用户名: 密码: 验证码:
基于配体的朊病毒蛋白分析新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朊病毒病(prion diseases)是一类致死性神经退行性疾病,是细胞型朊蛋白(cellular prion protein, PrP~C)经构象转变形成致病型朊蛋白(scrapie prion protein, prp~(Sc))的结果。上世纪末欧洲疯牛病的大范围爆发及其由牛传染给人的新型克雅氏病的发现使得人们“谈牛色变”,并迫使欧盟迅速建立朊病毒病检测的标准方法。朊病毒病的诊断尤其是早期诊断既能实现该疾病流行趋势的监控、确保肉类产品、输血、手术、血库和血浆产品安全,又使得该病在永久性脑损伤发生前即可进行有效治疗。基于朊病毒病抗体的传统检测方法因抗体制备复杂、与靶物的亲和力和特异性不高等缺点而无法应用于朊病毒病的早期诊断中。因此简单、快速、准确的朊病毒病早期诊断方法亟待建立。朊病毒蛋白配体因能够特异性的与朊蛋白相互作用而得到科学工作者的广泛关注。如适配子是一类新兴的与靶物具有很高的亲和力和选择性的核酸配体,自发现以来就因具抗体无法比拟的优势成为抗体替代物在各个领域得到广泛应用。本文将配体应用于朊病毒病分析中,建立了一系列基于配体的朊病毒蛋白分析方法。主要研究内容如下:
     1.单标记aptamer分子灯标的设计及朊蛋白的检测中。根据G碱基在距离适当时能猝灭染料如罗丹明、荧光素等的荧光的性质,本文设计了基于G碱基猝灭的单标记适配子分子灯标,成功解决了分子灯标双标记的操作复杂、成本高、适配子亲和力下降等问题。将所设计的适配子分子灯标应用于朊病毒蛋白检测时发现,在朊病毒蛋白浓度为1.1-44.7μg/mL时,荧光强度与蛋白浓度呈现很好的线性关系,检测限为0.3μg/mL (3σ)。与传统的抗体检测方法相比,本文所建立的方法简单、快速且选择性高。
     2.基于适配子和汞离子的朊蛋白免标记检测。根据T碱基能与Hg相互作用形成T-Hg~(2+)-T结构的特点,本文建立了基于适配子和Hg~(2+)的免标记的朊病毒蛋白检测方法。研究结果表明,适配子与Hg~(2+)作用后形成链间双链结构,引起双链嵌入荧光染料Syber Green I的荧光显著增强;但当加入朊病毒蛋白后,朊病毒蛋白与适配子的特异性相互作用促使T-Hg-T结构打开从而双链结构被破坏,Syber Green I的荧光降。当朊蛋白浓度为13.0-156.0 nmol/L时,Syber GreenI的荧光强度与朊蛋白浓度呈现很好的线性关系,线性方程为I_(F-F0)= 58.33-8.42 c_(PrP),相关系数R=0.992。
     3.双适配子策略在多靶物分析中的应用。与单适配子策略相比,双适配子策略具有更高的选择性和灵敏度,并能显著提高分析方法灵敏度。本研究将双适配子策略应用于多靶物分析中并选择凝血酶、腺苷、朊病毒蛋白(PrP)三种与疾病相关的生物分子作为研究对象。结果表明,双适配子策略能够实现同一样品中凝血酶、腺嘌呤核苷酸和朊蛋白的同时检测,且三种靶物的类似物如鸟嘌呤核苷酸、胞嘧啶核苷酸、尿嘧啶核苷酸、IgG、蜗牛酶、牛血清白蛋白等对多靶物测定不产生干扰,显示出双适配子策略在多靶物分析中的高选择性。
     4.双适配子分子逻辑门在朊病毒蛋白构象区分中的应用。作为逻辑门延伸的分子逻辑门以一个或多个复杂的生物或化学反应过程为输入信号,通过一定的逻辑运算简化为单一输出结果,例如疾病的诊断通过分子逻辑门可简化为“患病”或“正常”。本文借助分子逻辑门的优势并将双适配子策略应用其中,成功构建了能够进行“异或”(XOR)和“或”(OR)逻辑运算的双适配子分子逻辑门。结果表明,PrP~C符合“异或”逻辑运算而PrP~(Res)符合“或”逻辑运算。与传统的朊病毒蛋白区分方法相比,本文所构建的双适配子分子逻辑门具有四个优点:(1)双适配子分子逻辑门非常简单且能够应用于朊病毒蛋白不同构象的区分;(2)使用双适配子策略使得分子逻辑门具有极高选择性,无需分离和纯化即可实现血清中的朊病毒蛋白的区分;(3)双适配子分子逻辑门的输入信号(PrP和盐酸胍)和元件(MMPs-Apt1和QDs-Apt2)的成本较低,且都是化学稳定分子,而这是构建更快、更高效、更小型的计算器所必需的;(4)因Apt1只在磁微米粒子表面形成单层而不涉及固定构象,所以元件之一的MMPs-Apt1能够通过简单的方法进行循环使用。
     5.肝素钠诱导朊病毒蛋白构象变化的光谱分析。粘多糖是一种在细胞膜表面和溶酶体中均有表达的朊蛋白配体分子,其在朊病毒病中发生中所发挥的作用目前仍存在争议。本文以肝素钠作为粘多糖的代表,通过共振光散射光谱、荧光光谱和圆二色光谱的变化研究了肝素钠与人重组细胞型朊蛋白(rhPrP~C_(23-231))的相互作用。结果表明,肝素钠与朊蛋白相互作用后光散射和荧光信号均得到增强,且当rhPrP~C_(23-231)浓度为0.41-16.46μg/mL时,rhPrP~C_(23-231)浓度与共振散射光强度呈现很好的线性关系,线性方程:I_(RLS)=183.84+272.40 c_(rhPrP~C_(23-231),相关系数R=0.999。同时对朊蛋白和肝素钠相互作用体系的荧光寿命表征表明,肝素钠促使朊蛋白的荧光寿命有一定程度的延长,而圆二色光谱的表征则表明肝素钠能诱导朊蛋白从富含α-螺旋的构象向富含β-折叠的构象转变。
     本研究基于配体所建立的一系列朊病毒蛋白分析方法,方法简单、快速且灵敏,双适配子逻辑门方法更因具有超高的灵敏度和选择性而有望开发成朊病毒病的早期诊断方法。
Prion diseases, a group of fatal neurodegerative disorders, arised when cellular prion protein (PrP~C) undergoes some conformation rearrangement and formes the pathological isoform (PrP~(Sc)). The huge epizootic of "mad cow" in european and the discovery of variant CJD (vCJD, the transmission form of "mad cow" in human) at the end of last centrury, created enormours concerns among consumers and forced the European Commission to develop new simpler and faster diagnositc tests for prion diseases. Especially pre-symptomatic diagnostical that will do favors in the following aspects:firstly, the extent of epizootic would under surveillance by the goverment; secondly, ensure the safety of meat products, blood transfission, surgery, blood banks and plasma products; thirdly, identify prion diseases in the early stage so that the treatment could be initiated before the appearance of permanent brain damage. So simpler, faster and more accurate methods for prion diseases are in the ugent need of development. The application of conventional methods that are based on antibodies to pre-symptomatic diagnostical are limited by many reasons, such as the complicated procedure of antibodies producing, insufficient affinity and selectivity to targets. Aptamers, new-born nucleic acids ligands that bind to targets with high affinity and selectivity, are superior to antibodies in many aspects and thus has been widely applied to a variety of fields. In this contribution, aptamers are introduced to the analysis of prion diseases and a serial of prion protein detection methods have been developed based on aptamers. The main researches of this contribution include.
     1. Guanine-based aptamer beacon design and its application for PrP analysis. An aptamer-participated haprin structure was designed by employing cellular prion protein (PrP~C) as a model protein, and thus an aptamer-mediated turn-on fluorescence assay for proteins was developed in this contribution. The designed aptamer-participatedhaprin structure consists of three segments.Namely, an aptamer sequence located in the loop, three guanine bases at 3'-terminal, and a fluophor modified at 5'-terminal. It was found that the guanine bases at the 3'-terminal could quench the fluorescence of the fluophor such as tetramethyl-6-carboxyrhodamine (TAMRA) at the 5'-terminal about 76.6% via electron transfer if the guanine bases are close enough to the fluophor, and the quenched fluorescence could get restored when the target protein is present since the interaction, which could be confirmed by measuring fluorescence lifetime, between TAMRA-aptamer and the target protein forces the guanines away from TAMRA so that TAMRA-modified aptamer changes into turn-on state. A linear relationship was then constructed between the turn-on fluorescence intensity and the concentration of PrPC in the range from 1.1 to 44.7μg/mL with a limit of detection of 0.3μg/mL (3a).
     2. Label-free PrP detection based on aptamer and Hg~(2+). A new lable-free method for prion protein detection was developed based on the fact that T bases can interact with Hg~(2+) to form T-Hg~(2+)-T structure. It was found that when aptamers were interact with Hg~(2+), intramolecular T-Hg~(2+)-T structure was formed and thus the fluorescence of double-strand dyes such as Syber GreenⅠ(SGⅠ) enhanced; however, the T-Hg~(2+)-T structure destroyed with the addition of prion protein since the specifical interaction between aptamer and its target protein force aptamer underwent conformation change, and thus the fluorescence of SGⅠdisappeared. The fluorescence intensities of SGⅠhave good linear relationship with the concenctration of prion protein ranging from 13.0 to 156.0 nmol/L, R= 0.992.
     3. Compared with single-aptamer strategy, dual-aptamer strategy has higher affinity and selectivity and the employment of dual-aptamer strategy will dramatically increase the sensitivity and selectivity of aptamer-assays. Herein, dual-aptamer strategy was introduced to multi-targets analysis to solve the problem that limited the application of multi-targets analysis. Three targets, including ATP, thrombin and prion protien, are all related to diseases were selected for multi-targets analysis in this contribution. The results show that the detection of thrombin, ATP and PrP could be achieved simultanously in the same sample, and the analoges of the three targets such as adenosine, guanine, thymidine, IgG, snailase, BSA have on cross-reaction on the detection of targets, indicating the high selectivity of dual-aptamer strategy for multi-target analysis.
     4. Dual-aptamer logic gate for the discrimination of prion-diseases-associated isoform. As the extension of logic gate, molecular logic gate that performs one or more inputs resulting from complex biological or chemical processes and produces a single output through logic operation, leaving the diagnosis of disease either "yes" or "no". Combining the advanteges of logic gate and dual-aptamer strategy, a dual-aptamer logic gate that is capable of OR and XOR logic operations (PrPc behaviors XOR logic operation while PrP~(Res) represents OR logic operation) has been designed. Compared with convential discrimination assays, the present dual-aptamer logic gate possesses the following advantages. Firstly, the dual-aptamer strategy could achieve highly selective discrimination of PrPRes in serum without isolation of target proteins prior to assay. Secondly, the dual-aptamer logic gate is simple and could be applied for prion diseases-associated isoform discrimination. Thirdly, the inputs (PrP and Gdn-HCl) and gates (MMPs-Apt1 and QDs-Apt2) used here are all cost-saving and chemical stable molecules, which are crucial for the development of smaller, more effective molecular-scaled computers. Fourthly, the gate (MMPs-Apt1) could be reused without loss of sensitivity since it only includes a surface-tethered monolayer of Apt1 without preferred conformation.
     5. Spectra characterization of the conformational changes of human cellular prion protein induced by heparin. Glycosaminoglycans(GAGs) is a ligand that distributes both in cell membrane surface and in endosomes. Up to now, the role of GAGs played in prions is still in controversy. By using heparin as an example, we investigated the interaction of GAGs and recombinant human cellular prion protein (rhPrP~C_(23-231)) by measuring the spectral features of the resonance light scattering (RLS), fluorescence and circular dichroism (CD). It was found that the intensity of both RLS and fluorescence get increased when the interaction of heparin with rhPrP~C_(23-231) occurred and RLS intensities have good relationship with the concentration of rhPrP~C_(23-231) ranging from 0.41 to 16.46μg/mL, with R=0.999. Meanwhile, the interaction between rhPrP~C_(23-231)and heparin make the fluorescence lifetime of rhPrP~C_(23-231) extend, and the CD spectra indicate that heparin could induce the conformation rich in alfa-helix change to conformation rich in beta-sheet.
     In summary, we have developed a serial of prion protein detection methods based on aptamers. All of these methods are simple, fast, cost-saving and sensitivity, especially the dual-aptamer logic gate which are ultra-sensitive and selective for prion protein discrimination might further be applied to prion diseases pre-symptomatic diagnostical. Also, the researches present here extend the application of aptamers in diseases diagnosis.
引文
[1]Schneider, K.; Fangerau, H.; Michaelsen, B.; Raab, W. H. M., The early history of the transmissible spongiform encephalopathies exemplified by scrapie. Brain Research Bulletin 2008,77 (6),343-355.
    [2]Gajdusek, D. C.; Gibbs, C. J.; Asher, D. M., Transmission of experimental Kuru to the spider monkey. Science 1968,162,699-694.
    [3]Prusiner, S. B., Prion diseases and BSE crisis. Science 1997,278,245-246.
    [4]Prusiner, S. B., Prions. Proc. Natl. Acad. Sci.1998,95,13363-13383.
    [5]Choi, C. J.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A. G., Interaction of metals with prion protein: Possible role of divalent cations in the pathogenesis of prion diseases. NeuroToxicology 2006,27,777-787.
    [6]Milhavet,O.; Lehmann, S., Oxidative stress and the prion protein in ransmissible spongiform encephalopathies. Brain Res. Rev.2002,38,328-339.
    [7]Zomosa-Signoret, V.; Arnaud, J. D.; Fontes, P.; Alvarez-Martinez, M. T.; Liautard, J. P., Physiological role of the cellular prion protein. Vet. Res.2008,39 (4),9.
    [8]Brown, D. R.; Clive, C.; Haswell, S. J., Antioxidant activity related to copper binding of native prion protein. J. Neurochem. 2001,7669-76.
    [9]Brown, D. R.; Wong, B.-S.; Hafiz, F.; Clive, C.; Haswell, S. J.; Jones, I. M., Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 1999,344,1-5.
    [10]Brown, D. R.; Besinger, A., Prion protein expression and superoxide dismutase activity. Biochem. J.1998,334,423-429.
    [11]Klamt, F.; Dal-Pizzol, F.; Frota, M. L. C. d.; Walz, R.; Andrades, M. E.; Silva, E. G. d.; Brentani, R. R.; Izquierdo, I.; Moreira, J. C. F., Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radical Biol. Med. 2001,30,1137-1144.
    [12]B. Halliwell, Oxidative stress and neurodegeneration:where are we now? J. Neurochem. 2006,97,1634-1658.
    [13]Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D., The role of copper in neurodegenerative disease. Neurobiol. Dis.1999,6,221-230.
    [14]Vassallo, N.; Herms, J., Cellular prion protein function in copperhomeostasis and redox signalling at the synapse. J. Neurochem.2003,86,538-544.
    [15]Hooper, N. M; Taylor, D. R.; Watt, N. T., Mechanism of the metal-mediated endocytosis of the prion protein. Biochemical Society Transactions 2008,036 (6), 1272-1276.
    [16]Drago, D.; Bolognin, S.; Zatta, P., Role of metal ions in the abeta oligomerization in Alzheimer's disease and in other neurological disorders. Curr Alzheimer Res.2008, 5(6),500-507.
    [17]Brown, D. R.; Qin, K. F.; Herms, J. W.; Madlung, A.; Manson, J.; Strome, R.; Fraser, P. E.; Kruck, T.; Vonbohlen, A.; Schulzschaeffer, W.; Giese, A.; Westaway, D.; Kretzschmar, H., The cellular prion protein binds copper in vivo. Nature 1997,390, 684-687.
    [18]Jackson, G. S.; Murray, I.; Hosszu, L. L.; Gibbs, N.; J.P.Waltho; Clarke, A. R.; Collinge, J., Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci.2001,98,8531-8535.
    [19]Kramer, M. L.; Kratzin, H. D.; Schmidt, B.; A. Romer, O. W.; Liemann, S.; Hornemann, S.; Kretzschmar, H., Prion protein binds copper within the physiological concentration range. J. Biol. Chem.2001,276,16711-16719.
    [20]Stockel, J.; Safar, J.; C.Wallace, A.; Cohen, F. E.; Prusiner, S. B., Prion protein selectively binds copper(Ⅱ) ions. Biochemistry 1998,37,7185-7193.
    [21]Jones, C. E.; Klewpatinond, M.; Abdelraheim, S. R.; Brown, D. R.; Viles, J. H., Probing copper~(2+) binding to the prion protein using diamagnetic nickel~(2+) and ~1H NMR: the unstructured N terminus facilitates the coordination of six copper~(2+) ions at physiological concentrations. J. Mol Biol.2005,346,1393-1407.
    [22]Jones, C. E.; Abdelraheim, S. R.; Brown, D. R.; Viles, J. H., Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J. Biol. Chem.2004,279,32018-32027.
    [23]Leclerc, E.; Serban, H.; Prusiner, S. B.; Burton, D. R.; R. A. Williamson, Copper induces conformational changes in the N-terminal part of cellsurface PrP(C). Arch. Virol.2006,151,2103-2109.
    [24]Quaglio, E.; Chiesa, R.; Harris, D. A., Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J. Biol. Chem. 2001,276,11432-11438.
    [25]Pauly, P. C.; Harris, D. A., Copper stimulates endocytosis of the prion protein. J. Biol. Chem.1998,273,33107-33110.
    [26]Brown, L. R.; Harris, D. A., Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J. Neurochem.2003,87,353-363.
    [27]Perera, W. S.; Hooper, N. M., Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr. Biol. 2001,11,519-523.
    [28]Herms, J.; Tings, T.; Gall, S.; Madlung, A.; Giese, A.; Siebert, H.; Schurmann, P.; Windl,O.; Brose, N.; Kretzschmar, H., Evidence of presynaptic location and function of the prion protein. J. Neurosci.1999,19,8866-8875.
    [29]Aguzzi, A.; Polymenidou, M., Mammalian prion biology:one century of evolving concepts. Cell 2004,116,313-327.
    [30]Harris, D. A., Trafficking, turnover and membrane topology of PrP. Br. Med. Bull. 2003,66,71-85.
    [31]Taylor, D. R.; Whitehouse, I. J.; Hooper, N. M., Glypican-1 mediates both prion protein lipid raft association and disease isoform formation. PLoS Pathog 2009,5(11), e1000666.
    [32]Mironov, A., Cytosolic prion protein in neurons. J. Neurosci.2003,23, 7183-7193.
    [33]Caughey, B.; Raymond, G. J., The scrapie-associated form of PrP is made from a cellsurface precursor that is both protease- and phospholipase-sensitive. J. Biol. Chem. 1991,266, 8217-18223.
    [34]Jeffrey, M., Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. Neurosci. Lett.1992,147,106-109.
    [35]Arnold, J. E., The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. J. Pathol.1995,176, 403-411.
    [36]McKinley, M. P., Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab. Invest.1991,65,622-630.
    [37]Ma, J.; Lindquist, S., Conversion of PrP to a selfperpetuating PrP~(Sc)-like conformation in the cytosol. Science 2002,298,1785-1788
    [38]Prado, M. A., PrP~C on the road:trafficking of the cellular prion protein. J. Neurochem.2004,88,769-781.
    [39]D. R. Borchelt, Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem.1992,267,16188-16199.
    [40]Cohen, F. E.; Prusiner, S. B., Pathologic conformations of prion proteins. Annu. Rev. Biochem.1998,67,793-819
    [41]Caughey, B., Interactions and conversions of prion protein isoforms. Adv. Protein Chem.2001,57,139-169.
    [42]Soto, C., Diagnosing prion diseases:needs, challenges and hopes. Nature Reviews 2004,2,809-819.
    [43]Grassi, J.; Maillet, S.; Simon, S.; Morel, N., Progress and limits of TSE diagnostic tools. Vet. Res.2008,39,33.
    [44]Wells, G. A.; Wilesmith, J. W., The neuropathology and epidemiology of bovine spongiform encephalopathy. Brain Pathol.1995,5,91-103.
    [45]Keulen, L. J. v.; Schreuder, B. E.; Meloen, R. H.; Mooij-Harkes, G.; Vromans, M. E.; Langeveld, J. P., Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J. Clin. Microbiol. 1996,34,1228-1231.
    [46]Keulen, L. J. v.; Schreuder, B. E.; Meloen, R. H.; den, B. M. P.-v.; Mooij-Harkes, G.; Vromans, M. E.; Langeveld, J. P., Immunohistochemical detection and localization of prion protein in brain tissue of sheep with natural scrapie. Vet. Pathol.1995,32, 299-308.
    [47]Sasaki, K.; Minaki, H.; Iwaki, T., Development of oligomeric prion-protein aggregates in a mouse model of prion disease. J. Pathol.2009,219(1),123-130.
    [48]Simmons, M. M.; Spiropoulos, J.; Hawkins, S. A. C.;.Bellworthy, S. J.; Tongue, S. C., Approaches to investigating transmission of spongiform encephalopathies in domestic animals using BSE as an exemple. Vet. Res.2008,39,34.
    [49]Telling, G. C., Transgenic mouse models of prion diseases Methods Mol. Biol. 2008,459,249-263.
    [50]Bendheim, P. E.; Bolton, D. C., A 54-kDa normal cellular protein may be the precursor of the scrapie agent protease-resistant protein. Proc. Natl. Acad. Sci. USA 1986,83,2214-2218.
    [51]Stack, M.; Jeffrey, M.; Gubbins, S.; Grimmer, S.; Gonzalez, L.; Martin, S., Monitoring for bovine spongiform encephalopathy in sheep in Great Britain1998-2004. J. Gen. Virol.2006,87,2099-2107.
    [52]Stack, M. J.; Chaplin, M. J.; Clark, J., Differentiation of prion protein glycoforms from naturally occurring sheep scrapie, sheep-passaged scrapie strains (CH1641 and SSBP1), bovine spongiform encephalopathy (BSE) cases and Romney and Cheviot breed sheep experimentally inoculated with BSE using two monoclonal antibodies. Acta Neuropathol. (Berl.) 2002, 104,279-286.
    [53]Bird, S. M., European Union's rapid TSE testing in adult cattle and sheep: implementation and results in 2001 and 2002. Stat. Methods Med. Res.2003,12, 261-278.
    [54]Butler, D., Brussels seeks BSE diagnostic test to screen European cattle. Nature 1998,395,205-206.
    [55]Heim, D.; Wilesmith, J. W., Surveillance of BSE. Arch. Virol. Suppl.2000, 127-133.
    [56]Moynagh, J.; Schimmel, H., Tests for BSE evaluated. Nature 1999,400,105.
    [57]Moynagh, J.; Schimmel, H. The evaluation of tests for the diagnosis of transmissible spongiform encephalopathy in bovines. Report from the European Commission. [online] July 8,1999, (1999).
    [58]Schimmel, H., The evaluation of five rapid tests for the diagnosis of transmissible spongiform encephalopathy in bovines (2nd study). Report from the European Commission. [online] March 27,2002, 2002.
    [59]Schaller, O., Validation of a western immunoblotting procedure for bovine PrPSc detection and its use as a rapid surveillance method for the diagnosis of bovine spongiform encephalopathy (BSE). Acta Neuropathol. (Berl.) 1999,98,437-443
    [60]Oesch, B., Application of prionics Western blotting procedure to screen for BSE in cattle regularly slaughtered at Swiss abattoirs. Arch. Virol. Suppl.2000,189-195.
    [61]Grassi, J.; Creminon, C.; Frobert, Y.; Fretier, P.; Turbica, I.; Rezaei, H., Specific determination of the proteinase K-resistant form of the prion protein using two-site immunometric assays:Application to the post-mortem diagnosis of BSE. Arch. Virol. Suppl.2000,16,197-205.
    [62]Grassi, J., Rapid test for the preclinical postmortem diagnosis of BSE in central nervous system tissue. Vet. Rec 2001,149,577-582.
    [63]Deslys, J. P.; Comoy, E.; Hawkins, S.; Simon, S.; Schimmel, H.; Wells, G., Screening slaughtered cattle for BSE. Nature 2001,409.
    [64]Biffiger, K., Validation of a luminescence immunoassay for the detection of PrP~(Sc) in brain homogenate. J. Virol. Meth.2002,101,79-84.
    [65]Safar, J., Eight prion strains have PrP~(Sc) molecules with different conformations. Nature Med.1998,4,1157-1165.
    [66]Safar, J. G., Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nature Biotechnol. 2002,20,1147-1150.
    [67]Ryuichiro Atarashil; Moore, R. A.; Sim, V. L.; Hughson, A. G.; Dorward, D. W.; Onwubiko, H. A.; Priola, S. A.; Caughey, B., Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nature Methods 2007,4 (8),645-650.
    [68]Schiermeier, Q., Testing times for BSE. Nature 2001,409,658-659.
    [69]Coste, J.; Prowse, C.; Eglin, R.; Fang, C., A report on transmissible spongiform encephalopathies and transfusion safety. Vox Sanguinis 2009,96 (4),284-291.
    [70]Brooks, B.; Brooks, A.; Wulff, S. S.; Lewis, R. V., Identification of problems developing an ultrasensitive immunoassay for the ante mortem detection of the fnfectious isoform of the CWD-associated prion protein. J. Immunoassay Immunochem. 2009,30(2),135-149.
    [71]Ingrosso, L.; Vetrugno, V.; Cardone, F.; Pocchiari, M., Molecular diagnostics of transmissible spongiform encephalopathies. Trends Mol. Med.2002,8,273-280.
    [72]Brown, P.; Cervenakova, L.; Diringer, H., Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J. Lab. Clin. Med.2001,137, 5-13.
    [73]Notari, S.; Moleres, F. J.; Hunter, S. B.; Belay, E. D.; Schonberger, L. B.; Cali, I.; Parchi, P.; Shieh, W.-J.; Brown, P.; Zaki, S.; Zou, W.-Q.; Gambetti, P., Multiorgan detection and characterization of protease-resistant prion protein in a case of variant CJD examined in the United States. PLoS ONE 2010,5(1), e8765.
    [74]Collinge, J., Variant Creutzfeldt-Jakob disease. Lancet 1999,354,317-323
    [75]Wadsworth, J. D. F.; Joiner, S.; Hill, A. F.; Campbell, T. A.; Desbruslais, M.; Luthert, P. J.; Collinge, J., Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 2001,358(9277),171-180.
    [76]Brown, P., Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurol. 2000, 55,1075-1081.
    [77]Llewelyn, C. A., Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 2004,363,417-421.
    [78]Hunter, N., Transmission of prion diseases by blood transfusion. J. Gen. Virol. 2002,83,2897-2905.
    [79]Houston, F.; Foster, J. D.; Chong, A.; Hunter, N.; Bostock, C. J., Transmission of BSE by blood transfusion in sheep. Lancet 2000,356,999-1000.
    [80]Crozet, C.; Lehmann, S., Prions:where do we stand 20 years after the appearance of bovine spongiform encephalopathy? Med. Sci. (Paris) 2007,23 (12),1148-1157.
    [81]Sakaguchi, S., Systematic review of the therapeutics for prion diseases. Brain Nerve.2009,61 (8),929-938.
    [82]Field, E. J.; Shenton, B. K., Rapid diagnosis of scrapie in the mouse. Nature 1972, 240,104-106.
    [83]Brown, P., The risk of blood-borne Creutzfeldt-Jakob disease. Dev. Biol. Stand. 2000,102,53-59.
    [84]Aguzzi, A., Prion diseases, blood and the immune system:concerns and reality. Haematologica 2000,85,3-10.
    [85]Hill, A. F.; Zeidler, M.; Ironside, J.; Collinge, J., Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 1997,349,99-100.
    [86]Hill, A. F., Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 1999,353,183-189.
    [87]Hilton, D. A.; Fathers, E.; Edwards, P.; Ironside, J. W.; Zajicek, J., Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt-Jakob disease. Lancet 1998,352,703-704.
    [88]Schreuder, B. E.; Keulen, L. J. v.; Vromans, M. E.; Langeveld, J. P.; Smits, M. A., Preclinical test for prion diseases. Nature 1996,381,563
    [89]Furukawa, H., A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine:contamination with bacterial outer membrane proteins. J. Biol. Chem.2004,279,23661-23667
    [90]Zhang, W.; Wu, J.; Li, Y.; Carke, R. C.; Wong, T., The In Vitro bioassay systems for the amplification and detection of abnormal prion PrP~(Sc) in blood and tissues. Transf. Med. Rev.2008,22 (3),234-242.
    [91]Groschup, M. H.; Harmeyer, S.; Pfaff, E., Antigenic features of prion proteins of sheep and of other mammalian species. J. Immunol. Methods 1997,207,89-101.
    [92]Korth, C., Prion (PrP~(Sc))-specific epitope defined by a monoclonal antibody. Nature 1997,390,74-77.
    [93]Korth, C.; Streit, P.; Oesch, B., Monoclonal antibodies specific for the native, disease-associated isoform of the prion protein. Methods Enzymol.1999,309,106-122.
    [94]Paramithiotis, E., A prion protein epitope selective for the pathologically misfolded conformation. Nature Med.2003,9,893-899.
    [95]Curin, S., Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt-Jacob's disease-affected and normal brain tissue. J. Biol. Chem.2004,279,3694-3698.
    [96]Zou, W. Q.; Zheng, J.; Gray, D. M.; Gambetti, P.; Chen, S. G., Antibody to DNA detects scrapie but not normal prion protein. Proc. Natl Acad. Sci. USA 2004,101, 1380-1385.
    [97]Kramer, M. L.; Bartz, J. C., Rapid, high-throughput detection of PrPSc by 96-well immunoassay. Prion 2009,3 (1),44-48.
    [98]Miller, A. E.; Hollars, C. W.; Lane, S. M.; Laurence, T. A., Fluorescence cross-correlation spectroscopy as a universal method for protein detection with low false positives. Anal. Chem.2009,81 (14),5614-5622.
    [99]Krafft, C.; Steiner, G.; Beleites, C.; Salzer, R., Disease recognition by infrared and Raman spectroscopy. J. Biophoton.2009,2 (1-2),13-28.
    [100]Lindgren, M.; Hammarstrom, P., Amyloid oligomers:spectroscopic characterization of amyloidogenic protein states. FEBS J.2010,277 (6),1380-1388.
    [101]Wan, J.; Wang, X.; Li, J.; Liu, W.; Xu, M.; Liu, L.; Xu, J.; Wang, H.; Gao, H., A rapid method for detection of PrP by surface plasmon resonance (SPR). Arch. Virol. 2009,154,1901-1908.
    [102]Rubenstein, R.; Gray, P. C.; Wehlburg, C. M.; Wagner, J. S.; Tisone, G. C., Detection and discrimination of PrP~(Sc) by multi-spectral ultraviolet fluorescence. Biochem. Biophys. Res. Commun.1998,246,100-106.
    [103]Fujii, F.; Horiuchi, M.; Ueno, M.; Sakata, H.; Nagao, I.; Tamura, M.; Kinjo, M., Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal. Biochem.2007,370,131-141.
    [104]Bieschke, J., Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc. Natl Acad. Sci. USA 2000,97,5468-5473
    [105]Kneipp, J.; Lasch, P.; Baldauf, E.; Beekes, M.; Naumann, D., Detection of pathological molecular alterations in scrapieinfected hamster brain by Fourier transform infrared (FT-IR) spectroscopy. Biochim. Biophys. Acta 2000,1501,189-199.
    [106]Lasch, P., Ante-mortem identification of bovine spongiform encephalopathy from serum using infrared spectroscopy. Anal. Chem.2003,75,6673-6678.
    [107]Kneipp, J.; Beekes, M.; Lasch, P.; Naumann, D., Molecular changes of preclinical scrapie can be detected by infrared spectroscopy. J. Neurosci.2002,22, 2989-2997.
    [108]Jackman, R.; Schmerr, M. J., Analysis of the performance of antibody capture methods using fluorescent peptides with capillary zone electrophoresis with laser-induced fluorescence. Electrophoresis 2003,24,892-896.
    [109]Yang, W.-C.; Schmerr, M. J.; Jackman, R.; Bodemer, W.; Yeung, E. S., Capillary electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein A as a fluorescent probe. Anal. Chem.2005,77, 4489-4494.
    [110]Cervenakova, L., Failure of immunocompetitive capillary electrophoresis assay to detect disease-specific prion protein in buffy coat from humans and chimpanzees with Creutzfeldt-Jakob disease. Electrophoresis 2003,24,853-859.
    [111]Skaat, H.; Margel, S., Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-[beta] fibrils detection and removal by a magnetic field. Biochem. Biophys. Res. Commun.2009,386 (4),645-649.
    [112]Lodi, R.; Parchi, P.; Tonon, C.; Manners, D.; Capellari, S.; Strammiello, R.; Rinaldi, R.; Testa, C.; Malucelli, E.; Mostacci, B.; Rizzo, G.; Pierangeli, G.; Cortelli, P.; Montagna, P.; Barbiroli, B., Magnetic resonance diagnostic markers in clinically sporadic prion disease:a combined brain magnetic resonance imaging and spectroscopy study. Brain; 2009,132 (2669-2679).
    [113]Meissner, B.; Kallenberg, K.; Sanchez-Juan, P.; Ramljak, S.; Krasnianski, A.; Heinemann, U.; Eigenbrod, S.; Gelpi, E.; Barsic, B.; Kretzschmar, H. A.; Schulz-Schaeffer, W. J.; Knauth, M.; Zerr, I., MRI and clinical syndrome in dura materrelated Creutzfeldt-Jakob disease. J. Neurol 2009,256,355-363.
    [114]Golanska, E.; Gresner, S.; Sieruta, M.; Liberski, P., Cerebrospinal fluid markers of prion diseases. Neurol Neurochir Pol.2008,42 (5),441-450.
    [115]Huzarewich, R. L. C. H.; Siemens, C. G.; Booth, S. A., Application of "omics" to prion biomarker discovery. J Biomed Biotechnol.2010,2010,613504.
    [116]Maissen, M.; Roeckl, C.; Glatzel, M.; Goldmann, W.; Aguzzi, A., Plasminogen binds to disease-associated prion protein of multiple species. Lancet 2001, 357 (9273),2026-2028.
    [117]Fischer, M. B.; Roeckl, C.; Parizek, P.; Schwarz, H. P.; Aguzzi, A., Binding of disease-associated prion protein to plasminogen. Nature 2000,408 (6811),479-483.
    [118]Shaked, Y.; Engelstein, R.; Gabizon, R., The binding of prion proteins to serum components is affected by detergent extraction conditions. J. Neurochem.2002, 82,1-5.
    [119]Kornblatt, J. A., The fate of the prion protein in the prion/plasminogen complex.. Biochem. Biophys. Res. Commun.2003,305,518-522.
    [120]Gonzalez-Iglesias, R.; Pajares, M. A.; Ocal, C.; Espinosa, J. C.; Oesch, B.; Gasset, M., Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J. Mol. Biol. 2002, 319 (2),527-540.
    [121]Warner, R. G.; Hundt, C.; Weiss, S.; Turnbull, J. E., Identification of the heparan sulfate binding sites in the cellular prion protein. J. Biol. Chem.2002,277(21), 18421-18430.
    [122]Hijazi, N.; Kariv-Inbal, Z.; Gasset, M.; Gabizon, R., PrP~(Sc) incorporation to cells requires endogenous glycosaminoglycan expression. J. Biol. Chem.2005,280 (17),17057-17061.
    [123]Horonchik, L.; Tzaban, S.; Ben-Zaken, O.; Yedidia, Y.; Rouvinski, A.; Papy-Garcia, D.; Barritault, D.; Vlodavsky, I.; Taraboulos, A., Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem.2005,280 (17), 17062-17067.
    [124]Mercey, R.; Lantier, I.; Maurel, M.-C.; Grosclaude, J.; Lantier, F.; Marc, D., Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns. Arch Virol 2006,51,2197-2214.
    [125]Gilch, S.; Scha(?)tzl, H. M., Aptamers against prion proteins and prions. Cell. Mol. Life Sci.2009,66,2445-2455.
    [126]Proske, D.; Gilch, S.; Wopfner, F.; Sch, H. M.; Winnacker, E.-L.; Famulok, M., Prion-protein-specific aptamer reduces PrP~(Sc) formation. ChemBioChem.2002,3, 717-725.
    [127]Takemura, K.; Wang, P.; Vorberg, I.; Surewicz, W.; Priola, S. A.; Kanthasamy, A.; Pottathil, R.; Chen, S. G.; Sreevatsan, S., DNA aptamers that bind to PrPc and Not PrP~(Sc)show sequence and structure specificity. Exp Biol Med 2006,231, 204-214.
    [128]Ogasawara, D.; Hasegawa, H.; Kaneko, K.; Sode, K.; Ikebukuro, K., Screening of DNA aptamer against mouse pprion protein by competitive selection. Prion 2007,1 (4),248-254.
    [129]Rhie, A.; Kirby, L.; Sayer, N.; Wellesley, R.; Disterer, P.; Sylvester, I.; Gill, A.; Hope, J.; James, W.; Tahiri-Alaoui, A., Characterization of 2-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and Inhibit conversion. J. Biol. Chem. 2003,278 (41),39697-39705.
    [130]Sayer, N. M.; Cubin, M.; Rhie, A.; Bullock, M.; Tahiri-Alaoui, A.; James, W., Structural determinants of conformationally selective prion-binding aptamers. J. Biol. Chem.2004,279(13),13102-13109.
    [131]Sekiya, S.; Noda, K.; Nishikawa, F.; Yokoyama, T.; Kumar, P. K. R.; Nishikawa, S., Characterization and application of a novel RNA aptamer against the mouse prion protein. J. Biochem.2006,139,383-390.
    [132]Gilch, S.; Kehler, C.; Schatzl, H. M., Peptide aptamers expressed in the secretory pathway interfere with cellular PrP~(Sc) formation. J. Mol. Biol.2007,371, 362-365.
    [133]King, D. J.; Safar, J. G.; Legname, G.; Prusiner, S. B., Thioaptamer interactions with prion proteins:sequence-specific and non-specific binding sites. J. Mol. Biol.2007,369,1001-1014.
    [134]Safar, J. G.; Kellings, K.; Serban, A.; Groth, D.; Cleaver, J. E.; Prusiner, S. B.; Riesner, D., Search for a prion-specific nucleic acid. J. Virol. 2005,79 (16), 10796-10806.
    [135]Sekiya, S.; Nishikawa, F.; Noda, K.; Kumar, P. K. R.; Yokoyama, T.; Nishikawa, S., In vitro selection of RNA aptamers against cellular and abnormal isoform of mouse prion protein. Nucleic Acids Symp. Ser.2005,49,361-362.
    [136]Gilch, S.; Nunziante, M.; Ertmer, A.; Schatzl, H. M., Strategies for eliminating PrP~c as substrate for prion conversion and for enhancing PrP~(Sc) degradation. Vet. Microbiol.2007,123 (4),377-386.
    [137]Weiss, S.; Proske, D.; Neumann, M.; Groschup, M. H.; Kretzschmar, H. A.; Famulok, M.; Winnacker, E.-L., RNA aptamers specifically interact with the prion protein PrP. J. Virol.1997,71,8790-8797.
    [138]Bibby, D. F.; Gill, A. C.; Kirby, L.; Farquhar, C. F.; Bruce, M. E.; Garson, J. A., Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J. Virol.Meth.2008,151, 107-115.
    [139]Kouassi, G. K.; Wang, P.; Sreevatan, S.; Irudayaraj, J., Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol. Progress 2007,23,1239-1244.
    [140]Hianik, T.; Porfireva, A.; Grman, I.; Evtugyn, G., EQCM biosensors based on DNA aptamers and antibodies for rapid detection of prions. Prot. Pept. Lett.2009,16 (4),363-367.
    [141]Castilla, J.; Saa, P.; Morales, R.; Abid, K.; Maundrell, K.; Soto, C., Protein misfolding cyclic amplification for diagnosis and prion propagation studies. In Meth. Enzymol., Indu, K.; Ronald, W., Eds. Academic Press:2006; Vol. Volume 412, pp 3-21.
    [142]Korth, C.; Kaneko, K.; Groth, D.; Heye, N.; Telling, G.; Mastrianni, J.; Parchi, P.; Gambetti, P.; Will, R.; Ironside, J.; Heinrich, C.; Tremblay, P.; DeArmond, S. J.; Prusiner, S. B., Abbreviated incubation times for human prions in mice expressing a chimeric mouse-human prion protein transgene. Proc. Nat l Acad. Sci USA.2003,100 (8),4784-4789.
    [143]Atarashi, R., Recent advances in cell-free PrP~(Sc) amplification technique. Prot. Pept Lett.2009,16 (3),256-259.
    [144]Saborio, G. P.; Permanne, B.; Soto, C., Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001,411, 810-813.
    [145]Bieschke, J.; Weber, P.; Sarafoff, N.; Beekes, M.; Giese, A.; Kretzchmar, H., Autocatalytic self-propagation of misfolded prion protein. Proc. Natl Acad. Sci. USA 2004,101(33),12207-12211.
    [146]Thorne, L.; Terry, L. A., In vitro amplification of PrP~(Sc) derived from the brain and blood of sheep infected with scrapie J. Gen. Virol. 2008,89,3177-3184.
    [147]Jones, M.; Peden, A. H.; Yull, H.; Wight, D.; Bishop, M. T.; Prowse, C. V.; Turner, M. L.; Ironside, J. W.; MacGregor, I. R.; Head, M. W., Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP~(Sc)) associated with variant Creutzfeldt-Jakob disease. Transfusion 2009,49 (2),376-384.
    [148]Mays, C. E.; Titlow, W.; Seward, T.; Telling, G. C.; Ryou, C., Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem. Biophys. Res. Commun.2009,388 (2),306-310.
    [149]Atarashi, R.; Moore, R. A.; Sim, V. L.; Hughson, A. G.; Dorward, D. W.; Onwubiko, H. A.; Priola, S. A.; Caughey, B., Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nature Methods 2007,4 (8),645-650.
    [150]Klohn, P. C.; Stoltze, L.; Flechsig, E.; Enari, M.; Weissmann, C., A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc. Natl Acad. Sci. USA 2003,100,11666-11671.
    [151]Bedecs, K., Cell culture models to unravel prion protein function and aberrancies in prion diseases. Methods Mol. Biol.2008,459,1-20.
    [152]谢海燕;陈薛钗;邓玉林,核酸适配体及其在化学领域的相关应用.化学进展2007,19(6),1026-1033.
    [153]Klussmann, S., The aptamer handbook-Functional Oligonucleotides and Their Applications. Wiley-VCH Verlag GmH&Co. KGaA Weinheim 2006, pp 158.
    [154]Wang, W. J.; Chen, C. L.; Qian, M. X.; Zhao, X. S., Aptamer biosensor for protein detection using gold nanoparticles. Anal. Biochem.2008,373 (2),213-219.
    [155]Hu, J.; Zheng, P. C.; Jiang, J. H.; Shen, G. L.; Yu, R. Q.; Liu, G. K., Electrostatic interaction based approach to thrombin detection by surface-enhanced raman spectroscopy. Anal. Chem.2009,81 (1),87-93.
    [156]Johnson, S.; Evans, D.; Laurenson, S.; Paul, D.; Davies, A. G.; Ferrigno, P. K.; lti, C. W., Surface-immobilized peptide aptamers as probe molecules for protein detection. Anal. Chem.2008,80,978-983.
    [157]Cheng, A. K. H.; Sen, D.; Yu, H.-Z., Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochem.2009,77 (1),1-12.
    [158]Huang, H.; Zhu, J.-J., DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens. Bioelectron.2009,25 (4),927-930.
    [159]Li, W.; Yang, X.; Wang, K.; Tan, W.; He, Y.; Guo, Q.; Tang, H.; Liu, J., Real-time imaging of protein internalization using aptamer conjugates. Anal. Chem. 2008,80,5002-5008.
    [160]Walther, C.; Meyer, K.; Rennert, R.; Neundorf, I., Quantum dot#carrier peptide conjugates suitable for imaging and delivery applications. Bioconjugate Chem. 2008.
    [161]Wang, A. Z.; Bagalkot, V.; Vasilliou, C. C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M. J.; Langer, R.; Kantoff, P. W.; Bander, N. H.; Jon, S. Y.; Farokhzad, O. C., Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. Chemmedchem 2008, 3(9),1311-1315.
    [162]Chen, L. Q.; Xiao, S. J.; Peng, L.; Wu, T.; Ling, J.; Li, Y. F.; Huang, C. Z., Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J Phys. Chem. B 2010,114,3655-3659.
    [163]Kang, W. J.; Chae, J. R.; Cho, Y. L.; Lee, J. D.; Kim, S., Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small 2009,22,2519-2522.
    [164]Huang, Y.-F.; Huan-Tsung Chang; Tan, W., Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem.2008,80,567-572.
    [165]Smith, J. E.; Medley, C. D.; Tang, Z. W.; Shangguan, D.; Lofton, C.; Tan, W. H., Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem.2007,79(8),3075-3082.
    [166]Chen, X. L.; Huang, Y. F.; Tan, W. H., Using Aptamer-nanoparticle conjugates for cancer cells detection. J. Biomed. Nanotechnol.2008,4 (4),400-409.
    [167]Bagalkot, V.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett.2007,7 (10), 3065-3070.
    [168]Guo, P. X., RNA nanotechnology:Engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol.2005,5 (12), 1964-1982.
    [169]Gu, F.; Zhang, L.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C., Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci.2008,105 (7), 2586-2591.
    [170]Wang, Y.; Li, J.; Jin, J.; Wang, H.; Tang, H.; Yang, R.; Wang, K., Strategy for molecular beacon binding readout:separating molecular recognition element and signal reporter. Anal. Chem.2009,81 (23),9703-9709.
    [171]Wang, W.; Chen, C.; Qian, M. X.; Zhao, X. S., Aptamer biosensor for protein detection based on guanine-quenching. Sens. Act. B 2008,129,211-217.
    [172]Ivanova, A.; Jezierski, G.; Vladimirov, E.; Ro(?)sch, N., Structure of rhodamine 6G-DNA complexes from molecular dynamics simulations. Biomacromol.2007,8, 3429-3438.
    [173]Unruh, J. R.; Gokulrangan, G.; Lushington, G. H.; Johnson, C. K.; Wilson, G. S., Orientational dynamics and dye-DNA interactions in a dye-labeled DNA aptamer. Biophys. J.2005,88,3455-3465.
    [174]Marine', N.; Friedrich, A.; Her, M. M.; Nolte, O.; Wolfrum, J. r.; Hoheisel, J. r. D.; Sauer, M.; Knemeyer, J.-P., Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Res.2006,34 (13), e90.
    [175]Torimura, M.; Kurata, S.; Yamada, K.; Yokomaku, T.; Kamagata, Y.; Kanagawa, T.; Kurane, R., Fluorescent-quenching phenomenon by photoinduced electron transfer between a fluorescence dye and a nucleotide base. Anal. Sci.2001,17, 155-160.
    [176]Stohr, K.; Hafner, B.; Nolte, O.; Wolfrum, J. r.; Sauer, M.; Herten, D.-P., Species-specific identification of mycobacterial 16S rRNA PCR amplicons using smart probes. Anal. Chem.2005,77,7195-7203.
    [177]Yu, S.-L.; Lei, J.; SY, M.-S.; Mei, F.-H.; Kang, S.-L.; Sun, G.-H.; Tien, P.; Wang, F.-S.; Xiao, G.-F., Polymorphisms of the PRNP gene in chinese populations and the identification of a novel insertion mutation. Eur. J. Hum. Genet.2004,12, 867-870.
    [178]Prusiner, S. B., Prion diseases and the BSE crisis. Science 1997,278,245.
    [179]So, H.-M.; Park, D.-W.; Jeon, E.-K.; Kim, Y.-H.; Kim, B. S.; Lee, C.-K.; Choi, S. Y.; Kim, S. C.; Chang, H.; Lee, J.-O., Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008,4 (2),197-201.
    [180]Phillips, J. A.; Lopez-Colon, D.; Zhu, Z.; Xu, Y.; Tan, W., Applications of aptamers in cancer cell biology. Anal. Chim. Acta 2008,621,101-108.
    [181]Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Pinal C. Patel; Mirkin, C. A., Aptamer nano-flares for molecular detection in living cells. Nano Lett.2009,9 (9), 3258-3261.
    [182]Ogasawara, D.; Hachiya, N. S.; Kaneko, K.; Sode, K.; Ikebukuro, K., Detection system based on the conformational change in an aptamer and its application to simple bound/free separation. Biosens. Bioelectron.2009,24 (5),1372-1376.
    [183]Yang, Y.; Yang, D.; Schluesener, H. J.; Zhang, Z., Advances in SELEX and application of aptamers in the central nervous system. Biomol. Eng.2007,24,583-592.
    [184]Lee, J.; Jun, H.; Kim, J., Polydiacetylene-liposome microarrays for selective and sensitive mercury(II) detection. Adv. Mater.2009,21,3674-3677.
    [185]Lin, Y.-W.; Ho, H.-T.; Huang, C.-C.; Chang, H.-T., Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic Acids Res.2008,36 (19), e123.
    [186]Ye, B.-C.; Yin, B.-C., Highly sensitive detection of mercury(Ⅱ) ions by fluorescence polarization enhanced by gold nanoparticles. Angew. Chem. Int. Ed.2008, 47,8386-8389.
    [187]Lee, J.-S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A., A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett.2008,.8 (2),529-533.
    [188]Georgieva, D.; Koker, M.; Redecke, L.; Perbandt, M.; Clos, J.; Bredehorst, R.; Genov, N.; Betzel, C., Oligomerization of the proteolytic products is an intrinsic property of prion proteins. Biochem. Biophys. Res. Commun.2004,323,1278-1286.
    [189]Freeman, R.; Finder, T.; Willner, I., Multiplexed analysis of Hg~(2+) and Ag~+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. Int. Ed.2009,48,3834-3837.
    [190]Li, J.; Yao, J.; Zhong, W., Membrane blotting for rapid detection of mercury(II) in water. Chem. Commun.2009,4962-4964.
    [191]Rex, M.; Hernandez, F. E.; Campiglia, A. D., Pushing the limits of mercury sensors with gold nanorods. Anal. Chem.2006,78,445-451.
    [192]Li, D.; Wieckowska, A.; Willner, I., Optical analysis of Hg~(2+) ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed.2008,47,3927-3931.
    [193]Wang, Y.; Li, Y. F.; Wang, J.; Sang, Y.; Huang, C. Z., End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(II) molecular recognition. Chem. Commun.2010,46,1332-1334.
    [194]Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Chem. Commun.2007,46, 6824-6828.
    [195]Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl Acad. Sci. USA 2006,103 (32), 11838-11843.
    [196]Heyduk, E.; Heyduk, T., Nucleic acid-based fluorescence sensors for detecting proteins. Anal. Chem.2005,77,1147-1156.
    [197]Zhang, Y.-L.; Huang, Y.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q., Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. J. Am. Chem. Soc.2007,129, 15448-15449.
    [198]Wang, Y.; Liu, B., Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 2009,25 (21),12787-12793.
    [199]Lee, W.; Obubuafo, A.; Lee, Y.-I.; Davis, L. M.; Soper, S. A., Single-pair fluorescence resonance energy transfer (spFRET) for the high sensitivity analysis of low-abundance proteins using aptamers as molecular recognition elements. J. Fluoresc. 2009.
    [200]Rinker, S.; Ke, Y.; Liu, Y.; Chhabra, R.; Yan, H., Self-assembled DNA nanostructures for distance dependent multivalent ligand-protein binding. Nat Nanotechnol.2008,3 (7),418-422.
    [201]Fredriksson, S.; Horecka, J.; Brustugun, O. T.; Schlingemann, J.; Koong, A. C.; Tibshirani, R.; Davis, R. W., Multiplexed proximity ligation assays to profile putative plasma biomarkers relevant to pancreatic and ovarian Cancer. Clin. Chem. 2008,54 (3),582-589.
    [202]Li, N.; Ho, C.-M., Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J. Am. Chem. Soc.2008,130 2380-2381.
    [203]Xu, Y.; Phillips, J. A.; Yan, J.; Li, Q.; Fan, Z. H.; Tan, W., Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem.2009,81,7436-7442.
    [204]Jang, K.-J.; Lee, H.; Jin, H.-L.; Park, Y.; Nam, J.-M., Restriction-enzyme-coded gold-nanoparticle probes for multiplexed DNA detection. Small 2009,5,2665-2669..
    [205]and, C. Y.; Irudayaraj, J., Multiplex biosensor using gold nanorods. Anal. Chem.2007,79,572-579.
    [206]Liu, J.; Lee, J. H.; Lu, Y., Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal. Chem. 2007,79,4120-4125.
    [207]Hu, P.; Huang, C. Z.; Li, Y. F.; Ling, J.; Liu, Y. L.; Fei, L. R.; Xie, J. P., Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization. Anal. Chem.2008,80, 1819-1823.
    [208]Kwon, Y.; Hara, C. A.; Knize, M. G.; Hwang, M. H.; Venkateswaran, K. S.; Wheeler, E. K.; Bell, P. M.; Renzi, R. F.; Fruetel, J. A.; Bailey, C. G., Magnetic bead based immunoassay for autonomous detection of toxins. Anal. Chem.2008,80 (22), 8416-8423.
    [209]Kim, J.-I.; Wang, C.; Kuizon, S.; Xu, J.; Barengolts, D.; Gray, P. C.; Rubenstein, R., Simple and specific detection of abnormal prion protein by a magnetic bead-based immunoassay coupled with laser-induced fluorescence spectrofluorometry. J. Neuroimmunol.2005,158,112-119.
    [210]Bruno, J. G.; Phillips, T.; Carrillo, M. P.; Crowell, R., Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for campylobacter detection. J. Fluoresc.2009,19 (3),427-435.
    [211]Santra, S.; Kaittanis, C.; Grimm, J.; Perez, J. M., Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009,5,1862-1868.
    [212]Campana, V.; Sarnataro, D.; Zurzolo, C., The highways and byways of prion protein trafficking. Trends Cell Biol.2005,15 (2),102-111.
    [213]Linden, R.; Martins, V. R.; Prado, M. A. M.; Cammarota, M.; Izquierdo, I.; Brentani, R. R., Physiology of the prion protein. Physiol Rev.2008,88,673-728.
    [214]Ross, E. D.; Minton, A.; Wickner, R. B., Prion domains:sequences, structures and interactions. Nature Cell Biol.2005,7 (11),1039-1044.
    [215]Kopito, R. R.; Ron, D., Conformational disease. Nature Cell Biol.2000,2, E207-E209.
    [216]Coleman, B. M.; Nisbet, R. M.; Han, S.; Roberto Cappai; Hatters, D. M.; Hill, A. F., Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence. Biochem. Biophys. Res. Commun.2009,380,564-568.
    [217]Bellon, A.; Seyfert-Brandt, W.; Lang, W.; Baron, H.; ner, A. G.; Vey, M., Improved conformation-dependent immunoassay:suitability for human prion detection with enhanced sensitivity. J. Gen. Virol.2003,84,1921-1925.
    [218]Biasini, E.; Medrano, A. Z.; Thellung, S.; Chiesa, R.; Harris, D. A., Multiple biochemical similarities between infectious and non-infectious aggregates of a prion protein carrying an octapeptide insertion. J. Neurochem.2007.
    [219]Saborio, G. P.; Permanne, B.; Soto, C., Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001,411 (6839), 810-813.
    [220]Vorberg, I.; Raines, A.; Story, B.; Priola, Suzette A., Susceptibility of common fibroblast eell Lines to transmissible spongiform encephalopathy agents. J. Infec. Dis.2004,189 (3),431-439.
    [221]Deonarine, A. S.; Clark, S. M.; Konermann, L., Implementation of a multifunctional logic gate based on folding/unfolding transitions of a protein. Future Gen. Comp. Sys.2003,19(1),87-97.
    [222]Konry, T.; Walt, D. R., Intelligent medical diagnostics via molecular logic. J. Am. Chem. Soc.2009,131 (37),13232-13233.
    [223]Miyoshi, D.; Inoue, M.; Sugimoto, N., DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew. Chem. Int. Ed.2006,45 (46),7716-7719.
    [224]Benenson, Y., RNA-based computation in live cells. Curr. Opin. Biotechnol. 2009,20 (4),471-478.
    [225]Chen, X.; Wang, Y.; Liu, Q.; Zhang, Z.; Fan, C.; He, L., Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. 2006,45(11),1759-1762.
    [226]Qu, D.-H.; Wang, Q.-C.; Tian, H., A Half Adder Based on a Photochemically Driven [2]Rotaxane13.Angew. Chem. Int. Ed.2005,44 (33),5296-5299.
    [227]Margulies, D.; Melman, G.; Shanzer, A., Fluorescein as a model molecular calculator with reset capability. Nat Mater 2005,4 (10),768-771.
    [228]Silva-Rocha, R.; de Lorenzo, V., Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett.2008,582 (8),1237-1244.
    [229]Koneracka, M.; Kopcansky, P.; Antalik, M.; Timko, M.; Ramchand, C. N.; Lobo, D.; Mehta, R. V.; Upadhyay, R. V., Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater.1999,201,427-430.
    [230]Liu, Z. L.; Liu, Y. J.; Yao, K. L.; Ding, Z. H.; Tao, J.; Wang, X., J. Mater. Synth. Process.2002,10,83-87.
    [231]Bocharova, O. V.; Breydo, L.; Parfenov, A. S.; Salnikov, V. V.; Baskakov, I. V., In vitro conversion of full-length mammalian prion protein produces amyloid Form with physical properties of PrP~(Sc). J. Mol. Biol.2005,346,645-659.
    [232]Leliveld, S. R.; Korth, C., The use of conformation-specific ligands and assays to dissect the molecular mechanisms of neurodegenerative diseases. J. Neurosci. Res.2007,85,2285-2297.
    [233]Novitskaya, V.; Makarava, N.; Bellon, A.; Bocharova, O. V.; Bronstein, I. B.; Williamson, R. A.; Baskakov, I. V., Probing the conformation of the prion protein within a single amyloid fibril using a novel immunoconformational assay. J. Biol. Chem.2006,281(22),15536-15545.
    [234]Chang, B.; Miller, M. W.; Bulgin, M. S.; Sorenson-Melson, S.; Balachandran, A.; Chiu, A.; Rubenstein, R., PrP antibody binding-induced epitope modulation evokes immunocooperativity. J. Neuroimmuno.2008,205,94-100.
    [235]Brown, P.; Cervenakova, L.; Diringer, H., Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J. Lab. Clin. Med. 2001, 137(1),5-13.
    [236]De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M., Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 2009,1(6),461-465.
    [237]Lao, Y.-H.; Peck, K.; Chen, L.-C., Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect. Anal. Chem.2009,81 (5), 1747-1754.
    [238]Bruce, I. J.; Sen, T., Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations. Langmuir 2005,21, 7029-7035.
    [239]Parkyn, C. J.; Vermeulen, E. G. M.; Mootoosamy, R. C.; Sunyach, C.; Jacobsen, C.; Oxvig,C.; Moestrup, S.; Liu, Q.; Bu, G.; Jen, A.; Morris, R. J., LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J. Cell Sci. 2007,121,773-783.
    [240]Arruda-Carvalho, M.; Njaine, B.; Silveira, M. S.; Linden, R.; Chiarini, L. B., Hop/STI1 modulates retinal proliferation and cell death independent of PrP~C. Biochem. Biophys. Res. Commun.2007,361 (2),474-480.
    [241]Baron, G. S.; Caughey, B., Effect of Glycosylphosphatidylinositol Anchor-dependent and-independent Prion Protein Association with Model Raft Membranes on Conversion to the Protease-resistant Isoform. J. Biol. Chem.2003,278 (17),14883-14892.
    [242]Pan, T.; Wong, B.-S.; Liu, T.; Li, R.; Petersen, R. B.; Sy, M.-S., Cell-surface prion protein interacts with glycosaminoglycans. Biochem. J.2002,368,81-90.
    [243]Klajnert, B.; Cortijo-Arellano, M.; Bryszewska, M.; Cladera, J., Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer's and prion diseases. Biochem. Biophys. Res. Commun.2006,339 (2), 577-582.
    [244]Andrievskaia, O.; Potetinova, Z.; Balachandran, A.; Nielsen, K., Binding of bovine prion protein to heparin:A fluorescence polarization study. Arch. Biochem. Biophys.2007,460 (1),10-16.
    [245]杨频;杨斌盛,离子探针方法导论.科学出版社1994,pp160-165.
    [246]http://www.mad-cow.org/stats.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700