用户名: 密码: 验证码:
基于有限元法的超磁致伸缩换能器磁路结构设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土超磁致伸缩材料是近几年发展起来的新型功能材料,因其具有磁致伸缩应变大,响应速度快,能量密度高,磁机耦合系数高等特性,已经在机电领域显示出广阔的应用前景。换能器是功率超声的核心器件,寻找、开发新材料是发展新型换能器的重要途径。稀土超磁致伸缩材料Terfenol-D具有优良性能,目前已经有不少研究单位将这种材料应用于超磁致伸缩换能器中。本文以基于该新型功能类材料的换能器为研究对象,对超磁致伸缩材料Terfenol-D的工作特性,超磁致伸缩换能器的磁路结构设计与数值分析等方面进行深入与系统的研究,从而为超磁致伸缩器件的优化设计提供了理论依据。
     本文首先介绍磁致伸缩现象机理,超磁致伸缩材料的主要特性,发展历史以及研究现状,综述国内外超磁致伸缩换能器的研究情况以及存在问题,由此引出本课题选题意义并给出相关的研究内容。
     其次,系统性阐述换能器的工作原理,以及设计的一般方法。根据稀土超磁致伸缩材料的工作特性,结合超磁致伸缩换能器设计的几个关键问题,给出了设计的超磁致伸缩换能器的结构简图,提出了超磁致伸缩换能器磁路结构设计的方法,其中包括激励线圈的设计、偏置磁场的设计、超磁致伸缩棒处理以及漏磁场处理。
     继而,介绍了有限元分析方法。利用有限元分析软件对超磁致伸缩换能器进行了有限元分析,对磁路结构进行了相应的优化,重点研究了如何改善超磁致伸缩换能器内部磁场大小和分布,减小涡流损耗。用有限元分析软件对超磁致伸缩换能器磁场分布以及磁场强度大小进行有限元仿真,确定优化后换能器结构。
     最后,对超磁致伸缩换能器进行了静态应变测试实验研究,通过实验数据验证了优化的可行性,并在实验的基础上,对相似结构的超磁致伸缩换能器激励线圈匝数提出了优化方案。总结优化结论后对今后的工作进行了展望。
Rare-earth giant magnetostrictive materials are the new functional materials developed in recent years. They have been used in many fields due to its large magnetostrictive strain, fast response time, high energy density and high magnetic coupling coefficient. Transducer is a core component of power ultrasound, and the utilization of new material is important way to develop of a new transducer. Rare earth giant magnetostrictive material Terfenol-D has excellent performance, and now, many research institutes use this material to magnetostrictive transducer. In this paper, working characteristic of giant magnetostrictive material Terfenol-D and structure design of magnetic circuit of transducer have been analyzed in order to optimize the structure of giant magnetostrictive transducer.
     First, the paper introduces the magnetostrictive phenomenon mechanism, development history and the recent research results. The magnetostrictive transducers on research and the problems were reviewed at home and abroad. Thus the significance of this paper topic and relevant research content are given.
     Secondly, the working principle, general design principle and method of the transducer have been described. According to the working characteristics of giant magnetostrictive material, the structure diagram of giant magnetostrictive transducer is determined, combined with several key design issues. and proposed The design methods of magnetostrictive transducer have been discussed, including incentive coil design, bias magnetic coil design, GMM rod design and leakage magnetic field design.
     Then, Finite element method is introduced, and the giant magnetostrictive transducer is analyzed by using finite element analysis software to optimize the design of magnetic circuit. The efficient flux and wastage of eddy current of transducer have been discussed. The flux distribution of giant magnetostrictive transducer has been analyzed by using finite element analysis software simulation and the optimizing transducer structure has been determined.
     Finally, the characteristic of giant magnetostrictive transducer is experimentally studied. The experimental data shows that the feasibility of optimization for the giant magnetostrictive transducer. On the basis of experiment result, the coil structure of the transducer is optimized. The further work on the future was proposed based on the result.
引文
[1]黎文献,余琨,谭敦强等.稀土超磁致伸缩材料的研究[J].矿冶工程,2000,20(3):64~67
    [2]朱厚卿.稀土超磁致伸缩材料的应用[J].应用声学,1998,17(5):3~10
    [3]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社.2000
    [4]李陪,伍虹.国外稀土超磁致伸缩材料的研究状况.稀土,1990,11(6):52~59
    [5]李扩社,徐静,张深根.稀土超磁致伸缩材料进展.金属功能材料.2003,10(6):30~33
    [6]罗骐先.用纵波超声换能器测量砼表面波速和动弹性模量[J].水利水运科学研究,1996,(3):264~270
    [7]贺西平.稀土超磁致伸缩换能器[M].北京:科学出版社,2006
    [8]周利生,曹荣,秦维玉,唐良雨.稀土纵向式换能器[J].声学与电子工程,1995,(3):18~21
    [9]蔡志恂,高毅品,申扣喜,张余丰.用Terfenol-D驱动的凹筒型换能器.声学技术,2003,22(3):150~152
    [10]杜挺,张洪平,邝马华.稀土-铁系超磁致伸缩材料的应用研究[J].金属功能材料,1997(4):173~176
    [11] Zhu Houqing etc.Applications of Terfenol in China[J].Alloys Comp,1997,258(8):49~52
    [12]金绥更,刘湘林,蒋志红.稀土超磁致伸缩器件的设计与应用[J].稀土,1992,13(1):39~43
    [13] Wakiwaka H,Aoki K,Yoshikawa T,etc.Maximum output of a low frequency sound source using giant magnetostrictive material[J].Alloys Comp,1997,258(8):87~92
    [14]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000
    [15]钟文定.铁磁学[M].北京:科学出版社,1987
    [16]李恒菊.磁致伸缩材料在微动工作台中的应用[D].武汉理工大学,2005
    [17] (美)克劳斯(Kraus,J.D).电磁学[M].北京:人民邮电出版社,1979
    [18] Savage H T,Clark A E,Powers J M.Magnetochanical coupling and△E effect in highly magnetostrictive rare earth-Fe2 compounds[J].IEEE Transactions on Magnetics,1985,11(5):1355~1357
    [19] Besbes M,Ren Z,Razek A.Finite Element Analysis of Magneto-Mechanical Coupled Phenomena in Magnetostrictive Materials[J].IEEE Transactions on Magnetics.1996,32(3):1058~1061
    [20] Gros L,Reyne G,Strong Coupling Magneto Mechanical Applied to Model Heavy Magnetostrictive Actuators[J].IEEE Transactions on magnetics.1998,34(5):3150~3153
    [21] Clark A.E.Ferromagnetic material[M].E.P.Wohlfarth:North-Holland Publishing company,1980
    [22]林其壬.赵佑民.磁路设计原理.北京:机械工业出版社,1987
    [23]薛淼.超磁致伸缩材料在换能器中的应用研究:[硕士学位论文].内蒙古科技大学,2007
    [24]张凯军.超磁致伸缩电-机械转换器研究及应用:[硕士学位论文].浙江大学,2006
    [25]廖绍彬.铁磁学(下册).北京:科学出版社.1998
    [26]朱厚卿.稀土超磁致伸缩材料的应用.应用声学,1997,17(5):3~10
    [27]贺西平,李斌,周寿增.稀土超磁致伸缩材料及其高效应用方法.兵器材料科学与工程,1998,21(3):61-65
    [28]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005
    [29]颜威利,杨庆新,汪友华.电气工程电磁场有限元分析.北京:机械工业出版社,2005
    [30]张国瑞.有限元法[M].北京:机械工业出版社,1991
    [31]张榴晨,徐松.有限元法在电磁计算中的应用[M].北京:中国铁道出版社,1995
    [32]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,2001
    [33] Ansoft Corporation.User's Guide,Maxwell 3D,2005
    [34]赵凯华,陈熙谋.电磁学[M].高等教育出版社,1985:612~620
    [35] Jiles D C.Modeling the Effects of Eddy Current Losses on Frequency Dependent Hysteresis in Electrically Conducting Media[J].IEEE TRANSACTIONS ON MAGNETICS,NOVEMBER 1994,(30,6)
    [36] Stoere RL.Eddy Current Analysis[M].Heilongjiang Scienceand Technology Press.1983
    [37]励子伟,宋建平编.普通物理学.电磁学[M].北京大学出版社,1988:230~243
    [38]吕福在,项占琴,戚宗军,程耀东.稀土超磁致伸缩材料高速强力电磁阀的研究[J].内燃机学报,2000,18:199~202
    [39]戴旭涵.磁致伸缩电一机械转换器的理论分析与实验研究:[硕士学位论文].浙江大学,1997
    [40]傅龙珠等.稀土超磁致微致动器驱动电源实验研究.机电工程,2002,19(6):46~49
    [41]夏春林等.超磁致伸缩材料驱动器实验研究.电工技术学报,1999,14(4):45~49
    [42]周烁等.稀土超磁致伸缩材料电磁参数的实验研究.辽宁工学院学报,1999.1
    [43]刘文静,周利生,夏铁坚,俞宏沛.稀土超声换能器特性研究.声学与电子工程,2005:28~31
    [44]兵器工业无损检测人员技术资格鉴定考核委员会.磁特性曲线速查手册.北京:机械工业出版社,2003
    [45] K.R.Dhilsha,G.Markandeyulu,B.V.P.Subrahm anyeswara Rao,K.V.S.Rama Rao. Design and fabrication of a frequency giant magneto strictive transducer[J].Alloys and Compounds.1997:3191~3193.
    [46]张洪平,杜挺等.稀土-铁系超磁致伸缩材料水声换能器的研制[J].金属功能材料,1995,2(3):107~109
    [47]夏春林,丁凡,路甫祥.超磁致伸缩材料的特性参数测量及其应用研究[J].仪器仪表学报,1999,20(4):368~370,379
    [48]王博文,张智祥,翁玲等.巨磁致伸缩材料磁机械祸合系数的测量[J].河北工业大学学报,2002,31(4):1~4
    [49] S.Karunanidhi,M.Singaperumal.Design analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve.Sensors and Actuators,A157 (2010):185~197
    [50]曹淑瑛,王博文,闰荣格等.磁致伸缩致动器的磁滞非线性动态模型研究[J].中国电机工程学报,2003,23(11):145~149
    [51]王世全,夏铁坚,王月兵.m型弯张换能器的有限元设计及结果验证[J].声学与电子工程2004,(4):l~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700