用户名: 密码: 验证码:
两种化合物的相变及磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有庞磁电阻(CMR)效应的Mn基钙钛矿氧化物所表现出的独特物理性质蕴藏着潜在的应用前景,而且,对庞磁电阻物理本质的认识涉及强关联物理中很多基础性问题,因此,这类氧化物一直是人们研究的热点。本论文主要目的是探讨Mn基钙钛矿氧化物中绝缘体一金属(I—M)转变和CMR效应可能的物理起因。虽然目前提出了很多不同的理论和模型,但是都不能对已有实验观察给予合理的解释。
     在本文中,简单综述了钙钛矿结构Mn基氧化物的基本电特征和磁特征,并介绍了目前在一定程度上被人们所接受的用来解释Mn基氧化物中I—M转变和CMR效应起因的理论和模型,如基于双交换机理的唯象模型,电荷局域化模型,自旋—极化子模型以及基于相分离提出的二相唯象模型等。在文章中用渗流模型来计算Mn基钙钛矿氧化物中绝缘体—金属(I—M)转变温度T__(C,H)。关于渗流主要讨论了渗流的基本概念,渗流临界指数以及其中两个重要参数,渗流阈值和渗流几率的求取。详细介绍了随机阻抗网络模型的建立及求解方法,并用其模拟了两相系统的导电行为,并对这一结果用渗流理论求转变温度。作为模型中的参数,网格大小N和随机矩阵的生成方法,它们的改变对模型计算结果的影响也给予了详细的讨论。在对实验数据进行综合分析的基础上,提出Mn基钙钛矿氧化物在T_C附近发生动力学相分离的可能性,进而用蒙特卡罗方法生成了由PMI和FMM随机分布的阻抗网络。以此为基础提出的模型定性分析了Mn基钙钛矿氧化物中的主要实验特征,如高温顺磁绝缘体行为、低温铁磁金属性行为以及在居里温度T_C处发生的绝缘体到金属的转变。利用所建立的模型,对外加磁场下的电子输运行为也进行了模拟。结果表明,外加磁场使得I-M转变移向高温且转变附近电阻大幅度下降,从而导致T_(C,H)附近出现CMR现象。并且,随着外加磁场的增加,转变温度T_(C,H)呈线性增加。
     自从诸如poly-BIPO,m-PDPC,p-NPNN等有机铁磁性聚合物的发现,基于低维纯有机聚合物或高分子的磁性材料引起了人们的广泛关注。聚合物,如m-PDPC等,在过去的研究中,已采用Kondo-Hubbard哈密顿量模型来描述该磁性系统,并且通过平均场近似和量子蒙特卡罗方法研究发现,该磁性系统的基态呈现铁磁磁有序。在本学位论文中,我们将选择有机聚合物poly-BIPO作为研究对象,并将其描述为准一维的Ising-Heisenberg型的“之”字型自旋链模型,并且采用有限温度的量子转移矩阵方法,对其热力学性质进行较系统的研究。由数值结果,我们发现:当侧自由基和主链间没有磁性耦合作用时,且主链内都为反铁磁相互作用,磁性系统的热容量随温度的变化表现为一个圆形的比热峰结构:但是,当主链的磁性耦合作用为铁磁一反铁磁交错耦合时,系统的热容量随温度的变化曲线表现为双峰结构,该行为的出现是来源于系统内铁磁激发和反铁磁激发之间的竞争。同时,在考虑侧基与主链间的相互作用时,如果主链内,以及主链和侧自由基的磁性相互作用都为反铁磁相互作用时,该系统的热容量仍然只表现为一个圆形的比热峰;但如果,主链的磁性耦合作用为反铁磁相互作用,而侧基与主链间的磁性耦合为铁磁相互作用,该磁性系统将表现为清晰的比热双峰结构,其仍然来源于系统铁磁和反铁磁激发之间的竞争,同时,比热双峰的出现意味系统的亚铁磁磁有序的存在。
Colossal magnetoresistive (CMR) materials such as rare-earth manganites is still a hot topic up to now. For one thing, scientists are looking forward to potential applications for their CMR effect; for another, the essence of the CMR is related to the basic issues in strongly correlated physics. The main purpose of this paper is to study in details the possible origin of insulator-metal (I-M) transition and CMR effect found in manganese perovskite. Up to now, there are many different theories and models trying to explain this phenomenon but no one can provide a feasible explanation.
     In this paper, the electrical and magnetic characters of manganese perovskite have been briefly summarized. Some theories and models introduced here also include phenomenon model based on double exchange theory, charge ordering model, spin-polarons model and 2-phase phenomenon model based on phase separation.The I-M transition temperature T_(c,h) in different magnetic fields has been obtained in the paper. The content about percolation includes the concept of percolation, critical percolation exponent and percolation probability about random resistor network model. The method of constructing model and calculating model resistance is presented here in details. The simulated result of the system through percolation theory is also discussed. Clearly, with the different parameters, just like the size of network and the generating method of random matrix, the model will give different result. Based on the analysis on experiment data, it is proposed that there is possibility of kinetic PS near T_c in manganese perovskite oxide. Thus, a random resistor network consisted of PMI and FMM is generated through Monte Carlo method. The model qualitatively analyses the main character of manganese perovskite which is PMI at high temperature, FMM at low temperature and insulator transiting to metal near Curie temperature. The model also simulates electrical transport behavior of sample when applied magnetic field and the result shows that I-M transition moves to high temperature and resistance near T_c falls sharply because of field. It is found there is linear dependence of the critical temperature on the magnetic field, provided the magnetic field is not too strong. The theoretical predications coincide well with the result of experiments.
     In addition, low-dimensional magnetism in organic polymers or molecules has attracted considerable interest from scientists since the discovery of ferromagnetism in organic polymer, such as poly-BIPO, m-PDPC, p-NPNN. The polymer chain, m-PDPC, is described by the Kondo-Hubbard Hamiltonian, which exhibits the ferromagnetic order by means of the mean-field theory and the quantum Monte Carlo simulation. In the present paper, we choose poly-BIPO and describe it as a simplified quasi-one- dimensional Ising-Heisenberg zig-zag spin chain model, and then we apply the quantum transfer-matrix method to study the specific heat of which. From the calculated results, we can find that, in the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain, and considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain.
引文
[1] K Chahara T, Ohno M Kasai, Y Kozono .Magnetoresitstance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl Phys Lett, 1993, 63: 1990-1992
    
    [2] Ju H L, Kwon C, L Q, et al. Giant magnetoresistanse in LaSrMnO films near room temperature. Appl Phys Lett, 1994, 65: 2108-2110
    [3] Kusters R M, Singleton J, Keon D A, et al. Magnetoresistance measurements on the magnetic semiconductor. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3 . Physica B, 1989, 155: 362-365
    [4] Tomioka Y, Asamitsu A, Moritomo Y, et al. Double Exchange Alone Does Not Explain the Resistivity of La_(1-x)Sr_xMnO_3. Phys Rev Lett., 1995, 74: 5144-5147
    [5] Uhlenbruck S, Teipen R, Klingeler R, et al. Interplay between Charge Order, Magnetism, and Structure in La_(0.875)Sr_(0.125)MnO_3. Phys Rev Lett., 1999, 82: 185-188
    [6] Iara R M, Algarabel A P, Marquina C, et al. Large Magnetovolume Effect in Yttrium Doped La-Ca-Mn-O Perovskite. Phys Rev Lett., 1995, 75: 3541-3544
    [7] Euler K J. Manganese dioxide in dry cell electrodes. Mater. Chem., 1982, 7: 291-311
    [8] Elbio DAGOTTO, Takashi Hotta, Adriana Moreo. Colossal magnetoresistam materials the key role of phase separation. Physics Reports, 2001, 344: 1-153
    [9] Jahn H A, teller E. Stability of polyatomic molecules in degenerate electronic states .orbital degeneracy. Proc. Roy. Soc. A, 1937, 161: 220-224
    [10] Jonker G H, Van Santen J H, Ferromagnetic compounds of manganese with perovskite structure. Physica, 1950, 16: 337-349
    [11] Despina Louca, T. Egami. Lattice effect in the metal-insulator transition in CRM manganites. Physica B, 1997, 241: 842-844
    [12]Zener C.Interaction between the d-Shells in the Transition Metals.Ⅱ.Ferromagnetic Compounds of Manganese with Perovskite Structure.Phys.Rev.,1951,82:403-405
    [13]Raveau B,Maignan A,Martin C,Insulator-Metal Transition Induced by Cr and Co Doping in PrO.5CaO.5MnO3.Solid State Commum,1997,101:277-280
    [14]李盟远,李国栋,铁磁体物理学,科学出版社,1997:1-176
    [15]Urushibara A,Moritomo Y,A samitsu A,et al.Insulator-metal transition and giant magnetoresistance in La_(1-x)Sr_xMnO_3.Phys.Rev.B,1999,51:14103-14109
    [16]Hwang S W,Cheong P G,Radaelli M,et al.Lattice Effects on the Magnetoresistance in Doped LaMnO_3.Phys.Rev.Lett.,1995,75:914-917
    [17]Ahn K H,Wu X W,Liu K,et al.Magnetic properties and colossal magnetoresistance of La(Ca)MnO_3 materials doped with Fe.Phys Rev.B,1996,54:15299-15302
    [18]Maignan A,Martin C,Damay F,et al.Transition from a paramagnetic metallic to a cluster glass metallic state in electron-doped perovskite manganites.Phys.Rev.B,1998,58:2758-2763
    [19]Vanitha P V,S Singh R,Natarajan S C,et al.Effect of substitution of Mn~(3+) by Ni~(3+)and Co~(3+) on the charge-ordered states of the rare earth manganates Ln_0.5A_0.5MnO_3.Solid State Connun,1999,109:135-140
    [20]Tomioka Y,Asamitsu A,Moritomo Y,et,al.Double Exchange Alone Does Not Explain the Resistivity of La_(1-x)Sr_xMnO_3.Phys Rev Lett.,1995,74:5144-5147
    [21]Hwang S W,Cheong P G,Radaelli M,et al.Lattice Effects on the Magnetoresistance in Doped LaMnO_3.Phys.Rev.Lett.,1995,75:914-917
    [22]Kusters R M,Singleton J,Keon D A,et al.Magnetoresistance measurements on the magnetic semiconductor.Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3.Physica B,1989,155:362-365
    [23]Jaime M,Salamon M B,Pettit K,et al.Magnetothermopower in La_0.67Ca_0.33MnO_3thin films Appl.Phys.Lett.,1996,68:1576-1578
    [24]李正中.固体理论(第二版).北京:高等教育出版社,2002:343-347
    [25]Saitoh E,Okamoto S,Takahashi K T,et al.Observation of orbital waves as elementary excitations in a solid.Nature,2001,410:180-183
    [26]Ishihara S,Inoue J,Maekawa S.Effective Hamiltonian in manganites:mStudy of the orbital and spin structures.Phys.Rev.B,1997,55:8280-8286
    [27]Fang Z,Nagaosa N.Quantum Versus Jahn-Teller Orbital Physics in YVO_3 and LaVO_3.Phys.Rev.Lett.,2004,93:176404-176407
    [28]MartinOCarron L,de Andres A.Excitations of the Orbital Order in RMnO_3Manganites:Light Scattering Experiments.Phys.Rev.Lett.,2004,92:175501-175505
    [29]Coey J,Viret M,Ranno L,et al.Electron Localization in Mixed-Valence Manganites.Phys.Rev.Lett.,1995,75:3910-3913
    [30]Ziese M,Srinitiwarawong C.Polaronic effects on the resistivity of manganite thin films.Phys.Rev.B,1998,58:11519-11525
    [31]Jakob G,Westerburg W,Martin F,et al.Small-polaron transport in La_0.67Ca_0.33MnO_3 thin films.Phys.Rev.B,1998,58:14966-14970
    [32]Stephen D.Casey.Using Dimension Theory to Analyze and Classify the Generationof Fractal Sets,Computers & Graphics,1996,20:731-796
    [33]Sasioglu E,Galanakis I,Sandratskii L M.Stability of ferromagnetism in the half-metallic pnictides and similar compounds:a first-principles study.J.Phys.:Condens.Matter,2005,17:3915-3919
    [34]Schiffer P,Ramirez A P,Bao W,et al.Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La_(1-x)Ca_xMnO_3.Phys.Rev.Lett.,1995,75:3336-3339
    [35]Snyder G J,Hiskes R,DiCarolis S,et al.Geballe T H.Intrinsic electrical transport and magnetic properties of La_0.67Ca_0.33MnO_3 and La_0.67Sr_0.33MnO_3MOCVD thin films and bulk material.Phys.Rev.B,1996,53:14434-14444
    [36] Lee J D , Min B I. Polaron transport and lattice dynamics in colossal-magnetoresistance manganites. Phys. Rev. B, 1997, 55: 12454-12459
    [37] Lanzara A , Saini N L, Brunelli M N, et al. Crossover from Large to Small Polarons across the Metal-Insulator Transition in Manganites. Phys.Rev.Lett., 1998, 81: 878-881
    [38] Zhao Y G, Li J J , Shreekala R, et al. Ultrafast Laser Induced Conductive and Resistive Transients in La_(0.7)Ca_(0.3)MnO_3: Charge Transfer and Relaxation Dynamics . Phys. Rev. Lett., 1998, 81: 1310-1313
    [39] Booth C H, Bridges F, Kwei G H , et al. Direct Relationship between Magnetism and MnO_6 Distortions in La_(1-x)Ca_xMnO_3. Phys. Rev. Lett., 1998 , 80 : 853-856
    [40] Dessau D S, Saitoh T, Park COH , et al. k-Dependent Electronic Structure, a Large "Ghost" Fermi Surface, and a Pseudogap in a Layered Magnetoresistive Oxide. Phys.Rev.Lett., 1998, 81: 192-195
    [41] De Teressa J M, Ibarra M R , Algarabel P A, et al. Corticofugal modulation of frequency processing in bat auditory system. Nature, 1997, 386: 256-258
    [42] Elbio D, Takashi H, Adriana M. Colossal magnetoresistant materials: the key role of phase separation. Physics Reports, 2001, 344: 1-153
    [43] Scott Kirkpatrick. Percolation and Conduction. Reviews of Modern Physics, 1973, 45: 574-588
    [44] Wollan E O, Koehler W C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO_3. Phys. Rev., 1955, 100: 545-548
    [45] Uehara M, Mori S , Chen C H, et al . Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature, 1999,399: 560-563
    [46] M. Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J.Aarts, and J. A. Mydosh et al . Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. Science, 1999, 285: 1540-1542
    [47] Renner C. Aeppl , G, Kim BG, et al. Atomic-scale images of charge ordering in a mixed-valence manganite. Nature, 2002, 416: 518-521
    [48] Guo-Qiang Gong, Chadwick Canedy et al. Colossal magnetoresistance of 1 000 000-fold magnitude achieved in the antiferromagnetic phase of La_(1-x)Ca_xMnO_3. Appl. Phys. Lett., 1995, 67: 1783-1788
    [49] Hwang H Y, Cheong S W, et al. Lattice Effects on the Magnetoresistance in Doped LaMnO_3. Phys. Rev. Lett., 1995, 75: 914-917
    [50] Sanchez R D, Rivas J, et al. Giant magnetoresistance in fine particle of La_(0.67)Ca_(0.33)MnO_3 synthesized at low temperatures. Appl. Phys. Lett., 1996, 68: 134-137
    [51] Schiffer P , Ramirez A P, Bao W, et al. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La_(1-x)Ca_xMnO_3 Phys. Rev. Lett., 1995, 75: 3336-3339
    [52] Liu K, Wu X W, et al. Charge ordering and magnetoresistance in Nd_(1-x)Ca_xMnO_3 due to reduced double exchange. Phys. Rev. B, 1996, 54: 3007-3009
    [53] Tokura Y, Tomioka Y, et aL Origins of colossal magnetoresistance in perovskite-type manganese oxide .Appl. Phys., 1996, 79: 5288-5291
    [54] Gong G Q, Canedy C L, et al. Colossal magnetoresistance in the antiferromagnetic La_(0.5)Ca_(0.5)MnO_3 system. Appl. Phys., 1996, 79: 4538-4540
    [55] Damay F, Martin C, et al. Cation disorder and size effects upon magnetic transitions in Ln_(0.5)A_(0.5)MnO_3 manganites. Appl. Phys., 1997, 82: 6181-6185
    [56] Nunez-Regueiro J E, Kadin A M. Phenomenological Model for Giant Magnetoresistance in Lanthanum Manganite. Applied Physics Letters, 1996, 68: 2747-2749
    [57] Coey J M D , Viret M , Ranno L. Electron Localization in Mixed-ValenceManganites. Physical Review Letters, 1995, 75: 3910-3913
    [58] Viret M , Ranno L , Coey J M D. Magnetic Localization in Mixed-ValenceManganites. Physical Review B, 1997, 55: 8067-8070
    [59]Shufang Zhang.Electrical Conductivity in Ferromagnetic Perovskita Structures.Journal of Applied Physics,1996,79:4542-4544
    [60]Millis A J.Lattice Effects in Magnetoresistive Manganese Perovskites.Nature,1998,392:147-150
    [61]Mort N F.Conduction in Non-Crystalline Materials,Oxford University Press.New York,1993,1-285
    [62]Shang L,Xing D Y,Sheng D N et.al.Theory of Colossal Magnetoresistance in R_(1-x)A_xMnO_3.Physical Review Letters,1997,79:1710-1713
    [63]Hundley M F,Hawley M R,Heffner H,et.al.Transport-Magnetism Correlations in the Ferromagnetic Oxide La0.7Ca0.3MnO3,Applied Physics Letters,1995,67:860-862
    [64]黄昆,固体物理学,高等教育出版社,1988:372-437
    [65]Mathieu R,Akahoshi D,Asarnitsu A,et al.Colossal Magnetoresistance without Phase Separation:Disorder-Induced Spin Glass State and Nanometer Scale Orbital-Charge Correlation in Half Doped Manganites.Phys.Rev.Lett.,2004,93:227202-227205
    [66]Sato T J,Lynn J W,Dabrowski B,Disorder-lnduced Polaron Formation in the Magnetoresistive Perovskite La_0.54Ba_0.46MnO_3.Phys.Rev.Lett.,2004,93:267204-267207
    [67]Iguchi I,Yamaguchi T,Sugimoto A.Diamagnetic activity above Tc as a precursor to superconductivity in La2-xSrxCuO4 thin films.Nature,2001,412:420-423
    [68]Pan S H,O'Neal J P,Badzey R L,et al.Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu208&plus.Nature,2001,413:282-384
    [69]Yuan S L,Zhao W Y,Zhang G Q,et.al.Origins of Both Insulator-Metal Transition and Colossal Magnetoresistance in Doped Manganese Pcrovskites.Applied Physics Letters,2000,77:1-4
    [70]Yuan S L,Jiang Y,Zeng X Y,et.al.Metallic Conduction and Low-Field Giant Magnetoresistance in the Highly Mn4+-Doped Compound La_(1/3)Ba_(2/3)MnO_3. Physical Review B, 2000, 62: 11347-11350
    [71] Yuan S L, Li J Q , Jiang Y et. al. Paramagnetie Anomalies above the Curie Temperature and Colossal Magnetorcsistance in Optimally Doped Manganites. Physical Review B, 2000, 62: 5313-5315
    [72] Yuan S L, Jiang Y, Li G, et. al. Semiconductor-Metal Trarksition and Magnetoresistance in La_((1+x)/3)Ba_((2-x)/3)Cu_xMnO_3. Physical Review B, 2000, 62: 3211-3214
    [73] Yuan S L, Zeng X Y, Jiang Y, et. al. Magnetoresistance and Paramagnetic Anomalies in La_((2-x)/3)Ba_((1+x)/3)Mn_(1-x)Cu_xO_3 (x = 0.2). Journal of Physics: Condensed Matter, 2000, 12: 242-246
    [74] Yuan S L, Li J Q , Li G, et. al. Quantitative Explanation for the Electrical Conductivity in (La_(1-x)Y_x)_(2/3)Ca_(1/3)MnO_3. Journal of Physics: Condensed Matter, 2000, 12: 337-344
    [75] Schon Jan Hendrik, Meng Hong, Bao Zhenan. Self-assembled monolayer organic field-effect transistors. Nature, 2001, 413, 713-716
    [76] Rajca, J. Wongsriratanakul S, Rajca. Magnetic Ordering in an Organic Polymer. Science, 2001, 294: 1503-1505
    
    [77] Szuromi P. Removing Spin in Quantum Magnets. Science, 2002,295:1597-1597
    [78] Miller J S. Organometallic- and Organic-Based Magnets: New Chemistry and New Materials for the New Millennium. Inorg. Chem., 2000, 39: 4392-4408
    [79] M. S. Davis, K. Morokuma, R. W. Kreilick. Free radicals with large negative spin densities. Am. Chem. Soc., 1972, 94: 5588-5591
    [80] Andrei Zheludev, Vincenzo Barone, Michel Bonnet, et al. Spin density in a nitronyl nitroxide free radical. Polarized neutron diffraction investigation and ab initio calculations. Am. Chem. Soc., 1994, 116: 2019-2107
    [81] Sandau, Konrad. A Note on Fractal Sets and the Measurement of Fractal Dimension.Phvsica A,1996,233:1-18
    [82]宛德福,“磁性理论及其应用”,(华中理工大学出版社,1996)
    [83]赵成大,“固体量子化学”,(高等教育出版社,2003)
    [84]Miller J S.Organometallic- and Organic-Based Magnets:New Chemistry and New Materials for the New Millennium.Inorg Chem.,2000,39:4392-4408
    [85]Xiong Z H,Wu D,Vardeny Z V,et al.Intelligent plagiarists are the most dangerous.Nature,2004,427:821-823
    [86]Miyazaki Y,Sakakibara T.,Ferrer J R.,et al.Heat Capacity and Antiferromagnetie Phase Transition of the Organic Free Radical Magnet 2-tert-Butylaminoxylbenzimidazole(BABI).Phys.Chem.B,2002,106(34):8615-8620
    [87]Yu V,Korshak R V,Medvedera A A,et al.Evidence for an early opening of the Bering Strait.Nature(London),1987,326:370-374
    [88]Tamura M,Nakazawa Y,Shiomi D,et al.Chem.Phys.Lett.,1991,186,401-403
    [89]Nakazawa Y,Tamura M,Shirakawa N,et al.Low-temperature magnetic properties of the ferromagnetic organic radical,p-nitrophenyl nitronyl nitroxide.Phys.Rev.B,1992,46:8906-8914
    [90]Hayakawa K,Shiomi D,Ise T,et al.Magnetic Phase Transition in a Heteromolecular Hydrogen-Bonded Complex of Nitronylnitroxide Radicals J.Phys.Chem.B,2005,109:9195-9197
    [91]Maekawa K,Shiomi D,Ise T,et al.Theoretical Study on Spin Alignments in Ferromagnetic Heterospin Chains with Competing Exchange Interactions:A Generalized Ferdmagnetic System Containing Organic Biradicals in the Singlet Ground State J.Phys.Chem.B.2005,109:9299-9304
    [92]Maekawa K,Shiomi D,Ise T.Exchange Interaction in Covalently Bonded Biradical-Monoradical Composite Molecules.J.Phys.Chem.,B,2005,109:3303-3309
    [93]Fang Z,Liu Z L,Yao K L,et al.The dimerization and electronic properties of quasi-1D organic polymer ferromagnets with side free-radicals. Soli. Stat. Comm., 1995, 93: 613-615
    [94] Fang Z, Liu Z L, Yao K L, et al. Spin configurations of p electrons in quasi-one-dimensional organic ferromagnets. Phys. Rev. B, 1995, 51,1304 -1307
    [95] Wang W Z, Fang Z, Liu Z L, et al. Interchain coupling model for quasi-one-dimensional p-conjugated organic ferromagnets. Phys. Rev. B, 1997, 55: 12989-12994
    [96] Fang Z, Liu Z L, Yao K L. Theoretical model and numerical calculations for a quasi-one-dimensional organic ferromagnet. Phys. Rev. B, 1994, 49: 3916-3919
    [97] Qu S H, Zhu L. Specific heat study of a quasi-one-dimensional antiferromagnetic model for an organic polymer chain. Physics Letters A, 2008, 372: 5918—5921
    [98] Wang W Z , Yao K L, Lin H Q. Charge density wave transition and instability in interchain coupled organic ferromagnets with next-nearest-neighbor hopping interaction. Chem. Phys., 1998, 108: 2867-2870
    [99] Kravanja P. Monte Carlo: Concept Algorithms, and Applications, Journal of Computational and Applied Mathematics, 1996, 75: N3-N4
    [100] Luis D, Hernandez, Serafin Moral, et al. A Monte Carlo Algorithm for Probabilistic Propagation in Belief Networks Based on Importance Sampling and Stratified Simulation Techniques. International Journal of Approximate Reasoning, 1998, 18: 53—91
    [101] Ramirez A P. Colossal magnetoresistance. Phys.: Condens. Matter, 1997, 9: 8171-8173
    [102] Von Hemolt R, Weckorg J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La_(2/3)Ba_(1/3)MnQ_x ferromagnetic films. Phys. Rev. Lett., 1994, 71: 2331-2333
    [103] Chahara K, OhnoT, Kasai M, et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett., 1993, 63: 1990-1992
    [I04]Zoner C.Interaction between the d-Shells in the Transition Metals.Ⅱ.Ferromagnetic Compounds of Manganese with Perovskite Structure.Phys.Rev.,1951,82:403-405
    [105]Millis A J,Lattice effects in magnetoresistive manganese perovskites.Nature,1998,392:147-150
    [106]Maezon R,Ishihara S,Nagaosa N.Phase diagram of manganese oxides.Phys.Rev.B,1998,58:11583-11596
    [107]Mott N F.Conduction in Non- Crystalline Materials.(New York:Oxford University Press),1993
    [108]Kusters R M.Magnetoresistance measurements on the magnetic semiconductor Nd_0.5Pb_0.5MnO_3.PhysicaB,1989,155:362-365
    [109]Zhang Z.Electrical conductivity in ferromagnetic perovskite structures.Appl.Phys.,1996,79:4542-4544
    [110]Jaime M.Coexistence of localized and itinerant carriers near Tc in calcium-doped manganites.Phys.Rev.B,2000,60:1028-1032
    [111]Li J Q,Yuan S L.Anomalous Paramagnetic Behavior in the Pararnagnetic Phase of La_(2/3-x)YxCa_(1/3)MnO_3 Studied Through EPR and Its Relation to Colossal Magnetoresistance.Solid State Communication,2004,129(7):431-435
    [112]M.Faith,S.Freisem,A.A.Menovsky,et al.Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites.Science,1999,285:1540-1541
    [113]Essam J W.Percolation theory.Rep.Prog.Phys.,1980,.43
    [114]Harry K.Scaling Relation for 2D-Percolation.Commun.Math.Phys.,1987,109-156
    [115]Zhang Z Q,Li T C,Pu F C.Percolation on a Bethe lattice with multi-neighbour bonds-exact results.Phys.A:Math.Gen.,1983,2267-2280
    [116]屈少华,姚凯伦,郁伯民.二维次近邻渗流模型.物理学报,1991,.40(.2):169-174
    [117]屈少华.三维各向异性渗流模型.襄樊学院学报,2001,5:35-38.
    [118]Muhammed Sahimi,Mehrdad Hashemi,Jaleh Ghassemzadeh.Site-Bond Invasion Percolation with Fluid Trapping.Physica A,1998,260:231-243
    [119]刘柏漾,吕太,渗流理论应用导论。科学出版社,1997:1-104
    [120]Vidales A M.Difference Percolation on a Square lattice.Physica A,2000,285:259-266
    [121]Naeem Jan.Large Lattice Random Site Percolation.Physica A,1999,266:72-75
    [122]Tai-Fa Young,Huey-Jen Fang.DC Conductive Percolation of 2D Fractal Random Network.Physica A,2000,281:276-281
    [123]Xiong S J.Theoretical investigation of the liquid-solid transition.A study for gallium.Phys.C:Solid state Phys.,1988,21:69-74
    [124]Wang W Z,Fang Z,Liu Z L,et al.Interchain coupling model for quasi-one-dimensional p-conjugated organic ferromagnets.Phys.Rev.B,1997,55:12989-12994
    [125]Tarascon J M,Mckimon W R,Greene L H,et al.1987 Sping Meeting Materials Reseach Society(Anaheim) 1987 oral Presentation
    [126]Dieterich W,Diirr O,Pendzig P,et.al.Percolation Concepts in Solid State lonics.PhysicaA,1999,266:229-237
    [127]Pandey R B,Gettrust J,Stauffer F D.Concentration Gradient,Diffusion,and Flow through Open Porous Medium near Percolation Threshold via Computer Simulations.Physica A,2001,300:1-12
    [128]Lin C H,Wu G Y.Percolation Calculation with Non-Nearest Neighbor Hopping of Hopping Resistances for Granular Metals.Thin Solid Films,2001,397:280-287
    [129]Scott Kirkpatrick.Percolation and Conduction.Reviews of Modem Physics,1973,45:574-588
    [130]Zhang Z Q,Pu F C,Li T C.One-dimensional percolation problems with further neighbour bonds-transfer-matrix approach.Phys.A:Math.Gen.,1983,16:125-132
    [131]Zhang Z Q,Shen J L.Transfer-matrix approach to the one-dimensional percolation problem.Phys.A:Math.Gen.,1982,15:L363-368
    [132]Stanley H E.标度理论.物理学进展,第五卷,1985,1:1-76
    [133]徐钟济.蒙特卡罗方法.上海科学技术出版社,1985,5-40
    [134]裴济成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.科学出版社,1980,1-6
    [135]Alexandrov A S,Bratkovsky A M.Carrier Density Collapse and Colossal Magnetoresistance in Doped Manganites.Phys.Rev.Lett.,1999,82:141-144
    [136]Fath M.Spatially inhomogeneous metal-insulator transition in doped manganites.Science,1999,285:1540-1542
    [137]Uehara M,Mori S,Chen C H,et al.Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites.Nature,1999,399:560-563
    [138]Qu S H,Yao K L,Liu Z L,et al.Percolation Model of the Temperature Dependence of Exotic Magnetic Field in Doped Manganese Perovskites.Chinese physics letters,2005,22:2639-2644
    [139]Yuan S L,Li Z Y,Peng G,et al.Percolation model of the temperature dependence of resistance in doped manganese perovskites.Appl.Phys.Lett.,2001,79:90-92
    [140]Yuan S L,Li Z H,Zhao Y,et al.Phenomenological model for colossal magnetoresistance in optimally doped manganese perovskites.Phys.Rev.B,2003,63,172415:1-4
    [141]Stauffer D,Aharony A.introduction to percolation theory,revised 2~(nd) ed.(Taylor &Francis,London 1994)
    [142]Jin S,Tiefel T H,McCormack M,et al.Thousansfold Change in Resistivity in Magnetoresistive La2Ca2M2O Films.Science,1994,264:413-4151
    [143]戴道生,熊光成,吴思诚.RE1-xTxMnO3氧化物的结构、电磁特征和庞磁电阻.物理学进展,1997,17:201-222
    [144]雷丽文,傅正义,张金咏等.自蔓延高温合成La0167Sr0133MnO3-d粉体的研究.武汉理工大学学报,2004,26(5):16-181
    [145]Millis A J.Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1998, 397: 147-150
    [146] Jonker G H, Van Santen J H. Ferromagnetic compounds of manganese with perovskite structure. Physica, 1950, 16: 337-349
    [147] Zener C. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure Phys. Rev., 1951, 82: 403-405
    [148] Anderson P W, hasegawa H. Considerations on Double Exchange. Phys. Rev., 1955, 100: 675-681
    
    [149] Kubo K, OhataN, Phys. Soc. Jpn., 1972, 33: 21-25
    [150] Millis A J, Shraiman B I, Littlewood P B. Double Exchange Alone Does Not Explain the Resistivity of La_(1-x)Sr_xMnO_3 Phys. Rev. Lett., 1995, 74: 5144-5147
    [151] Millis A J, Shraiman B I, Mueller R. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La_(1-x)Sr_xMnO_3. Phys. Rev. Lett., 199, 77: 175-178
    [152] Hotta T, Malvezzi A, Dagotto E. Charge-orbital ordering and phase separation in the two-orbital model for manganites: Roles of Jahn-Teller phononic and Coulombic interactions. Phys. Rev. B, 2000, 62: 9432-9452
    [153] Zang J , Bishop A R, Roder H. Double degeneracy and Jahn-Teller effects in colossal-magnetoresistance perovskites. Phys. Rev. B, 1996, 53: R8840-R8843
    [154] Dagotto E , Hotta T , Moreo A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep., 2001, 344: 1-153
    [155] Ivica Res. Corrections to Scaling for Percolative Conduction: Anomalous Behavior at Small L. Physical Review B, 2001, 64: 224304-224307
    [156] Kanamori J. X-Ray Study of Ferromagnetic Domains in Cobalt Zinc Ferrite. Appl. Phys., 1960, 31: 147-154
    [157] Yunoki S , Hu J , Malvezzi A L , et al. Phase Separation in Electronic Models for Manganites. Phys. Rev. Lett., 1998, 80: 845-848
    [158] Dagotto E. Ferromagnetic Kondo model for manganites: Phase diagram, charge segregation, and influence of quantum localized spins. Phys. Rev. B, 1998, 58: 6414-6427
    [159] Moreo A, Mayr M, Feiguin A, et al. Giant Cluster Coexistence in Doped Manganites and Other Compounds. Phys. Rev. Lett., 2000, 84: 5568-571
    [160] Curtis EB, IngermanD, Morrow J A. Circular Planar Graphs and Resistor Networks. Linear Algebra and its Applications, 1998, 283: 115-150
    [161] Maezon R, Ishihara S, Nagaosa N. Phase diagram of manganese oxides. Phys. Rev. B, 1998, 58: 11583-11596
    [162] Matthias Mayr, Adriana Moreo, Jose A Verges, et al. Resistivity of Mixed-Phase Manganites. Physical Review Letters, 2001, 86: 135-138
    [163] E. Albayrak, Keskin M. Microstructure and magnetic properties of a FeSiB-CuNb alloy submitted to Joule heating. Magn. Magn. Mate., 2000, 203: 201-212
    [164] Teng B , Sy H K. Spin correlations in the Ising chains. Solid. Stat. Comm., 2004, 130: 193-197
    [165] Yokota T. Pair correlations for double-chain and triple-chain Ising models with competing interactions . Phys. Rev. B, 1989, 39: 12312-12315
    [166] Yu V, Korshak R V, Medvedera A A, et al. Evidence for an early opening of the Bering Strait, Nature (London), 1987, 326: 370-374
    [167] Fang Z , Liu Z L , Yao Y L. Spin configurations of p electrons in quasi-one-dimensional organic ferromagnets. Phys. Rev. B, 1995, 51: 1304-1307
    [168] Wang W Z, Liu Z L, Yao K L. Interchain coupling model for quasi-one-dimensional p-conjugated organic ferromagnets .Phys.Rev. B, 1997, 55: 12989-12994
    [169] Tian G S , Lin T H. Quasi-one-dimensional organic unsaturated ferromagnetism: Some rigorous results. Phys. Rev. B, 1996, 53: 8196-8199
    [170] Wu F, Wang W Z. Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain. Phys.: Condens. Matter, 2006, 18: 3837-3844
    [171] Crayston J. A., Devine J. N., Walton J C. Conceptual and Synthetic Strategies for the Preparation of Organic Magnets. Tetrahedron, 2000, 56: 7829-7857
    [172] Kahn Y, Galy Y, Journaux, et al. Synthesis, crystal structure and molecular conformations , and magnetic properties of a copper-vanadyl (CuII-VOII) heterobinuclear complex: interaction between orthogonal magnetic orbitals. Am. Chem.Soc, 1982,104: 2165-2176
    [173] Journaux Y, Kahn O, Zarembowitch J , et al. Symmetry of the magnetic orbitals and exchange interaction in copper iron (CuIIFeIII) and copper chromium (CuIICrIII) heterobinuclear complexes. Crystal structure of CuFe[(fsa)_2en]Cl(H_2O)(CH_3OH).CH_3OH.Am.Chem.Soc., 1983, 105: 7585-7591
    [174] Kahn. Dinuclear Complexes with Predictable Magnetic Properties Angew, Chem. Int. Ed. Engl., 1985, 24, 834-850
    [175] H. McMnell. Ferromagnetism in Solid Free Radicals. Chem Phys., 1963, 39: 1910-1914
    [176] Hong N H, Ruyter A, Prellier W, et al. Room temperature ferromagnetism in anatase Ti_(0.95)Cr_(0.05)O_2 thin films: Clusters or not? Appl. Phys. Lett., 2004, 85: 6212-6215
    [177] Rahman G. Cho S, Hong S C. Magnetism of zinc blende CrP(0 0 1) surface. Magn. Magn. Mater. 2007, 310: 2192-2195
    [178] Yu V, Korshak AA, Ovchinnikov A M, et al. Specktor, Pisma Zh. Eksp. Teor. Fiz., 1986, 43: 309-311
    
    [179] Kahn O. Editor Molecular magnetism.New York: VCH (1993)
    [180] Sinha B, Albert I D L, Ramasesha S. Stability of the high-spin ground state in alternant p-conjugated organic molecules. Phys. Rev. B, 1990, 42: 9088-9097

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700