用户名: 密码: 验证码:
磁异常多参量可视化建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁异常资料在地质矿产资源勘查以及深部地质方面有着十分重要的作用。论文对以磁异常梯度为主要研究对象的多参量综合反演问题,采用图形人机交互三维正反演手段,展开多参量综合磁异常可视化建模的关键技术研究工作。研究内容之一,开展了空间任意状态规则体模型的多参量快速正演的方法研究。论文通过定义三个旋转描述角度,并结合坐标系变换、结果反变换和公式互换方法,推导了规则体在倾斜和走向任意方向情况下的△T、三分量及其梯度(共16参量)的计算公式。
     内容之二是关于不规则复杂地质体的梯度计算方法及计算机三维模型设计的研究。任意形状三度体使用一阶方向导数和互换关系式得出磁异常梯度参量的计算公式;设计了具有独立数据结构、角点拓扑信息和三角面剖分算法三维计算机三维地质模型。
     第三个内容是设计正演并行算法。该算法采用数据分割、平行处理和结果缝合等技巧,能自动检测多核工作微机上CPU的数目,将数据区域按线程个数自动分割快速处理方法。
     最后综合以上成果编写完成一个集磁梯度数据处理、三维地质建模和可视交互计算于一体的工作平台,方便解释人员使用人机交互最优化选择法对实际磁测数据做多参量综合反演评估。
     论文主要成果和创新点:
     1)提出了倾斜规则体磁场及梯度的快速计算方法;
     2)设计了复杂多面体三维模型的数据结构;
     3)完成了基于计算域分割的磁数据处理并行算法研究;
     4)开发了“磁异常多参量可视化反演解释软件”,实现成果实用化。
     论文所做工作客观上促进了磁测数据处理方式由单参量向多参量综合解释转变,对于提高磁异常数据处理解释方法、突出实测数据解释效果以及加快软件研制具有积极推动意义。
Magnetic anomaly data are very valuable in the field of resource exploration, deep subsurface geology and geophysics research. This dissertation focused on how to improve inversion effect through magnetic gradient component associate with other parameters. It made use of some new technoledge, such as human-computer interaction and visualization. It carried out some significant research work on magnetic anomaly parameters and 3D geology modeling.
     One of the research points was about computation of magnetic anomalies and gradients for spatial arbitrary posture regular body. After defining three angles of slantwise shape-regular body and rotation of coordinate system, it deduced the new magnetic anomalies expressions of gradient component and other parameter for spatial arbitrary posture regular bodies. There are total 16 components in magnetic anomaly. There are some key points such as the rotation method of coordinate system,technique of inverse transform and formula of magnetic components.
     The second study point was about the methods of anomaly gradient forward computation and mathematical modeling for homogeneous polyhedral composed of triangle facets. On the base of magnetic field formula, it employed the theory between the transformation of magnetic field and that of their first derivative. Then it deduced the analytical expressions for gradient tensors of polygon. We designed the boundary models represented by triangle facets in order to suit the demand of the magnetic inversion. The modeling pattern was an algorithm of a simple polygon triangulation which contained independent data structure and topology organization.
     Then, the data domain paralleled algorithm was presented. It applied data partition, parallel running and data sewing technique. In this procedure, one smart number‘N’was produced automatically by reason of algorithm evaluating the actual core number of CPU on working machine. The data region was divided synchronously into N segments. Obviously, they need N task-threads to process each segment. Then the data sewing technique solved the problem of merging segmentation results.
     It is worth to utilizing fore-mentioned achievement to develop practical software. One goal software is completed. It included gradient forwarding, geology modeling and human-computer combinational inversion, and so on. The human-computer interactive method and optimization selection strategy was used in this inverse interpretation software system.
     The main results and innovations in this paper are shown as follow,
     1) This paper proposed one method of quick magnetic anomalies forward computation for slantwise shape-regular geo-body.
     2) The special data structure for an arbitrarily shaped 3D body was designed.
     3) The multi-thread parallel computation realization based on magnetic data segmentation tasks.
     4) One software named“Visualization System of Inversion Interpretation for Magnetic Anomalies with Multi-Parameters”is completed.
     In a word, this doctoral dissertation has improved magnetic method from using single parameter to utilizing multi-parameter, the working dimension from 2D to 3D. It was significant in enhancing magnetic inversion method and improving interpretation effect.
引文
[1] Andrea Z., Mauro D.D., Alan G., et al. Imaging geology in 3D. Computers & Geosciences. 2009, 35:1-3
    [2] Barnett C.T. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics, 1976, 41 (6):1353-1364
    [3] Bhattacharyya B.K. Magnetic anomalies due to prism-shaped bodies with arbitrary polarization: Geophysics, 1964, 29:517-531
    [4] Bott M H.P. The use of electronic digital computers for the evaluation of gravimetric terrain corrections. Geophysics Prospecting, 1959, 7:45-54
    [5] Breuning M. An approach to the integration of spatial data and systems for 3D geo-information system. Computer&Geoseienees,1999,(25):39-48
    [6] Bo C.,Harry H. Interpretive OpenGL for computer graphics. Computer & Graphics, 2005, 29:331-339
    [7] Cooper G.R.J. Forward modeling of magnetic data. Computers & Geosciences, 1997, 23(10):1125-1129
    [8] David J. K. Visual C++技术内幕(潘爱民译).北京:清华大学出版社,1998
    [9] Dimitrios T.,Sveto P. On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics, 2001, 66(2): 535-539
    [10] Encom ModelVision9.0手册. 2008
    [11] Eneom ModelVisionPro: The 3D workbeneh for magneties andg ravity interpretation User Guide. 2008
    [12] Erarslan,K. A Practical Approach for 3D Modeling of ore Bodies and the Design of Development for Underground of Mines. Mineral Resourees Engineering, 2000, 9(3): 287-299
    [13] Gong, J.Y., Cheng, P. G. Three-dimensional modeling and application in geological exploration engineering. Computers & Geosciences, 2004, 30: 391-404
    [14] Guillen A.,Calcagno P.,Courrioux G,et al. Geological modelling from field data andgeological knowledge. Earth Planet Interiors,2008 ,10(16):1-12
    [15] Guptasarma D., Singh B. New scheme for computing the magnetic field resulting from a uniformly magnetized arbitrary polyhedron. Geophysics, 1999, 64(1): 70-73
    [16] Hardwick C.D. Aeromagnetic gradiometry in 1995. Exploration Geophysics, 1996, 27(1):1-11 [17 ]Hong D.M.,Yao C.L.,Zheng Y.M. Computation of Magnetic Anomalies and gradients for spatial Arbitrary Posture Regular Body. Journal of Earth Science. 2009.12. Vol.20,No.6:995-1002
    [18] http://www.geosoft.com/
    [19] http://www.opengl.org/
    [20] Johansen H.K. A man/computer interpretation system for esistivity soundings over a horizontally stratified earth. Geophysical Prospecting,1977, 25: 667-691
    [21] Julien B.,Bruno P.,Paseale K., et al. A 2D-3D visualization support for human-centered rule mining. Computers&Graphics, 2007, 31: 350-360
    [22] Mark J. Three-dimensional geological modeling of potential-field data. Computers & Geosciences, 2001, 27: 455-465
    [23] Mcormick B.H. et al. Visualization in Scientific Computing, Computer Graphics, 1987, 7(10): 69-69
    [24] Moraes R.A, Hansen R.O. Constrained inversion of gravity fields for complex 3D structures. Geophysics, 2001, 66(2): 501-510
    [25] Nabighian M.N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section its properties and use for automated anomaly interpretation. Geophysics, 1972, 37(2):507-512
    [26] Nelson J.B. Calculation of the magnetic gradient tensor from total gradient measurements and its application to geophysical interpretation. Geophysics, 1988, 53(7): 957-966
    [27] Nelson J.B. Comparison of gradient analysis techniques for linear two-dimensional magnetic sources. Geophysics, 1988, 53(8): 1088-1095
    [28] Okabe M. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 1979, 44 (4): 730-741
    [29] Paul M.K. The gravity effect of a homogeneous polyhedron for three-dimensionalinterpretation. Pure and Applied Geophysics, 1974, 112(3): 553-561
    [30] Pohanka V. Optimum expression for computation of the gravity field of homogeneous polyhedral body. Geophysical Prospecting, 1988, 36: 733-751
    [31] Pohanka V. Optimum expression for computation of the gravity field of a polyhedral body with linealy increasing density. Geophysical Prospecting, 1998, 46:391-404
    [32] Rasmussen R., Pedersen L.B. End corrections in potential field modeling. Paper read at the thirty-ninth meeting of the European Association of Exploration Geophysicists, Zagreb, Yugoslavia, 1977
    [33] Reid A.B,et al. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 1990, 55(1): 80-91
    [34] Rhyne T.M. Going virtual with geographic information and scientific visualisation. Computers & Geosciences, 1997, 23: 489–491
    [35] Ruotoistenmarki T. The magnetic anomaly of 3D sources having arbitrary geometry and magnetization. Geophysical Prospecting, EAGE, 1993, 41:412-434
    [36] Shameem A., Jason R. Multi-Core Programming Increasing Performance through Software Multi-threading,Intel Press, USA. 2007
    [37] Shuey R.T, Pasquale A.S. End corrections in magnetic profile interpretation. Geophysics, 1973, 38(3):507-512
    [38] Singh B.,Guptasarma D. New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. Geophysics, 2001, 66(2):521-526
    [39] Talwani M., Ewing M. Rapid computation of gravitational attraction of there dimensional bodies of arbitrary shape. Geophysics, 1960, 25(1):203-225
    [40] Talwani M. Computer usage in the computation of gravity anomalies. In:B. Alder (Editor), Methods in Computational Physics. 1973,13: 343-389
    [41] Talwani M,Heirtzler J. Computation of magnetic anomalies caused by two-dimensional structures of arbitrary shape, in Computers in mineral industries, part I, Stanford University Public Geology. Science. 1964,9: 464-480
    [42] Thomas E. A versatile interactive computer program for computation and automatic optimization of gravity models. Geoexploration,1981, 19:47-66
    [43] Whitehill D.E. Automated interpretation of magnetic anomalies using the vertical prismmodel. Geophysics,1973,38(6):1070-1087
    [44] Xia H.R,Hansen R,Harthill N,et al. Interactive modeling of potential fields in three dimensions. SEG63 Annual International Meeting, Washington, Expanded Abstracts, 1993:403-404
    [45] Xu C., Down P.A. Optimal construction and visualisation of geological structures. Computers&Geosciences, 2003, 29 (6):761-773
    [46] Yao C.L.,Guan Z.N. Computation of magnetic gradients due to three-dimensional bodies. Science in China (Ser. D), 1997, 40(3): 293-299
    [47]《数学手册》编写组.数学手册.北京:高等教育出版社,1979
    [48]安玉林.三度体梯度磁异常全方位正反演方法.现代地质,2000,14(1):85-90
    [49]安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载1).物探与化探,2003,27(1):33-38
    [50]安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载2).物探与化探,2003,27(2):115-119
    [51]安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载3).物探与化探,2003,27(3):206-211
    [52]安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载4).物探与化探,2003,27(4):284-291
    [53]安玉林,陈玉东,黄金明.重磁勘探正反演理论方法研究的新进展.地学前缘,2003,10(1):141-149
    [54]常铮.磁测资料预处理软件研制长安大学:[硕士学位论文].陕西:长安大学,2006
    [55]曹代勇,王占刚.三维地质模型特殊可视化操作的实现.煤炭学报,2004,29(4):422-424
    [56]陈钢花,郑孝强.基于OpenGL的三维可视化在地质勘探中的应用.勘探地球物理进展, 2005,28(6):428-431
    [57]程良炎,余敏.利用向量计算多面体体积.科技资讯, 2008.14:229
    [58]陈少强.一个以“移动立方体法”为关键技术的人机交互三维地质建模系统:[博士论文].北京:中国地质大学(北京),2002
    [59]陈少强,李琦.块状地质体的多面体表示及交互编辑.地球学报,2005,26(2):191-194
    [60]陈少强,李琦,苗前军,等.矢量与栅格结合的三维地质模型编辑方法.计算机辅助设计与图形学学报,2005,17(7):1544-1548
    [61]董守华,李志聃.多边形体△T最优化反演圈定火烧区.煤田地质与勘探,1996,(1):42-45
    [62]地质矿产部航空物探地质总队编.航空磁测和地面物化探找矿实例.北京:地质出版社, 1982
    [63]范志雄,陈石羡,舒秀锋.利用井中磁测异常确定磁性体走向的方法.地质找矿论丛,2006,21:160-161
    [64]管志宁,安玉林.区域磁异常定量解释.北京:地质出版社, 1991
    [65]管志宁,侯俊胜,姚长利.航磁梯度资料在金矿地质填图和成矿预测中的应用.现代地质,1996, 10(2):239-249
    [66]管志宁,郝天珧,姚长利. 21世纪重力与磁法勘探的展望.地球物理学进展,2002,17(2):237-244
    [67]管志宁,姚长利等.磁异常梯度解释理论与方法.(国家自然科学基金资助项目科研报告),中国地质大学(北京),1993
    [68]管志宁,姚长利.倾斜板体磁异常总梯度模反演方法.地球科学---中国地质大学学报,1997,22(1):81-85
    [69]管志宁,吴其斌等.高精度磁梯度测量及反演解释技术,“九五”国家重点科技攻关项目96-914项子专题研究报告,中国地质大学(北京),2000
    [70]管志宁.地磁场与磁力勘探.北京:地质出版社,2005
    [71]同济大学应用数学系主编.高等数学(第五版).北京:高等教育出版社,2005
    [72]郭志宏,于长春,周坚鑫.低磁纬度区ΔT剖面磁异常场源深度计算的切线法.物探与化探,2003,27(5):391-394
    [73]郭志宏.航磁及梯度数据正反演解释方法技术实用化改进及应用:[博士学位论文].北京:中国地质大学(北京),2004
    [74]郝文化,文自勇,王浩强.Windows多线程编程技术与实例.北京:中国水利水电出版社,2005:1-143
    [75]何昌礼,钟本善.复杂形体的高精度重力异常正演方法.物探化探计算技术, 1988,10(2):121-128
    [76]何畏,吴文鹂.基于截面轮廓线人机交互三维地质体建模.物探化探计算技术,2010,32(4):433-436
    [77]侯重初,刘奎俊.重磁异常场及其高阶导数的正演公式与程序.北京:地质出版社,1990
    [78]侯俊杰.深入浅出MFC.湖北:华中科技大学出版社, 2001
    [79]侯恩科,吴立新.三维地学模拟儿个方面的研究现状与发展趋势.煤田地质与勘探.2000,28(6):5-8
    [80]黄维平,仇铭华,徐国华.磁性地质体模型库工作平台与应用.长春地质学院学报, 1997,27(2):190-196
    [81]黄旭钊,郭志宏,徐昆.交互式航磁异常切线法系统研制.物探与化探,2007,31(6):572-576
    [82]胡小红,周旺,吴杰.八叉树构模法在重磁场正演方面的应用.科技广场,2008,8:112-113
    [83]蒋丽丽.面向地质条件的贴体网格生成技术:[博士学位论文].吉林:吉林大学,2010
    [84]李焓,邱之云,王万银.复杂形体重、磁异常正演问题综述.物探与化探,2008,32(1):36-43
    [85]李翠平,李仲学,赵文广.矿床的体视化及仿真系统框架.金属矿山, 2001,304(10):44-46
    [86]李仲学,李翠平.矿床仿真及体视化技术.计算机仿真, 2002,17(5):5-7
    [87]李才明.用分解曲线法解二度水平圆柱体及球体磁异常反问题.物探化探计算技术,1995,17(1):54-57
    [88]黎华.地形与地质体三维可视化的研究与应用:[博士学位论文].广东:中科院广州地化所,2006
    [89]黎益仕,姚长利,管志宁.重磁资料的实时正演拟合.物探化探计算技术,1994,16(3):192-193
    [90]刘近光,梁满贵.多核多线程处理器的发展及其软件系统架构.微处理机, 2007, 1(2):1
    [91]刘展,王万银.曲面位场的正则化线性规划法直接反演技术.地质与勘探, 1999, 35(6): 62-66
    [92]刘浩军,薛典军,郭志宏,等.航空物探软件系统研制.物探与化探, 2003, 27(2): 146-149
    [93]林振民,陈少强.三维可视化技术在固体矿产中的应用.物探化探计算技术,1994,16(4):338-344
    [94]林振民,陈少强.计算机上的橡皮膜技术.物探化探计算技术, 1996, 18(1): 6-16
    [95]林振民,陈少强.三维重磁交互解释及区域与局部异常的分离.地球物理学报,1996,39(5):705-711
    [96]陆克.国外航空物探重要进展.国外地质勘探技术,1994,5:1-4
    [97]罗智勇.面向地质勘查的三维可视化系统研制与开发:[博士学位论文].四川:成都理工大学,2008
    [98]吕军,杨琦,罗建军.Visual C++与面向对象程序设计教程.北京:高等教育出版社,2003,256-263
    [99]吕鹏.基于立方体预测模型的隐伏矿体三维预测和系统开发:[博士学位论文].北京:中国地质大学,2007
    [100]骆遥.三维复杂多面体重、磁场正演计算及图形交互软件设计:[学士论文].北京:中国地质大学(北京),2005
    [101]骆遥,姚长利.复杂形体重力场、梯度及磁场计算方法.地球科学,2007,32(4):517-522
    [102]骆遥,姚长利.长方体磁场及其梯度无解析奇点表达式理论研究.石油地球物理勘探, 2007,42(6):714-715
    [103]骆遥,姚长利,薛典军,等. 2.5D地质体重磁异常无解析奇点正演计算研究.石油地球物理勘探,2009,44(4):487-493
    [104]裴忠,马丽娜,陈晓勇,等.吉林省辉南县金川一带高精度磁测ΔT异常特征分析.长春工程学院学报(自然科学版),2009,10(4):53-55
    [105]祁光.重力反演在立体地质填图中的应用:[硕士学位论文].吉林:吉林大学,2009
    [106]乔日新,王守坦.我国航空物探的成就与展望.北京地质,1996,2:29-34
    [107]屈进红,曹小刚,李才明,等.航空物探数据库系统定制界面技术研究.内蒙古石油化工,27,4:82-84
    [108]申宁华,管志宁.磁法勘探问题.北京:地质出版社,1985
    [109]孙晓.地质工程复杂地质体三维建模和可视化研究.消费导刊,2008:167
    [110]眭素文,于长春,姚长利.起伏地形剖面重磁异常半智能处理解释软件及应.物探与化探, 2004,28(1):65-68
    [111]唐小兵.磁异常处理解释系统的设计与开发:[博士学位论文].四川:成都理工大学,2008
    [112]汤井田,宋守根,何继善.多分辨分析和重磁异常的识别与分层次提取.中国有色金属学报,1994,4(3):6-15
    [113]田黔宁,吴文鹂,管志宁.任意形状重磁异常三度体人机联作反演.物探化探计算技术, 2001,23(2):125-129
    [114]王邦华,林盛表,邓一谦.均匀磁化多面体的磁场.地球物理学报,1980,23(4): 415-426
    [115]王懋基,宋正范.奇异值分解在二维半多边形体△T异常最优化反演中的应用. 1991
    [116]王永涛.大新锰矿矿山可视化技术的研究与实现:[硕士论文].桂林:广西大学,2008
    [117]王海燕,焦新华,吴燕冈.内蒙古阿龙山区域地质填图中的重磁联合人机交互解释.物探与化探,2005,29(1):16-18
    [118]王海燕,焦新华,吴燕冈.内蒙古阿龙山区域地质填图中的重磁联合人机交互解释.物探与化探,2005,29(1):16-18
    [119]魏伟,吴招才,刘天佑.基于AutoCAD平台三维可视化规则几何形体磁场反演.工程地球物理学报,2006,3(1):54-59
    [120]吴文鹂,管志宁.基于八叉树结构的可视化三维位场正反演.物探与化探,1997,21(4):282-288
    [121]吴文鹂,管志宁,高艳芳,等.重磁异常数据三维人机联作模拟.物探化探计算技术, 2005,27(3):227-231
    [122]吴文鹂,高艳芳,顾观文.起伏地形重磁三维快速正演计算.物探化探计算技术,2009, 31(3):179-182
    [123]吴文鹂.物探三维解释技术研究.国土资源部“百人计划”研究工作总结报告,2008
    [124]吴文鹂.多参数反演技术成果简介.地球学报, 2006:174
    [125]肖敦辉,董方灵.三维重磁人机交互解释的剖面成体建模方法.地理与地理信息科学, 2009,25(5):26-29
    [126]薛琴访.场论.北京:地质出版社.1978
    [127]向世明. OpenGL编程与实例.北京:电子工业出版社.1999
    [128]熊光楚.金属矿区磁异常的解释推断.北京:地质出版社,1981
    [129]熊盛青.图形图像处理方法图示航空物探数据的有效性研究.铀矿地质,1996,12(5):295-300
    [130]熊盛青.我国航空物探现状与展望.中国地质,1999,(9):18-22
    [131]熊盛青,于长春,王卫平,等.直升机大比例尺航空物探在深部找矿中的应用前景.地球科学进展,2008,23(3):270-275
    [132]闫浩飞.重磁三维可视化建模:[硕士论文].北京:中国地质大学(北京),2008
    [133]杨高印,管志宁.重磁异常的人机联作校正—迭代反演.现代地质,1995,9(3):372-381
    [134]杨宇山,刘天佑,李媛媛.任意形状地质体数值积分法重磁场三维可视化反演.地质与勘探,2006,42(5):79-83
    [135]姚长利,管志宁.三维地质体磁场梯度计算理论与方法.中国科学[D辑],1997,27(2):103-108
    [136]姚长利,黄卫宁,管志宁.综合利用位场及其垂直梯度的快速样条曲化平方法.石油地球物理勘探,1997,32(2):229-236
    [137]姚长利,黎益仕,管志宁.重磁异常正反演可视化实时方法技术改进.现代地质, 1998,12(1):115-122
    [138]姚长利,郑元满.重磁遗传算法三维反演中动态数组优化方法.物探化探计算技术, 2002,24(3):240-245
    [139]杨东来,张永波,王新春,等.地质体三维建模方法与技术指南.北京:地质出版社, 2007.
    [140]姚领田.精通MFC程序设计.北京:人民邮电出版社.2006
    [141]于万瑞,李春华,徐宝慈,等.地球物理科学计算可视化应用系统的开发.物探化探计算技术,1998,20(3):222-225
    [142]余钦范,楼海.水平梯度法提取重磁源边界位置.物探化探计算技术,1994,16(4):363-367
    [143]于长春,郭志宏,眭素文.航空物探领域的GIS开发与应用.物探化探计算技术,2003,25(1):39-44
    [144]赵博,孟小红,侯建全.三维地震建模与可视化.地球科学(学报),2007, 32(4):549-553
    [145]张新兵,朱自强,王家林.重磁数据处理系统设计.物探化探计算技术,2001,23(3):267-271
    [146]张剑,师学明,刘梦花,等.基于MATLAB开发环境的球体重力正演.工程地球物理学报,2007,4(5):460-464
    [147]张剑秋.三维地质建模与可视化系统开发研究:[博士论文].江苏:南京大学,1998
    [148]张宝琳,谷同祥,莫则尧,等.数值并行计算原理与方法.北京:国防工业出版社,1999
    [149]赵震宇.中国铁矿床成矿远景区综合信息潜力预测:[博士学位论文].吉林:吉林大学,2005
    [150]郑元满,姚长利,张晨,等.基于等值线拓扑走向的快速区域填充算法.石油地球物理勘探,2010,45(6):899-908
    [151]郑贵洲,申永利.地质特征三维分析及三维地质模拟现状研究.地球科学进展, 2004,19(2):218-223
    [152]曾华霖.重力场与重力勘探.北京:地质出版社,2005年
    [153]曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术:[博士论文].北京:中国地质大学(北京),2005
    [154]朱良峰,任开蕾,潘信,等.地质实体模型的三维交互与分析技术研究.岩土力学,2007,28(9):1959-1963

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700