006,68,693-699.
    [72]Nikoobakht, B.; El-Sayed, M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 2001,17,6368-6374.
    [73]Sethi, M.; Joung, G.; Knecht, M. R. Stability and electrostatic assembly of Au nanorods for use in biological assays. Langmuir 2009,25,317-325.
    [74]Colombo, M.; Carregal-Romero, S.; Casula, M. F., et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev.2012,41,4306-4334.
    [75]Wang, L.; Li, L.; Xu, Y., et al. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation. Talanta 2009,79,557-561.
    [76]Perez, J. M;. Josephson, L.; O'Loughlin, T., et al. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotech 2002,20,816-820.
    [77]Chen, T.; Shukoor, M. I.; Wang, R., et al. Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 2011,5,7866-7873.
    [78]Lim, E. K.; Huh, Y. M.; Yang, J., et al. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater.2011,23,2436-2442.
    [79]Min, C.; Shao, H.; Liong, M., et al. Mechanism of magnetic relaxation switching sensing. ACS Nano 2012,6,6821-6828.
    [80]Bamrungsap, S.; Shukoor, M. I.; Chen, T., et al. Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal. Chem. 2011,83,7795-7799.
    [81]Kaittanis, C.; Naser, S. A.; Perez, J. M. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett.2007,7,380-383.
    [82]Perez, J. M.; Simeone, F. J.; Saeki, Y., et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 2003,125,10192-10193.
    [83]Tsourkas, A.; Hofstetter, O.; Hofstetter, H., et al. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew. Chem.2004,116,2449-2453.
    [84]Zhou, T.; Wu, B.; Xing, D. Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 2012,22,470-477.
    [85]Lee, N.; Cho, H. R.; Oh, M. H., et al. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J. Am. Chem. Soc.2012.
    [86]Yu, M. K.; Jeong, Y. Y.; Park, J., et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed.2008, 47,5362-5365.
    [87]Yu, M. K.; Kim, D.; Lee, I. H., et al. Image-guided prostate cancer therapy using aptamer-functional ized thermally cross-linked superparamagnctic iron oxide nanoparticles. small 2011,7,2241-2249.
    [88]Yang, H.; Zhuang, Y.; Sun, Y, et al. Targeted dual-contrast T1-and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 2011,32,4584-4593.
    [89]Liang, G. H.; Cai, S. Y.; Zhang, P., et al. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles. Anal. Chim. Acta 2011,689,243-249.
    [90]Ma, Y.; Liang, X.; Tong, S., et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Fund. Mater. 2013,23,815-822.
    [91]Mclancon, M. P.; Lu, W.; Zhong, M., et al. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 2011,32, 7600-7608.
    [92]Chen, Z.; Luo, S.; Liu, C., et al. Simple and sensitive colorimetric detection of cystcinc based on ssDNA-stabilizcd gold nanoparlicles. A mil Bioanal Chem 2009,395,489-494.
    [93]Chen, Y.-M.; Yu, C.-JL; Cheng, T.-L., et al. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir 2008,24,3654-3660.
    [94]Maeda, H.; Wu, J.; Sawa, T., et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J Controll Release 2000,65,271-284.
    [95]Muthu, M. S.; Feng, S. S. Targeted nanomedicine for detection and treatment of circulating tumor cells. Nanomedicine 2011,6,579-581.
    [96]Santra, S.; Kaittanis, C.; Santiesteban, O. J., et al. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc.2011,133, 16680-16688.
    [97]Pearce, T. R.; Shroff, K.; Kokkoli, E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv. Mater.2012,24,3803-3822.
    [98]Kolishetti, N.; Dhar, S.; Valencia, P. M., et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Nail. Acad. Sci. USA 2010, 107,17939-17944.
    [99]Luo, Y.-L.; Shiao, Y.-S.; Huang, Y.-F. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 2011,5,7796-7804.
    [100]Fang, X.; Tan, W. Aptamers generated from cell-SELEX for molecular medicine:a chemical biology approach. Accounts of Chem Res 2009,43,48-57.
    [101]Shangguan, D.; Li, Y.; Tang, Z., et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 2006,103,11838-11843.
    [102]Tang, Z.; Shangguan, D.; Wang, K., et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem.2007,79,4900-4907.
    [103]Wang, H.; Yang, R. H.; Yang, L., et al. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 2009,3,2451-2460.
    [104]Dhar, S.; Gu, F. X.; Langer, R., et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functional ized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. USA 2008,705,17356-17361.
    [105]Zhu, G. Z.; Meng, L.; Ye, M., et al. Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem. Asian J.2012,7,1630-1636.
    [106]Farokhzad, O. C; Cheng, J. J.; Teply, B. A., et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 2006,103, 6315-6320.
    [107]Xiao, Z.; Levy-Nissenbaum, E.; Alexis, F., et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 2012, 6,696-704.
    [108]Zheng, D.; Seferos, D. S.; Giljohann, D. A., et al. Aptamer nano-flares for molecular detection in living cells. Nano Lett.2009,9,3258-3261.
    [109]Shi, H.; He, X.; Wang, K., et al. Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc. Nati. Acad. Sc. USA 2011,108,3900-3905.
    [110]Lee, D. E.; Koo, H.; Sun, I. C., et al. Multifunctional nanoparticles for multimoda! imaging and theragnosis. Chem. Soc. Rev.2012,41,2656-2672.
    [111]Bardhan, R.; Chen, W.; Perez-Torres, C., et al. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Fund. Mater.2009,19,3901-3909.
    [112]Yin, M.; Li, Z.; Liu, Z., et al. Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem. Commun.2012,48,6556-6558.
    [1131 Santra, S.; Kaittanis, C.; Grimm, J., et al. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging, small 2009,5,1862-1868.
    [1141 Kelkar, S. S.; Reineke, T. M. Theranostics:combining imaging and therapy. Bioconjugate Chem.2011,22,1879-1903.
    [1151 Ta, H. T.; Dass, C. R.; Larson, I., et al. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials 2009,30,4815-4823.
    [1161 Wang, T.; Zhang, L.; Su, Z., et al. Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. Acs Appl Mater Inter 2011,3,2479-2486.
    [1171 Liu, H.; Chen, D.; Li, L., et al. Multifunctional gold nanoshells on silica nanorattles:a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed.2011,50,891-895.
    [118]Zhang, W.; Guo, Z.; Huang, D., et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011,32,8555-8561.
    [119]Park, H.; Yang, J.; Lee, J., et al. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009,3,2919-2926.
    [1201 Zhang, Z.; Wang, L.; Wang, J., et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater.2012, 24,1418-1423.
    [121]Louie, A. Multimodality imaging probes:design and challenges. Chem. Rev.2010,110, 3146-3195.
    [122]Jennings, L. E.; Long, N. J.'Two is better than one'-probes for dual-modality molecular imaging. Chem. Commun.2009,3511-3524.
    [123]Huang, Y. F.; Lin, Y. W.; Lin, Z. H., et al. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. JNanoparl Res 2009,11,775-783.
    [124]Wang, J.; Jiang, Y; Zhou, C., et al. Aptamer-based ATP assay using a luminescent light switching complex. Anal. Chem.2005,77,3542-3546.
    [125]Cruz-Aguado, J. A.; Chen, Y.; Zhang, Z., et al. Ultrasensitive ATP detection using firefly luciferase entrapped in sugar-modified sol-gel-derived silica.J. Am. Chem. Soc.2004,126, 6878-6879.
    [126], T. P.-R.; C. M.-L.; , V. T, et al. Determination of ATP via the photochemical generation of hydrogen peroxide using flow injection luminol chemiluminescence detection. Anal BioanalChem 2003,377189-194.
    [127]Jhaveri, S. D.; Kirby, R.; Conrad, R., et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity.J. Am. Chem. Soc.2000,122, 2469-2473.
    [128]Kamidate, T; Yanashita, K.; Tani,11., et al. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes. Anal. Chem.2006,78,337-342.
    [129]Deng, Q.; German, I.; Buchanan, D., et al. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal. Chem.2001, 73,5415-5421.
    [130]Tomiya, N.; Ailor, F.; Lawrence, S. M., et al. Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography:sugar nucleotide contents in cultured insect cells and mammalian cells. Anal. Biochem 2001,293,129-137.
    [131]Huang, Y.-F; Chang, H.-T. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal. Chem.2007,79, 4852-4859.
    [132]Li, W.; Nie, Z.; Xu, X., et al. A sensitive, label free electrochemical aptasensor for ATP detection. Talanta 2009,78,954-958.
    [133]Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc.2004,126,8648-8649.
    [134]Orendorff, C. J.; Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006,110,3990-3994.
    [135]Liu, J.; Lu, Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem.2004,76,1627-1632.
    [136]Basu, S.; Pande, S.; Jana, S., et al. Controlled interparticle spacing for surface-modified gold nanoparticle aggregates. Langmuir 2008,24,5562-5568.
    [137]Kimura-Suda, H.; Petrovykh, D. Y; Tarlov, M. J., et al. Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc.2003,125,9014-9015.
    [138]Demers, L. M.; stblom, M.; Zhang, H., et al. Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc.2002,124, 11248-11249.
    [139]stbloin, M.; Liedberg, B.; Demers, L. M., et al. On the structure and desorption dynamics of DNA bases adsorbed on gold:a temperature-programmed study. J. Phys. Chem. B 2005,109, 15150-15160.
    [140]Storhoff, J. J.; Elghanian, R.; Mirkin, C. A., et al. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 2002,18,6666-6670.
    [141]Wang, X.; Zou, M.; Xu, X., et al. Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles. Anal Bioanal Chem 2009,395,2397-2403.
    [142]Xu, X. W.; Wang, J.; Jiao, K., et al. Colorimetric detection of mercury ion (Hg2f) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens. Bioelectron.2009,24,3153-3158.
    [143]Chen, X. J.; Zu, Y B.; Xie, H., et al. Coordination of mercury(Ⅱ) to gold nanoparticle associated nitrotriazole towards sensitive colorimetric detection of mercuric ion with a tunable dynamic range. Analyst 2011,136,1690-1696.
    [144]Wang, Z.; Lee, J. H.; Lu, Y Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater.2008,20,3263-3267.
    [145]Wen, Y; Peng, C; Li, D., et al. Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(Ⅱ) ions with high sensitivity, selectivity and tunable dynamic range. Chem. Commun.2011,47,6278-6280.
    [146]Kim, S.; Kim, J.; Lee, N. H., et al. A colorimetric selective sensing probe for calcium ions with tunable dynamic ranges using cytidine triphosphate stabilized gold nanoparticles. Chem. Commun.2011,47,10299-10301.
    [147]Xiang, Y; Tong, A. J.; Lu, Y Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range.J.Am. Chem. Soc.2009,131,15352-15357.
    [148]Pu, F.; Huang, Z.; Ren, J., et al. DNA/ligand/Ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal. Chem.2010,82, 8211-8216.
    [149]Nistor, C.; Emneus, J. An enzyme flow immunoassay using alkaline phosphatase as the label and a tyrosinase biosensor as the label detector. Anal. Commun 1998,35,417-419.
    [150]Bronstein, I.; Martin, C. S.; Fortin, J. J., et al. Chemiluminescence:sensitive detection technology for reporter gene assays. Clin. Chem 1996,42,1542-1546
    [151]Fanjul-Bolado, P.; Herna'ndez-Santos, D.; Gonza'lez-Garcf a, M. a. B. a., et al. Alkaline phosphatase-catalyzed silver deposition for electrochemical detection. Anal. Chem.2007,79, 5272-5277.
    [152]Gyurcsanyi, R. E.; Bereczki, A.; Nagy, G., et al. Amperometric microcells for alkaline phosphatase assay. Analyst 2002,127,235-240.
    [153]Hartwell, S. K.; Somprayoon, D.; Kongtawelert, P., et al. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system. Anal. Chim. Acta 2007,600, 188-193.
    [154]Ooi, K.; Shiraki, K.; Morishita, Y., et al. High-molecular intestinal alkaline phosphatase in chronic liver diseases. J Clin Lab Anal 2007,21,133-139.
    [155]Jia, L.; Xu, J. P.; Li, D., et al. Fluorescence detection of alkaline phosphatase activity with b-cyclodextrin-modified quantum dots. Chem. Commun.2010,46,7166-7168.
    [156]Eastman, J. R.; Blxler, D. Serum alkaline phosphatase:normal values by sex and age. Clin. Chem 1977,23,1769-1770.
    [157]Hausamen, T. U.; Helger, R.; Rick, W., et al. Optimal conditions for the determination of serum alkaline phosphatase by a new kinetic method. Clin. Chim. Acta 1967,15,241-245.
    [158]Hasegawa, T.; Sugita, M; Takatani, K., et al. Assay of alkaline phosphatase in salmon egg cell cytoplasm with fluorescence detection of enzymatic activity and zinc detection by 1CP-MS in relation to metallomics research. Bull. Chem. Soc. Jpn.2006,79,1211-1214.
    [159]Ximenes, V. F.; Campa, A.; Baader, W. J., et al. Facile chemiluminescent method for alkaline phosphatase determination. Anal. Chim. Acta 1999,402,99-104.
    [160]Blum, J. S.; Li, R. H.; Mikos, A. G., et al. An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. J Cell Biochem 2001,80,532-537.
    [161]Nutiu, R.; Yu, J. M. Y.; Li, Y. Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. ChemBioChem.2004,5,1139-1144.
    [162]Liu, Y; Schanze, K. S. Conjugated polyelectrolyte-based real-time fluorescence assay for alkaline phosphatase with pyrophosphate as substrate. Anal. Chem.2008,80,8605-8612.
    [163]Limoges, B. t.; Degrand, C. Ferrocenylethyl phosphate:an improved substrate for the detection of alkaline phosphatase by cathodic stripping ion-exchange voltammetry. application to the electrochemical enzyme affinity assay of avidin. Anal. Chem.1996,68, 4141-4148.
    [164]Ruan, C.; Li, Y. Detection of zeptomolar concentrations of alkaline phosphatase based on a tyrosinase and horse-radish peroxidase bienzyme biosensor. Talanta 2001,54,1095-1103.
    [165]Ruan, C.; Wang, W.; Gu, B. Detection of alkaline phosphatase using surface-enhanced raman spectroscopy. Anal. Chem.2006,78,3379-3384.
    [166]Iqbal, J. An enzyme immobilized microassay in capillary electrophorcsis for characterization and inhibition studies of alkaline phosphatascs. Anal. Biochem 2011,414,226-231.
    [167]Thompson, R. Q.; Barone, G. C.; Halsall, H. B., et al. Comparison of methods for following alkaline phosphatase catalysis:spectrophotometric versus amperometric detection. Anal. Biochem 1991,192,90-95.
    [168]Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon sesonance of gold nanoparticles:from theory to applications. Chem. Rev.2007,107,4797-4862.
    [169]Song, C.; Zhang, C.; Zhao, M.-P. Development of a high-throughput screening platform for DNA 3'-phosphatases and their inhibitors based on a universal molecular beacon and quantitative real-time PCR. Chem-Asian J 2010,5,1146-1151.
    [170]Choi, Y.; Ho, N.-H.; Tung, C.-H. Sensing phosphatase activity by using gold nanoparticles. Angew. Chem. Int. Ed.2007,46,707-709.
    [171]Fernley, H. N. Mammalian alkaline phosphatases. The Enzymes, third edition 1971,4, 417-447.
    [172]Li, C. M.; Li, Y. F.; Wang, J., et al. Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles. Talanta 2010,81,1339-1345.
    [173]Fernley, H. N.; Walker, P. G. Studies on alkaline phosphatase. Biochem. J.1967,104, 1011-1018.
    [174]Chander, R.; Thomas, P. Alkaline phosphatase from Jawala sifrimp. J Food Biochem.2001, 25,91-103.
    [175]Huang, J.; Zhu, Z.; Bamrungsap, S., et al. Competition-Mediated Pyrene-Switching Aptasensor:Probing Lysozyme in Human Serum with a Monomer-Excimer Fluorescence Switch. Anal. Chem.2010,82,10158-10163.
    [176]Levinson, S. S.; Elin, R. J.; Yam, L. Light chain proteinuria and lysozymuria in a patient with acute monocytic leukemia. Clin. Chem 2002,48,1131-1132.
    [177]Tang, D.; Liao, D.; Zhu, Q., et al. Fluorescence turn-on detection of a protein through the displaced single-stranded DNA binding protein binding to a molecular beacon. Chem. Commun.2011,47,5485-5487.
    [178]Wang, J.; Liu, B. Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem. Commun.2009,2284-2286.
    [179]Wang, X.; Xu, Y.; Xu, X., et al. Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles. Talanta 2010,82,693-697.
    [180]Huang, C.-C.; Chiu, S.-H.; Huang, Y.-F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal. Chem.2007,79, 4798-4804.
    [181]Xu, Y.; Phillips, J. A.; Yan, J., et al. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem.2009,81,7436-7442.
    [182]Cox, J. C.; Ellington, A. D. Automated selection of anti-Protein aptamers. Bioorg Med Chem 2001,9,2525-2531.
    [183]Xia, Y.; Gan, S.; Xu, Q., et al. A three-way junction aptasensor for lysozyme detection. Biosens. Bioelectron.2013,39,250-254.
    [184]Xiang, Y.; Qian, X.; Jiang, B., et al. An aptamer-based signal-on and multiplexed sensing platform for one-spot simultaneous electronic detection of proteins and small molecules. Chem. Commun.2011,47,4733-4735.
    [185]Li, Y.; Qi, H.; Gao, Q., et al. Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosens. Bioelectron.2011,26, 2733-2736.
    [186]Peng, Y; Zhang, D.; Li, Y, et al. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Biosens. Bioelectron.2009,25,94-99.
    [187]Cheng, A. K. H.; Ge, B.; Yu, H.-Z. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal. Chem.2007,79,5158-5164.
    [188]Yeung, M. C.-L.; Wong, K.. M.-C.; Tsang, Y. K. T., et al. Aptamer-induced self-assembly of a NIR-emissive platinum(ii) terpyridyl complex for label-and immobilization-free detection of lysozyme and thrombin. Chem. Commun.2010,46,7709-7711.
    [189]Zou, M.; Chen, Y.; Xu, X., et al. The homogeneous fluorescence anisotropic sensing of salivary lysozyme using the 6-carboxyfluorescein-labeled DNA aptamer. Biosens. Bioelectron.2012,32,148-154.
    [190]He, P.; Zhang, Y.; Liu, L. J., et al. Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate. Chem-Eur J 2013,19,7452-7460.
    [191]Li, Y.; Lei, C.; Zeng, Y., et al. Sensitive SERS detection of DNA and lysozyme based on polymerase assisted cross strand-displacement amplification. Chem. Commun.2012,48, 10892-10894.
    [192]Hun, X.; Chen, H.; Wang, W. Design of ultrasensitive chemiluminescence detection of lysozyme in cancer cells based on nicking endonuclease signal amplification technology. Biosens. Bioelectron.2010,26,248-254.
    [193]Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003,301,1884-1886.
    [194]Georganopoulou, D. G.; Chang, L.; Nam, J.-M., et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Nail. Acad. Sci. USA 2005,102,2273-2276.
    [195]Fan, A.; Lau, C.; Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal. Chem.2005,77,3238-3242.
    [196]Centi, S.; Tombelli, S.; Minunni, M., et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem.2007,79,1466-1473.
    [197]Kouassi, G. K.; Irudayaraj, J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem.2006,78,3234-3241.
    [198]Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem.1982,86,3391-3395.
    [199]Liu, Y; Huang, C. Z. One-step conjugation chemistry of DNA with highly scattered silver nanoparticles for sandwich detection of DNA. Analyst 2012,137,3434-3436.
    [200]El-Khatib, O. S.; Lebwohl, O.; Attia, A. A., et al. Serum lysozyme, serum proteins, and immunoglobulin determinations in nonspecific inflammatory bowel disease. Am.J. Dig. Dis 1978,25,297-301.
    [201]Razinkov, V.; Gazumyan, A.; Nikitenko, A., et al. RFI-641 inhibits entry of respiratory syncytial virus via interactions with fusion protein. Chem Biol 2001,8,645-659.
    [202]Nikitenko, A. A.; Raifeld, Y. E.; Wang, T. Z. The discovery of RFI-641 as a potent and selective inhibitor of the respiratory syncytial virus. Bioorg Med Chem Lett 2001,11, 1041-1044.
    [203]Douglas, J. L.; Panis, M. L.; Ho, E., et al. Inhibition of respiratory syncylial virus fusion by the small molecule VP-14637 via specific interactions with F protein. J Virol 2003,77, 5054-5064.
    [204]McNamara, P. S.; Smyth, R. L. The palhogenesis of respiratory syncytial virus disease in childhood. Brit Med Bull 2002,61,13-28.
    [205]Sun, Z.; Pan, Y.; Jiang, S., et al. Respiratory syncytial virus entry inhibitors targeting the F protein. Viruses-Basel 2013,5,211-225.
    [206]Chapman, J.; Abbott, E.; Alber, D. G., et al. RSV604, a novel inhibitor of respiratory syncytial virus replication. Antimicrob Agents Ch 2007,51,3346-3353.
    [207]PrabhuDas, M.; Adkins, B.; Gans, H., et al. Challenges in infant immunity:implications for responses to infection and vaccines. Nat Immuno 2011,12,189-194.
    [208]Leikina, E.; Delanoe-Ayari, H.; Melikov, K., et al. Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat Immunol 2005,6, 995-1001.
    [209]Moore, B. P.; Chung, D. H.; Matharu, D. S., et al. (S)-N-(2,5-dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolicline-2-carb oxamide as a small molecule inhibitor probe for the study of respiratory syncytial virus infection. J Med Chem 2012,55,8582-8587.
    [210]Ojwang, J. O.; Wang, Y.-H.; Wyde, P. R., et al. A novel inhibitor of respiratory syncytial virus isolated from ethnobotanicals. Ant Mr Res 2005,68,163-172.
    [211]Bonavia, A.; Franti, M.; Keaney, E. P., et al. Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV). Proc. Natl. Acad. Sci. USA 2011,108,6739-6744.
    [212]Chung, D. H.; Moore, B. P.; Matharu, D. S., et al. A cell based high-throughput screening approach for the discovery of new inhibitors of respiratory syncytial virus. Virol J 2013, 10:19.
    [213]Donalisio, M.; Rusnati, M.; Cagno, V., et al. Inhibition of human respiratory syncytial virus infectivity by a dendrimeric heparan sulfate-binding peptide. Antimicrob Agents Ch 2012, 56,5278-5288.
    [214]Roymans, D.; De Bondt, H. L.; Arnoult, E., et al. Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. Proc. Natl. Acad Sci. USA 2010,107,308-313.
    [215]Lundin, A.; Bergstrom, T.; Bendrioua, L., et al. Two novel fusion inhibitors of human respiratory syncytial virus. Antivir Res 2010,88,317-324.
    [216]Lundin, A.; Bergstrom, T.; Andrighetti-Frohner, C. R., et al. Potent anti-respiratory syncytial virus activity of a cholestanol-sulfated tetrasaccharide conjugate. Antivir Res 2012,93, 101-109.
    [217]Sun, L.; Singh, A. K.; Vig, K., et al. Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol 2008,4,149-158.
    [218]Galdiero, S.; Falanga, A.; Vitiello, M., et al. Silver nanoparticles as potential antiviral agents. Molecules 2011,16,8894-8918.
    [219]Geller, R.; Andino, R.; Frydman, J. Hsp90 Inhibitors exhibit resistance-free antiviral activity against respiratory syncytial virus. PLoS One 2013,8, e56762.
    [220]Group, T. I.-R. S. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 1998,102,531-537.
    [221]Feltes, T. F.; Cabalka, A. K.; Meissner, H. C., et al. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J Pediatr 2003,143,532-540.
    [222]Barth, B. M.; I. Altinoglu, E.; Shanmugavelandy, S. S., et al. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 2011,5,5325-5337.
    [223]Kim, J.; Piao, Y.; Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev.2009,38,372-390.
    [224]Poste, G.; Kirsh, R. Site-specific (targeted) drug delivery in cancer therapy. Nat Nanotechnol 1983,1,869-878.
    [225]Huang, X.; Neretina, S.; E1-Sayed, M. A. Gold nanorods:from synthesis and properties to biological and biomedical applications. Adv. Mater.2009,21,4880-4910.
    [226]Sherlock, S. P.; Tabakman, S. M.; Xie, L., et al. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/Graphitic shell nanocrystals. ACS Nano 2011,5,1505-1512.
    [227]Gobin, A. M.; Lee, M. H.; Halas, N. J., et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett.2007,7,1929-1934.
    [228]You, J.; Zhang, R.; Zhang, G., et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres:A platform for near-infrared light-trigged drug release. J. Control. Release 2012,158,319-328.
    [229]Tan, W.; Donovan, M. J.; Jiang, J. Aptamers from Cell-Based Selection for Bioanalytical Applications. Chem. Rev.2013,113,2842-2862.
    [230]Yasun, E.; Gulbakan, B.; Ocsoy, I., et al. Enrichment and Detection of Rare Proteins with Aptamer-Conjugated Gold Nanorods. Anal. Chem.2012,84,6008-6015.
    [231]Kang, H.; Trondoli, A. C; Zhu, G., et al. Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 2011,5,5094-5099.
    [232]Yu, M. K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012,2,3-44.
    [233]Ma, L. L.; Feldman, M. D.; Tarn, J. M., et al. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 2009,3,2686-2696.
    [234]Bagalkot, V.; Farokhzad, O. C.; Langer, R., et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed.2006,45,8149-8152.
    [235]Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E., et al. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007,7,3065-3070.
    [236]Liu, J.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 2006,1,246-252.
    [237]Wang, A. Z.; Bagalkot, V.; Vasilliou, C. C., et al. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 2008, J,1311-1315.
    [2381 Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamor-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010,4,3689-3696.
    [239]Gotfredsen, C. H.; Schultze, P.; Feigon, J. Solution Structure of an Intramolecular Pyrimidinc-Purine-Pyrimidine Triplex Containing an RNA Third Strand. J. Am. Chem. Soc. 1998,720,4281-4289.
    [240]Seferos, D. S.; Giljohann, D. A.; Rosi, N. L., et al. Locked nucleic acid-nanoparticle conjugates. ChemBioChem 2007,8,1230-1232.
    [241]Xiao, Z.; Shangguan, D.; Cao, Z., et al. Cell-specific intcrnalization study of an aptamer from whole cell selection. Chem. Eur.J.2008,14,1769-1775.
    [242]Ilosliino, Y.; Koide, H.; Furuya, K., et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Nati. A cad. Sci. USA 2012,109, 33-38.
    [243]Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett.2007,7, 1542-1550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700