用户名: 密码: 验证码:
基于脲醛树脂模板构建磁性微球
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米晶体和微球推动了生物技术、医药科技、催化、核磁造影、数据存储及环境治理等领域的技术革新,并发挥着日益重要的作用。虽然目前已经发展了一些方法来制造磁性微球和纳米晶体,但是可用于生产高质量、可扩大制备的方法并不多。因此,急需开发新的制备方法来批量制备新型、高质量、低成本的磁性微球来满足日益增长的使用需求。
     为此,我们开发了一系列基于脲醛树脂模板的磁性微球制备技术,制备出一系列新型的磁性微球,并用SEM、TEM、VSM、XRD、BET、TGA、FTIR、DLS等手段进行表征,并对微球的形成做了较为系统的研究。取得成果如下:
     1)开发了室温一锅法制备磁性微球的新方法,直接将磁性纳米粒子包埋于脲醛树脂制得单分散超顺磁性微球,并将其成功的应用于人血基因组DNA的提取。在聚合过程中加入荧光物质可以得到高荧光强度的双功能磁性微球。并对脲醛树脂微球的形成机理做了系统的研究,并采用吸光度法实时监控了聚合反应浊度变化过程。
     2)开发了水热还原制备磁性微球新方法,将磁性前驱体包埋于脲醛树脂制得非磁性复合微球再通过水热还原得到磁性微球,该方法可获得磁性更强的单分散磁性微球,并被成功的应用于酵母和玉米基因组DNA的提取。还阐述了水热还原羟基铁氧化物的机理。
     3)开发了制备多孔四氧化三铁磁性微球新方法,该方法通过灼烧将脲醛树脂基质从复合微球中除去,得到多孔的三氧化二铁微球再通过水热还原得到多孔纯四氧化三铁微球。所制备得磁性微球为立方型四氧化三铁纳米粒子堆砌而成的多孔四氧化三铁微球,饱和磁化强度高达72 emu/g。该种微球对砷吸附模型证实该微球对砷有较强的吸附,可以用于水中砷处理。
     4)对氢气还原法制备碳包覆磁性微球进行了初探,用氢气法还原羟基铁氧化物/UF微球时,得到磁性微球及结构新颖的四氧化三铁纳米管。用化学气相沉积法(CVD)制备磁性微球时,得到碳包覆磁性微球和碳纤维棒。在用CVD法制备碳包覆磁性二氧化硅微球时,可以发现硅球表面生成碳纳米管的生长点,还意外的得到单分散纳米石墨微球。
     基于脲醛树脂为模板用四种方法构建了四种新型磁性微球,并将水热还原制备高磁化强度磁性纳米粒子,这四种制备方法都具有易于实施、低成本、环境友好、易于放大生产的特点。本论文在这种背景下展开研究,具有很大的理论意义和实用价值。
Magnetic microspheres and nanocrystals are of great interest for researchers from a wide range of hot research field including biotechnology/biomedicine, catalysis, magnetic resonance imaging, data storage, and environmental remediation.
     Although a number of suitable methods have been developed for the synthesis of magnetic nanoparticles of various different compositions, few of them are capable of producing high quality magnetic microspheres with large quantity. Therefore, it’s of great urgency to develop methods for large scale production of these materials to meet growing demands from the above fields.
     Our research is focused on the development of methods for preparation of magnetic microspheres based on the urea-formaldehyde templates and production of a series of novel functional magnetic microspheres. Those novel magnetic microspheres fully characterized by SEM, TEM, VSM, XRD, BET, TGA, FTIR, DLS have been successfully applied to the DNA extraction and arsenic removal. The results are list as follows:
     1) Development of novel method for one pot preparation of magnetic microspheres at room temperature. By this method, magnetic nano particles were embedded by UF to form the microspheres with sphereical like morphology and 8 emu/g magnetic saturation. The microspheres were applied to extraction of DNA from human blood. Also, the fluorescent compounds can be added during the polymerization to form the bi-functional microspheres. The mechanism of UF microspheres were studied systematically.
     2) Development of novel method for two-step preparation of magnetic microspheres. The method is based on the formation of iron hydroxide/polymer composite microspheres followed by in situ conversion to strong magnetizable them to magnetite nanocrystals by reaction with sodium borohydride under hydrothermal conditions. The obtained magnetic crystals embedded in the polymer matrix are of cubic shape and highly crystalline structure. The magnetic particles were used as adsorbents for isolation of genomic DNA from biological samples, with results comparable to those obtained by magnetic silica microspheres.
     3) Development of a novel method for three-step preparation of porous magnetite microspheres. As for two-step method, the ironhydroxide/UF microspheres were stablized by condensation polymerization and then subjected to heating treatment to remove polymer template. The porous iron-oxide was transferred into magnetite by thermal reduction. The porous magnetite microspheres were proved be an effective adsorbent for removal of arsenic from the water.
     4) Investigation on high temperature reduction of magnetic precursors embedded in UF matrix at H2 atmospheres in attempt to preparation of carbon coated magnetic microspheres. The reduction of hydroxide/UF microspheres by H2 produces the magnetite nano tubes along with magnetic microspheres. A CVD procedure applied for hydroxide/UF produces magnetic microspheres and carbon fiber, and for iron coated microspheres produced the highly uniform graphite nanospheres with magnetic microspheres.
     Incorporation of iron hydroxide colloids into polymer microspheres coupled with chemically induced phase transformation represents a new cost-effective approach to the preparation of uniform magnetic microspheres that is more controllable with respect to particle properties and more amenable to large-scale production.
     The above results confirm that the novel system of magnetic microspheres preparation based on urea formaldehyde polymerization is facile, cost-effective, environmentally benign, and readily scaled up for mass production.
引文
[1] Batlle, X.; Labarta, A., Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D: Appl. Phys. 2002, 35, (6), R15-R42.
    [2] Sorensen, C. M., Magnetismin Nanoscale Materials in Chemistry. K. J. Klabunde ed.; Wiley-Interscience Publication: New York, 2001.
    [3] Kodama, D.; Shinoda, K.; Sato, K., et al., Synthesis of size-controlled Fe-Co alloy nanoparticles by modified polyol process. J. Magn. Magn. Mater. 2007, 310, (2), 2396-2398.
    [4] Respaud, M.; Goiran, M.; Broto, J. M., et al., High-frequency ferromagnetic resonance on ultrafine cobalt particles. Phys. Rev. B 1999, 59, (6), R3934-R3937.
    [5] LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, (11), 4847-4854.
    [6] Peng, X. G.; Wickham, J.; Alivisatos, A. P., Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, (21), 5343-5344.
    [7] Mullin, J. W., Crystallization. 3rd ed.; Oxford University Press: Oxford, 1997.
    [8] Sugimoto, T., Monodispersed Particles. Elsevier: Amsterdam, 2001.
    [9] Shiang, J. J.; Kadavanich, A. V.; Grubbs, R. K., et al., Symmetry of Annealed Wurtzite CdSe Nanocrystals: Assignment to the C3v Point Group. J. Phys. Chem. 1996, 100, (32), 13886-13886.
    [10] Park, J.; Lee, E.; Hwang, N. M., et al., One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44, (19), 2872-2877.
    [11] Yu, H.; Gibbons, P. C.; Kelton, K. F., et al., Heterogeneous seeded growth: A potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 2001, 123, (37), 9198-9199.
    [12] Wilcoxon, J. P.; Provencio, P. P., Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J. Am. Chem. Soc. 2004, 126, (20), 6402-6408.
    [13] Jana, N. R.; Chen, Y. F.; Peng, X. G., Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, (20), 3931-3935.
    [14] Talapin, D. V.; Rogach, A. L.; Kornowski, A., et al., Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano Lett. 2001,1, (4), 207-211.
    [15] Hambrock, J.; Becker, R.; Birkner, A., et al., A non-aqueous organometallic route to highly monodispersed copper nanoparticles using [Cu(OCH(Me)CH2NMe2)(2)]. Chem. Commun. 2002, (1), 68-69.
    [16] Jana, N. R.; Peng, X. G., Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125, (47), 14280-14281.
    [17] Park, J.; An, K. J.; Hwang, Y. S., et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, (12), 891-895.
    [18] Seo, W. S.; Jo, H. H.; Lee, K., et al., Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv. Mater. 2003, 15, (10), 795-+.
    [19] Yu, W. W.; Falkner, J. C.; Yavuz, C. T., et al., Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, (20), 2306-2307.
    [20] Joo, J.; Na, H. B.; Yu, T., et al., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 2003, 125, (36), 11100-11105.
    [21] Bullen, C. R.; Mulvaney, P., Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Lett. 2004, 4, (12), 2303-2307.
    [22] Asokan, S.; Krueger, K. M.; Alkhawaldeh, A., et al., The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology 2005, 16, (10), 2000-2011.
    [23] van Embden, J.; Mulvaney, P., Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 2005, 21, (22), 10226-10233.
    [24] Yu, W. W.; Qu, L. H.; Guo, W. Z., et al., Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, (14), 2854-2860.
    [25] Schmelz, O.; Mews, A.; Basche, T., et al., Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir 2001, 17, (9), 2861-2865.
    [26] Howard, R., The Growth of Uniform Colloidal Dispersions. J. Chem. Phys 1951, 19, (4), 482-487.
    [27] Talapin, D. V.; Rogach, A. L.; Haase, M., et al., Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, (49), 12278-12285.
    [28] Lee, J.; Sohn, K.; Hyeon, T., Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J. Am. Chem. Soc. 2001, 123, (21), 5146-5147.
    [29] Hyeon, T.; Lee, S. S.; Park, J., et al., Synthesis of highly crystalline andmonodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, (51), 12798-12801.
    [30] Sun, S. H.; Zeng, H.; Robinson, D. B., et al., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, (1), 273-279.
    [31] Carpenter, E. E.; Seip, C. T.; O'Connor, C. J., Magnetism of nanophase metal and metal alloy particles formed in ordered phases. J. Appl. Phys. 1999, 85, (8), 5184-5186.
    [32] Woo, K.; Lee, H. J.; Ahn, J. P., et al., Sol-gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 2003, 15, (20), 1761-+.
    [33] Wang, X.; Zhuang, J.; Peng, Q., et al., A general strategy for nanocrystal synthesis. Nature 2005, 437, (7055), 121-124.
    [34] Deng, H.; Li, X. L.; Peng, Q., et al., Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, (18), 2782-2785.
    [35] Bengtsson, G.; Ekere, L., Predicting sorption of groundwater bacteria from size distribution, surface area, and magnetic susceptibility of soil particles. Water Resour. Res. 2001, 37, (6), 1795-1812.
    [36] de Waard, H.; Hilsinger, J.; Frankel, R. B., Instrument for the measurement of hysteresis loops of magnetotactic bacteria and other systems containing submicron magnetic particles. Rev. Sci. Instrum. 2001, 72, (6), 2724-2730.
    [37] Huang, H. L.; Lu, J. J., Blocking temperature, energy barrier, and reversal field variation of fine magnetic particles. Appl. Phys. Lett. 1999, 75, (5), 710-712.
    [38] Banerjee, S.; Roy, S.; Chen, J. W., et al., Magnetic properties of oxide-coated iron nanoparticles synthesized by electrodeposition. J. Magn. Magn. Mater. 2000, 219, (1), 45-52.
    [39] Prazeres, T. J. V.; Fedorov, A.; Martinho, J. M. G., Dynamics of oligonucleotides adsorbed on thermosensitive core-shell latex particles. J. Phys. Chem. B 2004, 108, (26), 9032-9041.
    [40] Binder, W. H.; Gloger, D.; Weinstabl, H., et al., Telechelic poly(N-isopropylacrylamides) via nitroxide-mediated controlled polymerization and "click" chemistry: Livingness and "grafting-from" methodology. Macromolecules 2007, 40, (9), 3097-3107.
    [41] Rubio-Retama, J.; Zafeiropoulos, N. E.; Serafinelli, C., et al., Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic gamma-Fe2O3 nanoparticles. Langmuir 2007, 23, (20), 10280-10285.
    [42] Shamim, N.; Hong, L.; Hidajat, K., et al., Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization. Colloids Surf., B 2007, 55, (1), 51-58.
    [43] Horak, D.; Benedyk, N., Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, (22), 5827-5837.
    [44] Horak, D.; Chekina, N., Preparation of magnetic poly(glycidyl methacrylate) microspheres by emulsion polymerization in the presence of sterically stabilized iron oxide nanoparticles. J. Appl. Polym. Sci. 2006, 102, (5), 4348-4357.
    [45] Horak, D.; Petrovsky, E.; Kapicka, A., et al., Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres. J. Magn. Magn. Mater. 2007, 311, (2), 500-506.
    [46] Liu, Z. L.; Yang, X. B.; Yao, K. L., et al., Preparation and characterization of magnetic P(St-co-MAA-co-AM) microspheres. J. Magn. Magn. Mater. 2006, 302, (2), 529-535.
    [47] Ugelstad, J.; Ellingsen, T.; Berge, A., et al. Magnetic polymer particles and process for the preparation thereof 4,654,267, March 31, 1987.
    [48] Okubo, M.; Minami, H.; Komura, T., Preparation of micrometer-sized, monodisperse, magnetic polymer particles. J. Appl. Polym. Sci. 2003, 88, (2), 428-433.
    [49] Wang, J.; Zhu, Y. J.; Chen, Q. W., Preparation of magnetic composite of NiFe2O4@SiO2 and the assembly of the colloid particles by magnetic fields. Int. J. Mod. Phys. B 2005, 19, (12), 2053-2059.
    [50] Bruce, I. J.; Taylor, J.; Todd, M., et al., Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater. 2004, 284, 145-160.
    [51] Raileanu, M.; Crisan, M.; Petrache, C., et al., Fe2O3-SiO2 nanocomposites obtained by different sol-gel routes. J. Optoelectron. Adv. M. 2003, 5, (3), 693-698.
    [52] Hrianca, I.; Caizer, C.; Savii, C., et al., Magnetic and structural properties of gamma-Fe2O3 nanoparticles dispersed in a silica matrix. J. Optoelectron. Adv. M. 2000, 2, (5), 634-638.
    [53] Caizer, C., Saturation magnetization of gamma-Fe2O3 nanoparticles dispersed in a silica matrix. Physica B 2003, 327, (1), 27-33.
    [54] Casu, A.; Casula, M. F.; Corrias, A., et al., Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels. J. Phys. Chem. C 2007, 111, (2), 916-922.
    [55] Ferreira da Silva, M. G.; Pereira, L. C. J.; Waerenborgh, J. C., Precipitation of zinc ferrite nanoparticles in the Fe2O3-ZnO-SiO2 glass system. J. Non-Cryst. Solids 2007, 353, (24-25), 2374-2382.
    [56] Tang, N. J.; Zhong, W.; Gedanken, A., et al., A study of the stability of pyrolytic carbon-coated Fe/SiO2 composites in HNO3 and the effect of pyrolysis temperatures on their magnetic properties. Solid State Commun. 2007, 142, (5), 265-269.
    [57] Zhang, L.; Feng, Y. G.; Wang, L. Y., et al., Comparative studies between synthetic routes Of SiO2@Au composite nanoparticles. Mater. Res. Bull. 2007, 42, (8), 1457-1467.
    [58] Zhang, X. F.; Dong, X. L.; Huang, H., et al., Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules. Mater. Sci. Eng. A 2007, 454, 211-215.
    [59] Chakraverty, S.; Mandal, K.; Mitra, S., et al., Magnetic properties of NiFe2O4 nanoparticles in SiO2 matrix. Jpn. J. Appl. Phys., Part 1 2004, 43, (11A), 7782-7787.
    [60] Pedroza, R. C.; da Silva, S. W.; Soler, M. A. G., et al., Raman study of nanoparticle-template interaction in a CoFe2O4/SiO2-based nanocomposite prepared by sol-gel method. J. Magn. Magn. Mater. 2005, 289, 139-141.
    [61] Wu, C. S., Synthesis of polyethylene-octene elastomer/SiO2-TiO2 nanocomposites via in situ polymerization: Properties and characterization of the hybrid. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, (8), 1690-1701.
    [62] Caruso, F.; Spasova, M.; Susha, A., et al., Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater. 2001, 13, (1), 109-116.
    [63] Tartaj, P.; Gonzalez-Carreno, T.; Serna, C. J., Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv. Mater. 2001, 13, (21), 1620-+.
    [64] Mao, B. D.; Kang, Z. H.; Wang, E. B., et al., Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process. J. Solid. State. Chem. 2007, 180, (2), 489-495.
    [65] Tang, D. P.; Yuan, R.; Chai, Y. Q., et al., Magnetic-core/porous-shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays. Adv. Funct. Mater. 2007, 17, (6), 976-982.
    [66] Bergemann, C.; Muller-Schulte, D.; Oster, J., et al., Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J. Magn. Magn. Mater. 1999, 194, (1-3), 45-52.
    [67] Lang, C.; Schuler, D., Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J. Phys-Condens. Mat. 2006, 18, (38), S2815-S2828.
    [68] Lang, C.; Schuler, D.; Faivre, D., Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromol. Biosci. 2007, 7, (2), 144-151.
    [69] Xie, X.; Nie, X. R.; Yu, B. B., et al., Rapid enrichment of leucocytes and genomic DNA from blood based on bifunctional core-shell magnetic nanoparticles. J. Magn. Magn. Mater. 2007, 311, (1), 416-420.
    [70] Kim, J.; Lee, J.; Na, H. B., et al., A magnetically separable, highly stable enzymesystem based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 2005, 1, (12), 1203-1207.
    [71] Korecka, L.; Jezova, J.; Bilkova, Z., et al., Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins. J. Magn. Magn. Mater. 2005, 293, (1), 349-357.
    [72] Yu, L. T.; Banerjee, I. A.; Gao, X. Y., et al., Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjugate Chem. 2005, 16, (6), 1484-1487.
    [73] Guo, X. Y.; Guan, Y. P.; Yang, B., et al., Enzyme chemiluminescence immuno assay of free hCG beta in serum based on superparamagnetic polymer microbeads. Int. J. Mol. Sci. 2006, 7, (8), 274-288.
    [74] Qu, S.; Huang, F.; Chen, G., et al., Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme. Electrochem. Commun. 2007, 9, (12), 2812-2816.
    [75] Willner, I.; Basnar, B.; Willner, B., Nanoparticle-enzyme hybrid systems for nanobiotechnology. Febs J. 2007, 274, (2), 302-309.
    [76] McCloskey, K. E.; Zborowski, M.; Chalmers, J. J., Measurement of CD2 expression levels of IFN-alpha-treated fibrosarcomas using cell tracking velocimetry. Cytometry 2001, 44, (2), 137-147.
    [77] Inglis, D. W.; Riehn, R.; Austin, R. H., et al., Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 2004, 85, (21), 5093-5095.
    [78] Wang, D. S.; He, J. B.; Rosenzweig, N., et al., Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. 2004, 4, (3), 409-413.
    [79] Clement, J. H.; Schwalbe, M.; Buske, N., et al., Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells. J. Cancer Res. Clin. 2006, 132, (5), 287-292.
    [80] Wang, Y. C.; Zhang, Z. C.; Zhang, L., et al., Magnetically immobilized beds for capillary electrochromatography. Anal. Chem. 2007, 79, (13), 5082-5086.
    [81] Nomura, A.; Shin, S.; Mehdi, O. O., et al., Preparation, characterization, and application of an enzyme-immobilized magnetic microreactor for flow injection analysis. Anal. Chem. 2004, 76, (18), 5498-5502.
    [82] Kim, K. S.; Park, J. K., Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 2005, 5, (6), 657-664.
    [83] Pamme, N.; Wilhelm, C., Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 2006, 6, (8), 974-980.
    [84] Yellen, B. B.; Erb, R. M.; Son, H. S., et al., Traveling wave magnetophoresis for high resolution chip based separations. Lab Chip 2007, 7, (12), 1681-1688.
    [85] Galuppo, L. Q.; Kamau, S. W.; Steitz, B., et al., Gene expression in synovial membrane cells after intraarticular delivery of plasmid-linked superparamagnetic iron oxide particles - A preliminary study in sheep. J. Nanosci. Nanotechno. 2006, 6, (9-10), 2841-2852.
    [86] Prow, T.; Smith, J. N.; Grebe, R., et al., Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol. Vis. 2006, 12, (67-69), 606-615.
    [87] Takeda, S.; Mishima, F.; Terazono, B., et al., Development of magnetic force-assisted new gene transfer system using biopolymer-coated ferromagnetic nanoparticles. Ieee T Appl. Supercon. 2006, 16, (2), 1543-1546.
    [88] Jahnke, A.; Hirschberger, J.; Fischer, C., et al., Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: A phase-I study. J. Vet. Med. A 2007, 54, (10), 599-606.
    [89] Gangopadhyay, P.; Gallet, S.; Franz, E., et al., Novel superparamagnetic core(shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment. Ieee T Magn. 2005, 41, (10), 4194-4196.
    [90] Mayer, C., Nanocapsules as drug delivery systems. Int. J. Artif. Organs 2005, 28, (11), 1163-1171.
    [91] Conti, M.; Tazzari, V.; Baccini, C., et al., Anticancer drug delivery with nanoparticles. In Vivo 2006, 20, (6A), 697-701.
    [92] Nasongkla, N.; Bey, E.; Ren, J. M., et al., Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006, 6, (11), 2427-2430.
    [93] Subramani, K., Applications of nanotechnology in drug delivery systems for the treatment of cancer and diabetes. Int. J. Nanotechnol. 2006, 3, (4), 557-580.
    [94] Zhang, Y. Q.; Li, L. L.; Tang, F. Q., et al., Controlled drug delivery system based on magnetic hollow spheres/polyelectrolyte multilayer core-shell structure. J. Nanosci. Nanotechno. 2006, 6, (9-10), 3210-3214.
    [95] Fernandez-Pacheco, R.; Marquina, C.; Valdivia, J. G., et al., Magnetic nanoparticles for local drug delivery using magnetic implants. J. Magn. Magn. Mater. 2007, 311, (1), 318-322.
    [96] Kurlyandskaya, G.; Levit, V., Advanced materials for drug delivery and biosensors based on magnetic label detection. Mater. Sci. Eng. B 2007, 27, (3), 495-503.
    [97] Chertok, B.; Moffat, B. A.; David, A. E., et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors.Biomacromolecules 2008, 29, (4), 487-496.
    [98] Gupta, A. K.; Curtis, A. S. G., Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. J. Mater. Sci. - Mater. Med. 2004, 15, (4), 493-496.
    [99] Gupta, A. K.; Wells, S., Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. Ieee T Nanobiosci. 2004, 3, (1), 66-73.
    [100] Kohler, N.; Sun, C.; Fichtenholtz, A., et al., Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006, 2, (6), 785-792.
    [101] Bae, S.; Lee, S. W.; Takemura, Y., Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl. Phys. Lett. 2006, 89, (25), -.
    [102] Bagaria, H. G.; Johnson, D. T., Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. Int. J. Hypertherm. 2005, 21, (1), 57-75.
    [103] Dennis, C. L.; Cheng, G.; Baler, K. A., et al., The influence of temperature on the magnetic behavior of colloidal cobalt nanoparticles. Ieee T Magn. 2007, 43, (6), 2448-2450.
    [104] DuBose, D. A.; Matthew, C. B.; Balcius, J. A., et al., Hyperthermic effects on reticuloendothelial system particulate uptake. J. Therm. Biol. 2000, 25, (5), 387-390.
    [105] Ito, A.; Tanaka, K.; Honda, H., et al., Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci. Bioeng. 2003, 96, (4), 364-369.
    [106] Jordan, A.; Scholz, R.; Wust, P., et al., Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 1999, 201, 413-419.
    [107] Prasad, N. K.; Rathinasamy, K.; Panda, D., et al., Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of gamma-MnxFe2-xO3 synthesized by a single step process. J. Mater. Chem. 2007, 17, (48), 5042-5051.
    [108] Rabin, Y., Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int. J. Hypertherm. 2002, 18, (3), 194-202.
    [109] Zeng, Q.; Baker, I.; Loudis, J. A., et al., Fe/Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia. Appl. Phys. Lett. 2007, 90, (23), -.
    [110] Zhao, D. L.; Zeng, X. W.; Xia, Q. S., et al., Inductive heat property of Fe3O4 nanoparticles in AC magnetic field for local hyperthermia. Rare Met. 2006, 25, 621-625.
    [111] Winter, P.; Athey, P.; Kiefer, G., et al., Improved paramagnetic chelate formolecular imaging with MRI. J. Magn. Magn. Mater. 2005, 293, (1), 540-545.
    [112] Morawski, A. M.; Winter, P. M.; Yu, X., et al., Quantitative "magnetic resonance immunohistochemistry" with ligand-targeted F-19 nanoparticles. Magn. Reson. Med. 2004, 52, (6), 1255-1262.
    [113] Zhou, J. K.; Leuschner, C.; Kumar, C., et al., Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 2006, 27, (9), 2001-2008.
    [114] Winter, P. M.; Morawski, A. M.; Caruthers, S. D., et al., Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-Integrin-targeted nanoparticles. Circulation 2003, 108, (18), 2270-2274.
    [115] Flacke, S.; Fischer, S.; Scott, M. J., et al., Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques. Circulation 2001, 104, (11), 1280-1285.
    [116] Conner, A. H., Urea-Formaldehyde adhesive resins. In Polymeric Materials Encyclopedia, 1 ed.; Salamone, J. C., Ed. CRC Press, Inc.: Lowell, 1996; Vol. 11, p 8497.
    [117] Liu, C. L.; Jin, A. M.; Zhou, C. S., et al., Nitric oxide synthase gene expression in injured spinal cord tissue. Chin. Med. J. 2002, 115, (5), 740-742.
    [118] Saric, A.; Music, S.; Nomura, K., et al., Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions. Mater. Sci. Eng. B 1998, 56, (1), 43-52.
    [119] de Resende, V. G.; de Grave, E.; da Costa, G. M., et al., Influence of the borohydride concentration on the composition of the amorphous Fe-B alloy produced by chemical reduction of synthetic, nano-sized iron-oxide particles Part I: Hematite. J. Alloys Compd. 2007, 440, (1-2), 236-247.
    [120] Wang, J.; Sun, J. J.; Sun, Q., et al., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 2003, 38, (7), 1113-1118.
    [121] Panda, R. N.; Gajbhiye, N. S.; Balaji, G., Magnetic properties of interacting single domain Fe3O4 particles. J. Alloys Compd. 2001, 326, (1-2), 50-53.
    [122] Namasivayam, C.; Senthilkumar, S., Removal of arsenic(V) from aqueous solution using industrial solid waste: Adsorption rates and equilibrium studies. Ind. Eng. Chem. Res. 1998, 37, (12), 4816-4822.
    [123] Kundu, S.; Gupta, A. K., As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): Experimental and modeling studies. Chem. Eng. J. 2007, 129, (1-3), 123-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700