用户名: 密码: 验证码:
壳聚糖衍生物的制备及其在药物载体中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖衍生于甲壳素,是自然界中产量仅次于纤维素的天然高分子多糖。由于它具有生物相容性、生物可降解性、抗菌性、无细胞毒性以及非凡的蛋白亲和性等优异性能,在生物医药尤其是药物载体方面具有广阔的应用前景。然而,除稀盐酸、稀醋酸等水溶液外,壳聚糖不溶于水和有机溶剂。因此,其应用非常有限。为克服壳聚糖溶解性的不足,本论文采用化学方法,对壳聚糖进行结构改造并对其在药物载体中的应用做进一步研究。
     一、羧甲基壳聚糖载药5-氟尿嘧啶靶向肿瘤细胞
     本论文采用聚乙二醇分子链将叶酸靶向分子与羧甲基壳聚糖连接,构建一种靶向载药体系羧甲基壳聚糖-聚乙二醇-叶酸。采用核磁共振氢谱、红外光谱对叶酸-聚乙二醇-羧甲基壳聚糖连接物进行表征。采用结晶紫染色法分别对羧甲基壳聚糖、载药5-氟尿嘧啶的羧甲基壳聚糖对肿瘤细胞的毒性进行验证。采用MTT法,分别用羧甲基壳聚糖、叶酸-聚乙二醇-羧甲基壳聚糖载药5-氟尿嘧啶,对细胞表面表达叶酸受体的HeLa细胞系进行靶向给药研究。MTT实验结果显示,载药5-氟尿嘧啶的羧甲基壳聚糖-聚乙二醇-叶酸体系对HeLa细胞系的毒性远大于载药5-氟尿嘧啶的羧甲基壳聚糖对HeLa细胞系的毒性,说明叶酸受体介导的内吞作用可提高细胞对载药5-氟尿嘧啶的羧甲基壳聚糖-聚乙二醇-叶酸靶向载药体系的吸收效率。
     二、N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵碳纳米管复合材料的制备与研究
     本论文采用N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵以自组装方式对多壁碳纳米管进行非共价修饰,得到的壳聚糖季铵盐碳纳米管复合材料在水中具有良好的分散性和超高的稳定性。采用红外光谱、核磁共振氢谱、X-射线衍射以及差示量热扫描等对N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵进行表征。红外光谱、热重分析、zeta电位以及透射电子显微镜等表征结果一致表明,N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵与多壁碳纳米管发生自组装。透射电子显微镜观察分析结果显示,原多壁碳纳米管直径为9.5nm,而经N, N,N-三甲基-2-羟基丙基壳聚糖氯化铵非共价修饰的多壁碳纳米管复合材料直径为14.7nm。N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵多壁碳纳米管复合材料zeta电位为+7.37mV。热重分析结果显示,经非共价修饰的多壁碳纳米管复合材料大约含20wt%N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵。N, N, N-三甲基-2-羟基丙基壳聚糖氯化铵碳纳米管复合材料在水中具有超高的稳定性,在12,000rpm的转速下离心20分钟未见聚集沉淀。
     三、壳聚糖磁性药物载体的制备与研究
     本论文采用原位法制备壳聚糖衍生物磁性药物载体,这种方法制备的磁性药物载体大小均一、分散性良好而且具有超高的稳定性。采用红外光谱、X-射线衍射光谱、透射电子显微镜、zeta电位、动态光散射、热重分析以及振动样品磁强计对样品进行表征。透射电子显微镜观察结果表明,本研究方法制备的磁纳米粒子、羧甲基壳聚糖磁纳米粒子以及壳聚糖季铵盐磁纳米粒子的平均粒径分别为10nm、12nm和11nm。而动态光散射测定的水合粒径则分别为68nm、77nm和162nm, zeta电位与磁纳米粒子包覆层的带电情况密切相关,根据包覆层壳聚糖衍生物带电性的不同,zeta电位分别为+40.3mV、–56.3mV。每毫升羧甲基壳聚糖磁纳米粒子、壳聚糖季铵盐磁纳米粒子或单纯的磁纳米粒子的固含量分别为:6.28mg/mL、7.41mg/mL和9.07mg/mL,原子吸收光谱的分析结果表明,每毫升羧甲基壳聚糖磁纳米粒子、壳聚糖季铵盐磁纳米粒子或单纯的磁纳米粒子的铁含量分别为:4.78mg/mL、5.09mg/mL和4.56mg/mL。振动样品磁强计测试结果显示,磁纳米粒子、羧甲基壳聚糖磁纳米粒子和壳聚糖季铵盐磁纳米粒子的磁滞回线呈顺磁行为,它们的饱和磁化强度分别为59.1、66.2和55.8emu/g。透射电子显微镜观察结果显示,磁纳米粒子、羧甲基壳聚糖以及壳聚糖季铵盐磁纳米粒子的形貌为圆球性或类椭圆球形,它们的粒径分别为10nm、12nm和11nm。红外光谱表征结果证明,磁纳米粒子分别含有羧甲基壳聚糖和壳聚糖季铵盐成分;热重分析结果表明,磁纳米粒子水分含量约为2%、羧甲基壳聚糖磁纳米粒子的羧甲基壳聚糖含量约为6%、壳聚糖季铵盐磁纳米粒子的壳聚糖季铵盐含量约为16%。 X射线衍射图谱表明,这些磁纳米粒子具有尖晶石的晶体结构;振动样品磁强计表征结果显示,这些样品均为顺磁性物质。
     四、壳聚糖-β-环糊精偶合物的制备与表征
     本论文采用β-环糊精与对硝基苯磺酰氯反应形成β-环糊精苯磺酸酯,然后与壳聚糖反应制备壳聚糖-β-环糊精偶合物。采用红外光谱、核磁共振氢谱、X-射线衍射以及元素分析等手段对纯化处理的偶合物进行表征。在壳聚糖-β-环糊精偶合物红外光谱中,1020cm-1波长处的峰为β-环糊精的-吡喃基振动吸收峰,1050cm-1波长处的峰为壳聚糖β-吡喃基的振动吸收峰。壳聚糖-β-环糊精的核磁共振氢谱可完整再现壳聚糖以及β-环糊精各个质子核磁共振峰,说明β-环糊精已成功连接到壳聚糖结构单元。壳聚糖-β-环糊精偶合物的X-射线衍射谱图显示,位于衍射角2θ=10°的衍射峰消失,而位于衍射角2θ=20°的衍射峰则大大减弱,这意味着β-环糊精连接到壳聚糖结构单元的2位氨基上。氮元素分析结果显示,β-环糊精在偶合物中的取代度为13%。
Chitosan,the second abundant polysaccharide existing in nature, is a derivative from chitin.Chitosan has many distinctive properties such as biocompatibility, biodegradability,antimicrobial activity, nontoxicity and remarkable affinity to proteins. However, owing to itsinsoluble either in water or in organic solvents except aqueous acids, application of chitosan islimited. To overcome this drawback, chitosan was converted to water-or organicsolvents-soluble derivatives using chemical modification for further applications.
     1. Folate polyethylene glycol conjugated carboxymethyl chitosan for tumor targeteddelivery of5fluorouracil
     In this study, folate acid (FA) was conjugated to carboxymethyl chitosan (CMCS) through apolyethylene glycol (PEG) spacer to form CMCS-PEG-FA. The resulting conjugates wereconfirmed by1H nuclear magnetic resonance(1H NMR) and infrared spectroscopy (FT-IR)detection. The cytotoxic effects of CMCS-PEG-FA and CMCS-PEG-FA-5-fluorouracil (5-FU)were determined by crystal violet stain assay. Hela cell line, which has high surface folatereceptors, and A549cell line, which contains low amount of surface folate receptor, were used todetect the5-FU delivery ability by CMCS-PEG-FA with the use of3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazoliu bromide analysis (MTT). The MTT resultsrevealed that the cytotoxicity of (CMCS-5-FU)-PEG-FA on Hella cells was greater thanCMCS-5-FU, suggesting that folate receptor-mediated endocytosis might improve the cellularuptake efficiency of5-FU-loaded CMCS-PEG-FA.
     2. Preparation and characterization of N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride(HTACC)/multi-walled carbon nanotubes(MWCNTs) compositematerial
     In this study, self-assembly between water-soluble GTMAC-grafted chitosan derivatives(HTACC) and multiwalled carbon nanotubes(MWCNTs) has been successfully developed andthe resultant products possessed excellent dispersity. HTACC was characterized by FT-IR,1H-NMR, X-ray diffraction(XRD) and DSC. Spontaneous self-assembly complex of HTACCand MWCNTs was confirmed by FT-IR, thermogravimetric analysis(TGA), zeta potential, andtransmission electron microscopy(TEM) studies. TEM analysis revealed that the diameter ofpristine MWCNTs was9.5nm whereas the diameter of HTACC coated MWCNTs was14.7nm. The measured zeta potential of HTACC coated MWCNTs was+7.37mv. TGA resultdemonstrated that the MWNT/HTACC consisted of about20wt%HTACC. As a novelderivative of the MWNTs, this HTACC coated MWCNTs showed a remarkable stabilitywithout any observable aggregation after centrifugation at12,000rpm for20minutes.
     3. Preparation and characterization of magnetic targeted chitosan derivatives drug carrier
     In situ preparation of magnetic chitosan derivatives/Fe3O4composite nanoparticles wasemployed, resulting a uniform single-crystal and well-dispersible product. The resultantmagnetic Fe3O4nanoparticles were characterized with FT-IR, X-RD, TEM, zeta-potentialmeasurement and vibrating sample magnetometry (VSM). The synthetic protocol described inthis paper yielded materials, composed magnetite cores with the mean crystallite size among10nm and12nm. The mean hydrodynamic diameters of these particles varied from68nm to162nm, and the zeta potentials of the materials varied from highly positive+40.3mV to negative–56.3mV, depending on the coating material used. The magnetic nanoparticle concentration interms of iron content varied from4.56mg/L to5.09mg/L and the magnetic nanoparticleconcentration in terms of dry weight was6.28mg/mL~9.07mg/mL. The hysteresis loops ofFe3O4, carboxymethyl chitosan magnetic nanoparticles(Fe3O4/CMCS) and2-hydroxypropyltrimethyl ammonium chloride chitosan magnetic nanoparticles (Fe3O4/QCTS)nanoparticles showed a ferromagnetic behavior with saturation magnetization of59.1,66.2and55.8emu/g, respectively. TEM results demonstrated a spherical or ellipsoidal morphologywith an average diameter of10-12nm. The adsorbed layer of QCTS and CMCS on themagnetite surface was confirmed by FT-IR. TGA results indicated that the Fe3O4/QCTSconsisted of about16wt%QCTS and the CMCS content was about6%in Fe3O4/CMCS. XRDillustrated that the resultant magnetic nanoparticles had a spinel structure and lastly VSM resultsshowed the modified magnetic Fe3O4nanoparticles were superparamagnetic. The adsorptionmechanism of QCTS and CMCS onto the surface of Fe3O4nanoparticles was believed to be theelectrostatic and coordination interactions, respectively. The mechanisms of both QCTS andCMCS stabilizing the suspension of Fe3O4nanoparticles were supposed to be electrostaticrepulsion.
     4. The preparation and characterization of chitosan-grafted-β-cyclodextrin
     The conjugates of β-cyclodextrin with chitosan were obtained by the reaction ofβ-cyclodextrin with p-nitrobenzenesulfonyl chloride, following by grafting to chitosan. Thepurified conjugate was characterized with FT-IR,1H NMR, XRD and nitrogen analysis. In theinfrared spectra of chitosan-β-cyclodextrin, the peak at1020cm-1was ascribed to-pyanyl vibration of β-cyclodextrin and the peak at1050cm-1was due to β-pyanyl vibration of chitosan.Protons of both chitosan and cyclodextrins appeared in1H NMR of chitosan-β-cyclodextrinconjugate, indicating β-cyclodextrins was grafted to chitosan successfully. The XRD resultindicated that the peak at2θ=10°disappeared and the peak at2θ=20°decreased greatly,suggesting that β-cyclodextrin was grafted to2-position amino-group in the unit of chitosan.Nitrogen analysis demonstrated that the substitution of β-cyclodextrin was13%.
引文
[1]Ruiz-Herrera J. Proceedings of1st international conference on chitin/chitosan. R. A. A.Muzzarelli and E. R. Pariser (eds), MIT Sea Grant Program Report MITSG78-7,1978:11.
    [2]Falk M, Smith D G, Mclachlan J et al. Studies on chitin (β-(1,4)-linked2-acetamindo-2-deoxy-D-glucan) fibers of the diatom thalassiosira fluviatilis hustedt. Can. JChem.1966,44:2269-2281.
    [3]Rudall K M. The chitin/protein complexes of insect cuticles. Adv Insect Physiol,1963,1:257-313.
    [4]Pearson F G, Marchessault R H, Liang C Y. Infrared spectra of crystalline polysaccharides V.Chitin. J Polym Sci,1960,43(141):101-116.
    [5]Brugnerotto J, Desbrieres J, Heux L et al. Overview on structural characterization of chitosanmolecules in relation with their behavior in solution. Macromol Symp,2001,168:1-20.
    [6]樱井谦资.甲壳素与壳聚糖.东京:技报堂出版,1995:146.
    [7]Kim J H, Lee Y M. Synthesis and properties of diethylaminoethyl chitosan. Polymer,1993,34(9):1952-1957.
    [8]Iason T, Nathalie Z. Aggeliki M et al. Mode of action of chitin deacetylase from Mucor rouxiion N-acetylchitooligosaccharides. Eur J Biochem,1999,261:698-705.
    [9]Muzzarelli R A A. Chitin. Oxford: Pergamon Press,1977:51-55.
    [10]Rudall K M. The chitin/protein complexes of insect cuticles. Adv Insect Physiol,1963,1:257-313.
    [11]Madhavan P, Ramachandran N K G. Utilization of prawm waste. Isolation of chitin and itsconversion to chitosan. Fish Technol,1974,11:50-53.
    [12]蒋挺大.甲壳素.北京:中国环境科学出版社,1996:4.
    [13] A. Baxter, M. Dillon, K.D.A. Taylor, et al. Improved method for IR determination of thedegree of N-acetylation of chitosan. Int. J. Biol. Macromol,1992,14:166.
    [14] G.A. Maghami, G.A.F. Roberts. Studies on the adsorption of anionic dyes on chitosan,Makromol. Chem,1988,189:2239.
    [15] A. Domard. Circular dichroism study on N acetylglucosamine oligomers. Int. J. Biol.Macromol,1986,8:243.
    [16] A. Domard. pH and c.d. measurements on a fully deacetylated chitosan: application to Cu–polymer interactions. Int. J. Biol. Macromol,1987,9:98.
    [17] Y.C. Wei, S.M. Hudson. Binding of sodium dodecyl sulfate to a polyelectrolyte basedchitosan. Macromolecules,1993,26:4151.
    [18] H. Sashiwa, H. Saimoto, Y. Shigemasa, et al. Distribution of the acetamido group inpartially deacetylated chitins. Carbohydr. Polym,1991,16:291.
    [19] H. Sashiwa, H. Saimoto, Y. Shigemasa, et al. N-Acetyl group distribution in partiallydeacetylated chitins prepared under homogeneous conditions. Carbohydr. Res,1993,242:167.
    [20] L. Raymond, F.G. Morin, R.H. Marchessault. Degree of deacetylation of chitosan usingconductometric titration and solid-state NMR. Carbohydr. Res,1993,243:331.
    [21] F. Niola, N. Basora, E. Chornet, et al. A rapid method for the determination of the degree ofN-acetylation of chitin–chitosan sample by acid hydrolysis and HPLC. J. Therm. Anal,1983,28:189.
    [22] S.H. Pangburn, P.V. Trescony, J. Heller. Chitin, Chitosan and Related Enzymes, HarcourtBrace Janovich, New York,1984:3.
    [23] T.D. Rathke, S.M. Hudson. Determination of the degree of N-deacetylation in chitin andchitosan as well as their monomer sugar ratios by near infrared spectroscopy. J. Polym. Sci.,Polym. Chem. Ed,1993,31:749.
    [24]Maghami G G. Roberts G. A. Evaluation of the viscometric constants for chitosan.Macromolecular Chemistry and Physics,1988,189:195-200.
    [25] C.J. Brine, P.R. Austin, Renaturated chitin fibrils, films and filaments, in: T.D. Church(Ed.), Marine Chemistry in Coastal Environment, ACS Symposium Series,Vol.18, ACS,Washington, DC,1975:505.
    [26] P.R. Austin. Chitin solvents and solubility parameters, in: J.P. Zikakis (Ed.), Chitin,Chitosan and Related Enzymes, Harcourt Brace Janovich, New York,1984:227.
    [27] P.K. Dutaa, M.N.V. Ravi Kumar. Waste utilization: chitosan fibres by direct dissolution,in: Indian Chemist Convention, New Delhi, Dec.1997:17–20.
    [28] R.A.A. Muzzarelli. Human enzymatic activities related to the therapeutical administrationof chitin derivatives. Cell Mol. Biol. Life Sci,1997,53:131.
    [29] H.F. Mark, N.M. Bikales, C.G. Overberger. G. Menges (Eds.), Encyclopedia of PolymerScience and Engineering,1985,1:20, Wiley, New York,
    [30] I.V. Yannas, H.F. Burke, D.P. Orgill, et al. Wound tissue can utilise a polymeric templateto synthesise a functional extension of skin. Science,1982,215:174.
    [31]B. Szosland, G.C. East. The dry spinning of dibutyrylchitin fbres. J. Appl. Polym. Sci,1995,58:2459.
    [52] D. Knorr. Recovery and utilization of chitin and chitosan in food processing wastemanagement. Food Technol. Jan,1991:114.
    [33] M.L. Markey, M.L. Bowman, M.V.W. Bergamini (Eds.). Chitin and Chitosan, ElsevierApplied Science, London,1989:713.
    [34] K.G.R. Nair, P. Madhavan. Chitosan for removal of mercury from water. Fishery Tech,1984,21:109.
    [35] C. Peniche-covas, L.W. Alwarez, W. Arguelles-Monal. The adsorption of mercuric ions bychitosan. J. Appl. Polym. Sci,1987,46:1147.
    [36] N. Jha, I. Leela, A.V.S. Prabhakar Rao. Removal of cadmium using chitosan. J. Environ.Eng,1988,114:962.
    [37] S. Harry. The theory of coloration of textiles, in: A. Johnson (Ed.), Thermodynamics ofDye Sorption,2ndEdition, Society of Dyers and Colorists, West Yorkshire, UK,1989:255.
    [39] W.B.Weber. Physicochemical Process for Wastewater Control, Wiley, New York,1992.
    [40]Knorr D. Dye binding properties of chitin and chitosan. J Food Sci,1983,48(1):36-37.
    [41]Hasegawa M, Isogai A, Onabe F. Alkaline sizing with alkylketene dimmers in the presenceof chitosan salts. J Pulp Paper Sci,1997,23(11):528-531.
    [42] L. Arof, R.H.Y. Subban, S. Radhakrishna. in: P.N. Prasad (Ed.), Polymer and OtherAdvanced Materials: Emerging Technologies and Business, Plenum Press, New York,1995:539.
    [43] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, et al. Polymeric systems for controlled drugrelease. Chem. Rev,1999,99:3181.
    [44] C. Alvarez-Lorenzo, R. Duro, J.L. Gomez-Amoza, et al. Degradation ofhydroxypropylcellulose by rhizomucor: effects on release fromtheophylline–hydroxypropylcellulose tablets. Int. J. Pharm,1999,180:105.
    [45] C. Alvarez-Lorenzo, J.L. Gomez-Amoza, R. Martin-Pacheco, et al. Microviscosity ofhydroxylpropylcellulose gels as a basis for prediction of drug diffusion rates. Int. J. Pharm,1999,180:91.
    [46] D. Teomim, A. Nyska, A.J. Domb. Ricinoleic acid based biopolymers. J. Biomed. Mater.Res,1999,45:258.
    [47] R.L. Reis, A.M. Cunha. Characterization of two biodegradable polymers of potentialapplications within the biomaterial field, J. Mater. Sci.: Mater. Med,1995,6:786.
    [48] M.N.V. Ravi Kumar, G. Madhava Reddy, P.K. Dutta. Study of paracetamol release fromcastor-oil based copolyester matrix. Iranian Polym. J,1996,5:60.
    [49] K.C. Gupta, M.N.V. Ravi Kumar. Structural changes and release characteristics ofcrosslinked chitosan beads in response to solution pH. J.M.S.-Pure Appl. Chem,1999, A36:827.
    [50] K.C. Gupta, M.N.V. Ravi Kumar. Drug release behavior of beads and microgranules ofchitosan. Biomaterials,2000,21:1115.
    [51] K.C. Gupta, M.N.V. Ravi Kumar. Preparation and characterization and release profiles ofpH sensitive chitosan beads. Polym. Int,2000,49:141.
    [52] K.C. Gupta, M.N.V. Ravi Kumar. Semi-interpenetrating polymer network beads ofcrosslinked chitosan–glycine for controlled release of chlorphenaramine maleate. J. Appl. Polym.Sci,2000,76:672.
    [53] W. Rhine, D. Hsieh, R. Langer. Polymers of sustained macromolecule release: producers tofabricate reproducible delivery systems and controlled release kinetics. J. Pharm. Sci,1980,69:265.
    [54] V. Kumar, S.H. Kothari. Effect of compressional force on the crystallinity of directlycompressible cellulose excipients. Int. J. Pharm,1999,177:173.
    [55] W.M. Hou, S. Miyazaki, M. Takada, et al.Sustained release of indomethacin from chitosangranules. Chem. Pharm. Bull,1985,33:3986.
    [56] S. Miyazaki, K. Ishii, T. Nadai. The use of chitin and chitosan as drug carriers. Chem.Pharm. Bull,1981,29:3067.
    [57] J. Kost, R. Langer. in: N.A. Peppas (Ed.), Hydrogels in Medicine and Pharmacy, CRCPress, Boca Raton,1987:95.
    [58] N.B. Graham. Controlled drug delivery systems. Chem. Ind,1990,15:482.
    [59] J. Bronsted, J. Kopecek. Hydrogels for site specific oral drug delivery synthesis andcharacterization. Biomaterials,1991,12:584.
    [60] S.B. Mitra, in: S.W. Shalaby, A.S. Hoffman, B.D. Ratner, T.A. Horbett (Eds.). Polymers asBiomaterials, Plenum Press, New York,1984:293.
    [61] J. Kost (Ed.). Pulsed and Self-Regulated Drug Delivery, CRC Press, Boca Raton,1990.
    [62] C.P.D. Moor, L. Doh, R.A. Siegel. Long term structural changes in pH-sensitive hydrogels.Biomaterials,1991,12:836.
    [63] K.D. Yao, T. Peng, M.F.A. Goosen, et al. pH sensitivity of hydrogels based on complexforming chitosan: polyether interpenetrating polymer network. J. Appl. Polym. Sci,1993,48:343.
    [64] K.D. Yao, J. Lin, R.Z. Zhao, et al. Dynamic water absorption characteristics of chitosanbased hydrogels. Angew. Makromol. Chem,1998,255:71.
    [65] R.A. Muzzarelli, M. Mattioli-Belmonte, A. Pugnaloni, et al. Biochemistry, histology andclinical uses of chitins and chitosans in wound healing, in: P. Jolles, R.A.A. Muzzarelli (Eds.),Chitin and Chitinases, Birkhauser, Basel,1999.
    [66] K.D. Yao, T. Peng, M.X. Xu, et al. pH dependent hydrolysis and drug release ofchitosan/polyether interpenetrating polymer network hydrogel. Polym. Int,1994,34:213.
    [67] K.D. Yao, T. Peng, H.B. Feng, et al. Swelling kinetics and release characteristics ofcrosslinked chitosan–polyether polymer network (semi-IPN) hydrogels. J. Polym. Sci., Part A:Polym. Chem,1994,32:1213.
    [68] S.S. Kim, Y.M. Lee, C.S. Cho. Synthesis and properties of semi-interpenetrating polymernetworks composed of β-chitin and poly(ethylene glycol) macromer. Polymer,1995,36:4497.
    [69] S.S. Kim, Y.M. Lee, C.S. Cho. Semi-interpenetrating polymer networks composed ofβ-chitin and poly(ethylene glycol) macromer. J. Polym. Sci., Part A: Polym. Chem,1995,33:2285.
    [70] Y.M. Lee, S.S. Kim. Hydrogels of poly(ethylene glycol)-co-poly(lactones) diacrylatemacromers and b-chitin. Polymer,1997,38:2415.
    [71] S.Y. Kim, Y.M. Lee, S.I. Lee. Preparation and evaluation of in vitro stability of lipidnanospheres containing vitamins A or E for cosmetic application, in:24th InternationalSymposium on Controlled Release of Bioactive Materials, Stockholm, Sweden, June15–19,1997.
    [72] Y.M. Lee, J.K. Shim. Preparation of pH/temperature stimuli responsive polymermembranes by plasma and UV polymerization techniques and their riboflavin permeation, in:214th ACS Meeting, Las Vegas, Sept.7–11,1997.
    [73] Y.M. Lee, S.S. Kim, S.H. Kim. Synthesis and properties of poly(ethylene glycol)macromer/b-chitosan hydrogels. J. Mater. Sci.: Mater. Med,1997,8:537.
    [74] K.D. Yao, Y.J. Yin, M.X. Xu, et al. Investigation of pH sensitive drug delivery system ofchitosan/gelatin hybrid polymer network. Polym. Int,1995,38:77.
    [75] P.K. Dutta, P. Viswanathan, L. Mimrot, et al. Use of chitosan amine oxide gel as drugcarrier. J. Polym. Mater,1997,14:351.
    [76] P.K. Dutta, M.N.V. Ravi Kumar. Chitosan–amine oxide: thermal behavior of new gellingsystem. Indian J. Chem. Technol,1999,6:55.
    [77] M.N.V. Ravi Kumar, P. Singh, P.K. Dutta. Effect of swelling on chitosan–amine oxide gelin extended drug delivery. Indian Drugs,1999.36:393.
    [78] Y. Sawayanagi, N. Nambu, T. Nagai. Compressed tablets containing chitin and chitosan inaddition to lactose or potato starch. Chem. Pharm. Bull,1982,30:2935.
    [79] G.C. Ritthidej, P. Chomto, S. Pummangura, P.Menasveta, Chitin and chitosan asdisintigrants in paracetamol tablets. Drug Dev. Ind. Pharm,1994,20:2019.
    [80] S.I. Pather, I. Russell, J.A. Syee, et al. Sustained release theophylline tablets by directcompression. Part I: Formulation and in vitro testing. Int. J. Pharm,1998,164:1.
    [81] Y.J. Yuji, M.X. Xu, X. Chen, et al. Drug release behavior of chitosan/gelatin networkpolymer microspheres. Chin. Sci. Bull,1996,41:1266.
    [82] M.C. Gohel, M.N. Sheth, M.M. Patel, et al. Design of chitosan microspheres containingdiclofenacsodium. Indian J. Pharm. Sci,1994,56:210.
    [83] P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, et al. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci,1997,63:125.
    [84] M.L. Huguet, A. Groboillot, R.J. Neufeld, et al. Hemoglobin encapsulation in chitosan/calcium alginate beads. J. Appl. Polym. Sci,1994,51:1427.
    [85] K. Nishimura, S. Nishimura, H. Seo, N. Nishi, et al. Macrophage activation withmultiporous beads prepared from partially deacetylated chitin. J. Biomed. Mater. Res,1986,20:1359.
    [86] G. Ida, C. Monica, A. Annalia, et al. Influence of glutaraldehyde on drug release andmucoadhesive properties of chitosan microspheres. Carbohydr. Polym,1998,36:81.
    [87] T. Hayashi, Y. Ikada. Protease immobilization onto porous chitosan beads. J. Appl. Polym.Sci,1991,42:85.
    [88] T. Chandy, C.P. Sharma. Chitosan beads and granules for oral sustained delivery ofnifedipine: in vitro studies. Biomaterials,1992,13:949.
    [89] T. Chandy, C.P. Sharma. Chitosan matrix for oral sustained delivery of ampicillin.Biomaterials,1993,14:939.
    [90] T. Chandy, C.P. Sharma, M.C. Sunny. Inhibition of platelet adhesion to glow dischargemodified surfaces. J. Biomater. Appl,1987,1:533.
    [91] D. Thacharodi, K. Panduranga Rao. Propranolol hydrochlo ride release behavior ofcrosslinked chitosan membrane. J. Chem. Technol. Biotechnol,1993,58:177.
    [92] D. Thacharodi, K. Panduranga Rao. Release of nifedipine through crosslinked chitosanmembranes. Int. J. Pharm,1993,96:33.
    [93] D. Thacharodi, K. Panduranga Rao. Development and in vitro evaluation of chitosan basedtransdermal drug delivery systems for controlled delivery of propranolol hydrochloride.Biomaterials,1995,16:145.
    [94]S. Hirano. Chitin and chitosan as novel biotechnological materials. Polym. Int,1999,48:732.
    [95] S. Hirano, in: C.G. Gebelein, C.E. CarraherJr.(Eds.), Industrial Biotechnological Polymers,Technomic, Lancaster,1995:189.
    [96] S. Hirano, in: W.F. Stevens, M.S. Rao, S. Chandrakran chang (Eds.), Chitin and Chitosan.Environmental Friendly and Versatile Biomaterials, AIT, Bangkok,1996:22.
    [97] J. Wadstein, E. Thom, E. Heldman, et al. Biopolymer L112, a chitosan with fat bindingproperties and potential as a weight reducing agent: a review of in vitro and in vivo experiments,in: R.A.A. Muzzarelli (Ed.), Chitosan Per os: From Dietary Supplement To Drug Carrier,Grottammare, Italy,2000.
    [98] R.A.A. Muzzarelli. Management of hypercholesterolemia and overweight by oraladministration of chitosans, in: D. Chapman, P.I. Haris (Eds.), New Biomedical MaterialsApplied and Basics, POI Press, London,1998.
    [99] R.A. Muzzarelli. Clinical and biochemical evolution of chitosan for hypercholesterolemiaand overweight control, in: P. Jolles, R.A.A. Muzzarelli (Eds.), Chitin and Chitinases,Birkhauser, Basel,1999.
    [100] Braconnot H. Sur La nature des champignons. Ann Chi Phys,1811,79:265~304.
    [101] Rouget C. Des substances amylacees dans le tissue des animux, specialementlesArticules(Chitine). Compt Rend,1859,48:792~795.
    [102] Muzzareli R A A. Chitin. Oxford: Pergamon,1977:255~265.
    [103] Saranya N, Moorthi A, Saravanan S, et al. Chitosan and its derivatives for gene delivery.Int J Biol Macromol.2011,48:234-238.
    [104] Dang JM and Leong KW. Natural polymers for gene delivery and tissue engineering. AdvDrug Deliv Rev,2006,58:487-499.
    [105] Chung YC, Kuo CL and Chen CC. Preparation and important functional properties ofwater-soluble chitosan produced through Maillard reaction. Bioresour Technol,2005,96:1473-1482.
    [106] Liu WG, Zhang X, Sun SJ, et al. N-alkylated chitosan as a potential nonviral vector forgene transfection. Bioconjug Chem,2003,14:782-789.
    [107] Mao S, Shuai X, Unger F, et al. Synthesis, characterization and cytotoxicity ofpoly(ethyleneglycol)-graft-trimethyl chitosan block copolymers. Biomaterials,2005,26:6343-6356.
    [108] Gref R, Lück M, Quellec P, et al.‘Stealth’ corona-core nanoparticles surface modified bypolyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) andof the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf BBiointerfaces,2000,18:301-313.
    [109] Kircheis R, Schüller S, Brunner S, et al. Polycation-based DNA complexes fortumor-targeted gene delivery in vivo. J Gene Med,1999,1:111-120.
    [110] Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes:reduced interaction with blood components, extended circulation in blood and potential forsystemic gene delivery. Gene Ther,1999,6:595-605.
    [111] OupickyD, Ogris M and Seymour LW. Development oflong-circulating polyelectrolytecomplexes for systemic delivery of genes. J Drug Target,2002,10:93-98.
    [112] Nguyen HK, Lemieux P, Vinogradov SV, et al. Evaluation of polyether-polyethyleneiminegraft copolymers as gene transfer agents. Gene Ther,2000,7:126-138.
    [113] Choi YH, Liu F, Kim JS, et al. Polyethylene glycol-grafted poly-L-lysine as polymericgene carrier. J Control Release,1998,54:39-48.
    [114] Fernandez-Megia E, Novoa-Carballal R, Qui oáE et al. Conjugation of bioactive ligandsto PEG-grafted chitosan at the distal end of PEG. Biomacromolecules,2007,8:833-842.
    [115] Ogris M, Walker G, Blessing T, et al. Tumor-targeted gene therapy: strategies for thepreparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release,2003,91:173-181.
    [116] Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency. J Control Release,2001,70:399-421.
    [117] Kim TH, Nah JW, Cho MH, et al. Receptor-mediated gene delivery into antigen presentingcells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol,2006,6:2796-2803.
    [118] Hashimoto M, Morimoto M, Saimoto H, et al.S Gene transfer by DNA/mannosylatedchitosan complexes into mouse peritoneal macrophages. Biotechnol Lett,2006,28:815-821.
    [119] Wada K, Arima H, Tsutsumi T, et al. Improvement of gene delivery mediated bymannosylated dendrimer/alpha-cyclodextrin conjugates. J Control Release,2005,104:397-413.
    [120] Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNAnanoparticles for gene therapy. Biomaterials,2006,27:2060-2065.
    [121] Lee D, Lockey R and Mohapatra S. Folate receptor-mediated cancer cell specific genedelivery using folic acid-conjugated oligochitosans. J Nanosci Nanotechnol,2006,6:2860-2866.
    [122] Murata J, Ohya Y and Ouchi T. Design of quaternary chitosan conjugate having antennarygalactose residues as a gene delivery tool. Carbohydr Polym,1997,32:105-119.
    [123] Gao S, Chen J, Xu X, et al. Galactosylated low molecular weight chitosan as DNA carrierfor hepatocyte-targeting. Int J Pharm,2003,255:57-68.
    [124] Kim TH, Park IK, Nah JW, et al. Galactosylated chitosan/DNA nanoparticles preparedusing water-soluble chitosan as a gene carrier. Biomaterials,2004,25:3783-3792.
    [125] Hashimoto M, Morimoto M, Saimoto H, et al. Lactosylated chitosan for DNA deliveryinto hepatocytes: the effect of lactosylation on the physicochemical properties and intracellulartrafficking of pDNA/chitosan complexes. BioconjugChem,2006,17:309-316.
    [126] Cai TB, Tang X, Nagorski J, et al. Synthesis and cytotoxicity of5-fluorouracil/diazeniumdiolateconjugates. Bioorg Med Chem,2003,11:4971-4975.
    [127] International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators.Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. Lancet,1995,345:939-944.
    [128] Lin FH, Lee YH, Jian CH, et al. A study of purified montmorillonite intercalated with5-fluorouracil as drug carrier. Biomaterials,2002,23:1981-1987.
    [129] Malet-Martino M and Martino R. Clinical studies of three oral prodrugs of5-fluorouracil(capecitabine, UFT, S-1): a review. Oncologist,2002,7:288-323.
    [130] Malet-Martino M, Jolimaitre P and Martino R. The prodrugs of5-fluorouracil. Curr MedChem Anticancer Agents,2002,2:267-310.
    [131] Riley SA and Turnberg LA. Sulphasalazine and the amino salicylates in the treatment ofinflammatory bowel disease. Q J Med,1990,75:551-562.
    [132] Bartalsky A. Salicylazobenzoic acid in ulcerative colitis. Lancet,1982,319:960.
    [133] Ashford M, Fell J, Attwood D, et al. In vitro investigation into the suitability of pHdependent polymer for colonic targeting. Int J Pharm,1993,95:193-199.
    [134] Marvola M, Nyk nen P, Rautio S, et al. Enteric polymers as binders and coating materialsin multiple-unit site-specific drug delivery systems. Eur J Pharm Sci,1999,7:259-267.
    [135] Gazzaniga A, Busetti C, Sangali ME. Time-dependent oral delivery system for colonictargeting system for the colon targeting. STP Pharma Sci,1995,5:83-88.
    [136] Gazzaniga A, Iamartino P, Maffione G. Oral delayed release system for colonic specificdelivery. Int J Pharm,1994,108:77-83.
    [137] Haller DG. An overview of adjuvant therapy for colorectal. Eur J Cancer,1995,31A:1255-1263.
    [138] Bajetta E, Di Bartolomeo M, Somma L, et al. Doxifluridinein colorectal cancer patientsresistant to5-fluorouracil (5-FU) containing regimens. Eur J Cancer,1997,33:687-690.
    [139] Hovgaard L and Brondsted H. Dextran hydrogels for colon-specific drug delivery. JControl Release,1995,36:159-166.
    [140] Watts PJ and Lllum L. Colonic drug delivery. Drug Dev Ind Pharm,1997,23:893-913.
    [141] Riccardo A. A. Muzzarelli, Fabio Tanfani, Monica Emanuelli, et al.N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: novel chelatingpolyampholytes obtained from chitosan glyoxylate. Carbohydrate Research,1982,107:199-214.
    [142] Anya Kuznetsova, Douglas B. Mawhinney, Viktor Naumenko, et al. Enhancement ofadsorption inside of single-walled nanotubes: opening the entry ports. Chemical Physics Letters,2000,321:292–296.
    [143] Thomas W. Ebbesen, Hidefumi Hiura, Margaret E. Bisher, et al. Decoration of carbonnanotubes. Advanced Materials,1996,8:155-157.
    [144] Zhang YJ, Li J, Shen YF, et al. Poly-L-lysine functionalization of single-walled carbonnanotubes. J Phys Chem B,2004,108(39):15343–15346.
    [145]Wang T, Zhao GC, Wei XW, et al. Synthesis and characterization of water-solublemulti-walled carbon nanotubes functionalized with polycystine. Chem Lett,2005,34(4):518–519.
    [146] Chen GX, Kim HS, Park BH, et al. Controlled functionalization of multiwalled carbonnanotubes with various molecular-weight poly(L-lactic acid). J Phys Chem B,2005,109(47):22237–22243.
    [147] Zeng HL, Gao C, Yan DY, et al. Poly(epsilon-caprolactone)-functionalized carbonnanotubes and their biodegradation properties. Adv Funct Mater,2006,16(6):812–818.
    [148] Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials.Nanoletters,2006,6(6):1121–1125.
    [149] Majeti N.V. Ravi Kumar, et al. A review of chitin and chitosan applications. Reactive&Functional Polymers,2000,46:1-27.
    [150] Majeti N.V. Ravi Kumar, et al. A review of chitin and chitosan applications. Reactive&Functional Polymers,2000,46:1-27.
    [151] Dash, M., Chiellini, F., Ottenbrite, R. M., et al. Chitosan-A versatile semi-syntheticpolymer in biomedical Applications. Progress in Polymer Science,2011,36:981-1014.
    [152] Rinaudo, M., et al. Chitin and chitosan: properties and applications. Progress in PolymerScience,2006,31:603-632.
    [153] Gonil, P., Sajomsang, W., Rungsardthong, U. R., et al. Novel quaternized chitosancontaining β-cyclodextrin moiety: Synthesis, characterization and antimicrobial activity.Carbohydrate Polymer,2011,83:905–913.
    [154] JAIN R K. Delivery of molecular and cellular medicine to solid tumors. Advanced DrugDelivery Reviews,2001,46(1-3):149-168.
    [155] Kenneth Widder, George Flouret, Andrew Senyei. Magnetic microspheres: Synthesis of anovel parenteral drug carrier. Journal of Pharmaceutical Sciences,1979,68(1):79–82.
    [156] Ueda, H., Endo, T. Large-ring cyclodextrins. In: Dodziuk, H.(ed.) Cyclodextrins and theirComplexes. Chemistry, Analytical Methods, Applications. Wiley-VCH Verlag, Weinheim,2006:370–380.
    [157] Larsen, K.L. Large cyclodextrins. J. Incl. Phenom. Macrocycl. Chem,2002,43:1–13.
    [158] Loftsson, T., Brewester, M. Pharmaceutical applications of cyclodextrins. Drugsolubilization and stabilization. J. Pharm. Sci,1996,85:1017–1025.
    [159] Szejtli, J. Cyclodextrin Technology. Kluwer Academic, Dordrecht,1988.
    [160] Szente, L., Szejtli, J. Highly soluble cyclodextrin derivatives: chemistry, properties, andtrends in development. Adv. Drug Deliv. Rev,1999,36:17–38.
    [161] Matsuda, H., Arima, H. Cyclodextrins in transdermal and rectal delivery. Adv. Drug Deliv.Rev,1999,36:81–99.
    [162] Hirayama, F., Uekama, K. Cyclodextrin-based controlled drug release system. Adv. DrugDeliv. Rev,1999,36:125–141.
    [163] Bilati, U., Alle′mann, E., Doelker, E. Strategic approaches for overcoming peptide andprotein instability within biodegradable nano-and microparticles. Eur. J. Pharm. Biopharm,2005,59:375–388.
    [164] Uekama, K., et al. Sustained release of buserelin, a luteinizing hormone-releasinghormone agonist, from an injectable oily preparation utilizing ethylated b-cyclodextrin. J. Pharm.Pharmacol,1989,41:874–876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700