用户名: 密码: 验证码:
半导体纳米粒子电化学发光行为和药物电化学发光分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代能源科学、环境科学、生命科学和材料科学的日益发展,对分析化学提出了越来越高的要求,与各个学科的交叉和相互渗透促进了分析化学的发展,也给分析化学的发展带来新的机遇。纳米材料因具有特有的量子尺寸效应和表面效应,在发光材料、光敏传感器等方面具有广阔的应用前景,可望在生物识别检测中成为一类新型的生物标记物和传感材料。将纳米材料引入分析化学研究中成为分析化学的一个研究方向。
     电化学发光(Electrogenenrated chemiluminescence, ECL)是在电极上施加一定的电压进行电化学反应,电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射。基于电化学发光强度与待测物质的定量关系而建立的分析方法称为电化学发光分析法。电化学发光分析法已经成功地应用在环境科学、生命科学和材料科学等领域。发现新的电化学发光体系,建立简单、灵敏、快速的电化学发光分析方法和构建简单、稳定性良好、廉价的电化学发光检测器一直是电化学发光研究的基础工作。用电化学发光手段研究纳米粒子的光电行为也已起步,并给电化学发光分析带来新的机遇和挑战。本论文旨在研究半导体纳米粒子的光电特性,探讨其发光机理,更好地理解半导体纳米粒子在电化学发光过程中的电子转移理论,为半导体纳米粒子在电化学发光分析和光电转换器件的应用提供参考和理论指导:构建简单、廉价的电化学发光检测器,提高其稳定性;发现新的电化学发光体系,建立简单、灵敏、快速的电化学发光分析方法。
     主要研究ZnS、ZnO、TiO2内米粒子的电化学发光行为。利用高分子交联聚合法固定化钌联吡啶,建立碳糊电极上测定山莨菪碱的新方法;研究电化学发光体系阿莫西林-表面活性剂-过氧化氢的电化学发光现象,探讨其发光机理,建立电化学发光法测定阿莫西林的新方法。并利用化学发光分析法建立简单、快速、灵敏的药物维生素B4、利福平、阿莫西林的分析方法。
     第一章为引言,该部分系统的介绍了电化学发光分析法的基本原理和常见的电化学发光体系,总结了Ru(by)32+固相电化学发光的固定化方法,评述了电化学发光分析法的研究进展;简要地介绍了纳米材料的定义、分类、特性和合成方法,重点介绍了半导体纳米材料的光电特性。
     第二章为半导体纳米粒子的电化学发光行为研究。研究了ZnS纳米粒子在碱性水溶液中的电化学发光行为,提出了可能的电化学发光机理,表明ZnS纳米粒子在碱性介质中形成的壳核结构在电化学发光过程中起着重要作用;研究了ZnO纳米粒子在碱性介质中的电化学和电化学发光行为,发现ZnO纳米粒子的表面钝化作用影响ZnO纳米粒子的电化学过程;研究了TiO2纳米粒子在碱性水溶液中的电化学发光行为,探讨了可能的发光机理。
     第三章为药物电化学发光分析方法研究。主要做了两个工作,其一,高分子交联聚合法固定化钌联吡啶测定山莨菪碱。在电化学发光分析中应用最多电化学发光体系是Ru(bpy)32+电化学发光体系,但在流动体系的电化学发光检测中,必须不断地注入昂贵的Ru(bpy)32+到反应体系中而被大量消耗。由于Ru(bpy)32+在电极上可循环利用,可将Ru(bpy)32+固定化制作检测器。为此,我们利用高分子交联聚合法固定化钌联吡啶,构建简单、廉价、稳定性好的钌联吡啶固定化方法,建立测定药物山莨菪碱的电化学发光新方法。以甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂合成了包埋有Ru(bpy)2(dcbpy)2+的高分子聚合物,将Ru(bpy)2(dcbpy)2+固定于碳糊电极上,建立了一种新的固定化钌联吡啶的方法。以三丙胺为对象,考察了Ru(bpy)2(dcbpy)2+固定化碳糊电极的稳定性和电化学活性;基于山莨菪碱对Ru(bpy)2(dcbpy)2+电化学发光的增强作用,建立了电化学发光法测定山莨菪碱的新方法。
     其二,电化学发光法测定阿莫西林。电化学发光法作为一种高灵敏度的分析方法也己被广泛的应用于药物分析。电化学发光分析法对药物的检测一般都是鲁米诺或钉联毗啶等发光体系。发现新的电化学发光体系,建立简单、灵敏、快速的电化学发光药物分析方法,是电化学发光研究的基础工作。本文旨在利用电化学氧化或者还原某些具有荧光特性的药物,发生氧化还原反应产生电化学发光,探索新的电化学发光体系,建立新的简单、灵敏、快速电化学发光药物分析法,拓宽电化学发光分析的应用范围。以阿莫西林为研究对象,发现在有表面活性剂十六烷基三甲基溴化铵存在时,在+1.5V~-1.0V之间线性扫描,在石墨电极上,在-0.7V的还原电位产生电化学发光,过氧化氢的加入能极大的增强此电化学发光强度。基于此,建立了电化学发光法测定阿莫西林的新方法;探讨了发光机理。
     第四章为流动注射化学发光法测定药物分析方法的研究。化学发光分析法以其灵敏度高、线性范围宽、分析速度快、仪器简单以及易于实现自动化和连续分析等特点,已被成功的应用于环境、临床医学等领域中。分别建立了测定维生素B4、利福平、阿莫西林的流动注射化学发光分析法。
     本论文具体研究内容简述如下:
     1.ZnS纳米粒子在碱性介质中,在-2.0V~(vs.Ag/AgCl, Sat. KCl)+0.86V之间扫描,首次发现了ZnS纳米粒子的带隙电化学发光。通过紫外可见吸收光谱、光致发光光谱、透射电镜以及能谱图证实了ZnS纳米粒子在碱性介质中会形成壳核式结构ZnS/Zn(OH)2提出了ZnS纳米粒子在碱性介质中可能的电化学发光机理。Zn(OH)2对ZnS纳米粒子的表面钝化作用在电化学发光过程中起着重要作用;ZnS纳米粒子在碱性介质中的电化学发光光谱峰~460nm,与ZnS纳米粒子在碱性介质中的观测到的光致发光的光谱峰440nm比较接近,电化学发光光谱和光致发光光谱的接近程度与Zn(OH)2对ZnS纳米粒子的表面钝化程度有关;共反应试剂过硫酸钾能够增强ZnS纳米粒子在碱性介质中的电化学发光。
     2.以尿素和硝酸锌为原料,采用均匀沉淀法制备了ZnO纳米粒子。利用透射电镜,紫外-可见吸收光谱,光致发光光谱,XRD衍射等对ZnO纳米粒子进行了表征。研究了ZnO纳米粒子在过硫酸钾的碱性溶液中的电化学发光行为,发现其在0V到-2V的循环扫描过程中有很强的发光,并且电化学发光强度与ZnO纳米粒子浓度在1.0×10-5g/mL至1.0×10-3g/mL范围内呈现出良好的线性关系。研究了ZnO纳米粒子修饰碳糊电极在过硫酸钾碱性溶液中的电化学行为,发现ZnO纳米粒子有两对氧化还原峰,碱性介质对ZnO纳米粒子的表面钝化作用影响ZnO纳米粒子的电化学性质。
     3.以钛酸四正丁脂为原料,采用溶胶-凝胶法,制备了TiO2纳米粒子。利用透射电镜,紫外-可见吸收光谱,X衍射对TiO2纳米进行了表征。重点研究了经酸处理的TiO2纳米粒子在过硫酸钾碱性溶液中的电化学发光行为,发现其在0V到-2V之间循环扫描过程中有很强的电化学发光现象,且电化学发光强度与TiO2纳米粒子浓度在2.0×10-5g/mL~4.0×10-4g/mL范围内呈现出良好的线性关系。
     4.采用高分子聚合法,以甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂合成了包埋有Ru(bpy)2(dcbpy)2+的高分子聚合物。将Ru(bpy)2(dcbpy)2+固定于碳糊电极上,制作了电化学发光检测器。以三丙胺为研究对象考察了该检测器的电化学和电化学发光特性,结果表明该检测器保持了Ru(bpy)2(dcbpy)2+的电化学和电化学发光活性,展现了很好的稳定性,测定TPA的线性范围是2.0×10-6~3.8×10-3M,检出限为6×10-7M(S/N=3)。基于山莨菪碱能增强Ru(bpy)2(dcbpy)2+的ECL强度,建立了电化学发光法测定山莨菪碱的新方法。电化学发光强度与山莨菪碱在3.3×10-6g/mL~1.8×10-4g/mL浓度范围内呈良好的线性关系,检出限为2×10-6g/mL,对2×10-6g/mL的山莨菪碱平行测定35次的相对标准偏差为3.8%,并应用于针剂和片剂中山莨菪碱的测定。
     5.研究发现,有表面活性剂十六烷基三甲基溴化铵存在时,在+1.5V~-1.0V之间线性扫描,在石墨电极上,阿莫西林能在-0.7V的还原处能产生电化学发光。过氧化氢的加入能极大的增强此电化学发光强度。基于此,建立了电化学发光法测定阿莫西林的新方法;探讨了发光机理。
     6.在碱性条件下,维生素B4对鲁米诺-过氧化氢体系的化学发光有较强的增敏作用。基于此,结合流动注射技术,建立了测定维生素B4的新方法。在优化的条件下,维生素B4浓度在1.0×10-81.0×10-5g/ml范围内与化学发光强度呈良好的线性关系,检出限为3×10-9g/ml对2.0×10-6g/mL维生素B4平行测定11次,相对标准偏差(RSD)为1.4%。该方法应用于片剂中维生素B4的测定。
     7.在酸性条件下,高锰酸钾能氧化利福平产生弱化学发光,并且,利福平能极大的增敏亚硫酸钠-高锰酸钾体系的化学发光信号。基于此,结合流动注射技术,建立了测定利福平的新方法。在优化的条件下,利福平浓度在5×10-8g/mL~1.0×10-5g/mL范围内与化学发光强度呈良好的线性关系,检出限为3×10-8g/mL。对2×10-6g/mL的利福平进行11次平行测定,相对标准偏差为2.6%。该法用于胶囊和滴眼液中利福平含量的测定,并初步探讨了该化学发光反应机理。
     8.在碱性介质中,铁氰化钾能够氧化阿莫西林产生微弱的化学发光,亚硫酸钠对该体系有较强的增敏作用,据此,结合流动注射技术,建立了测定阿莫西林的新方法。阿莫西林浓度在5.0×10-8~2.0×10-5g/mL范围内与化学发光强度呈良好的线性关系,检出限为3~10-8g/mL,对2.0×10-6g/mL的阿莫西林进行11次平行测定,相对标准偏差为1.5%。本法用于胶囊中的阿莫西林的测定,并初步探讨了该化学发光反应机理。
     本论文对半导体纳米粒子的电化学发光行为的研究及相关基础理论的探索丰富了半导体纳米材料光电性质的研究内容,为半导体纳米粒子在生物电分析和光电转换材料的应用奠定理论基础。利用高分子交联聚合法固定钌联吡啶的方法展现了好的稳定性和好的电化学活性,为钌联吡啶固相电化学发光检测提供了新的思路,建立了电化学发光测定山莨菪碱的新方法。利用电化学直接还原的特性,研究了阿莫西林的电化学发光机理,建立了灵敏、简单、电化学发光直接检测阿莫西林新方法。化学发光分析法检测药物的研究,拓宽了化学发光分析的范围,相关的发光机理丰富了化学发光分析的理论,将促进化学发光分析方法研究的发展。
Nanoparticles(NPs) have good applicational prospects in lumine-scence materials and optical sensors due to their unique size-dependent electronic, magnetic, optical, and electrochemical properties. Highly luminescent semiconductor NPs have gained increasing attention for use in light-emitting devices and tagging applications.
     Electrogenerated chemiluminescence (ECL) is a radioactive charge recombination originating from emitting excited states of electrogenerated species and has been used to investigate the nature of an emitting state, the mechanism by which it is produced, and electron transfer theory. It has also widely been used in pharmaceutical analysis, bioanalysis, enviormental analysis and clinical analysis. The development of a simple, rapid, sensitive and selective method and the fabrication of a simple, cheap and stable analytical detector in ECL analysis have been a long-term goal. Moreover, investigation of ECL of NPs has attracted increasing attentions because NPs have a great potential for developing novel ECL sensors and biological labels for ECL detection.
     The aim of the present work is to study the ECL behaviors of the semiconductor nanoparticles in aqueous medium and to explore the optical and electrochemical properties of the semiconductor NPs in order to better understand photons, charge-carrier transport, and electron injection phenomena of the semiconductor nanoparticle. Another work in the present thesis aims to develop and investigate a new immobilization approach for fabricating ECL-based detector with long-term stability. A novel ECL detector based on Ru(bpy)2(dcbpy)2+entrapped in a highly cross-linked polymer and mixed with carbon paste was fabricated. A novel ECL analytical method for the determination of raceanisodamine was developed. The ECL phenomena of a system of amoxicillin-surfactant-H2O2was first observed and investigated at graphite electrode at-0.7V during potential scan from+1.5V to-1.0V. The ECL mechanism of the system was discussed and a new ECL method for the determination of amoxicillin was developed.
     Chemiluminescence analysis is becoming increasing important in various fields owing to its simple instrumentation used, high sensitivity, wide dynamic range, reproducibility, simplicity and rapidity. To explore new CL reaction systems and to develop new chemiluminescence analytical methods is important. In this thesis, the chemiluminescence emission phenomena of the vitamin B4, rifampicin and amoxicillin was investigated respectively, and a new flow injection chemiluminescence analytical method for the determination of the VB4, rifampicin and amoxicillin was developed respectively.
     The major contents in this thesis are described as follows:
     In Chapter1, the principle of the ECL and the main ECL systems were introduced. The immobilization methods for Ru(by)32+were summarized and the research progress of the ECL analytical methods was reviewed. Moreover, the definition, classification, properties and synthesis methods of the nanomaterials were briefly introduced and the optical and electrochemistry properties of the semiconductor nanoparticles were mainly described.
     In Chapter2, the ECL behaviors of semiconductor nanoparticles (NPs) including ZnS, ZnO and TiO2NPs in alkaline solution were investigated.
     Electrogenerated Chemiluminescence of ZnS Nanoparticles in Alkaline Aqueous Solution A band gap ECL of ZnS NPs in alkaline aqueous solution was first observed at a platinum electrode during the potential applied between-2.0V (vs. Ag/AgCl, Sat. KCl) and+0.86V. The ECL peak of ZnS NPs in0.10M sodium hydroxide solution appeared at+0.86V and the ECL peak wavelength of the ZnS NPs was-460nm. A core/shell of ZnS/Zn(OH)2was demonstrated by a UV-visible absorption(UV absorption) and photoluminescence spectroscopy(PL) spectra, high resolution transmission electron microscopy(HRTEM), and energy dispersive X-ray spectroscopy. The ECL scheme of the ZnS NPs in alkaline aqueous solution was proposed, indicating that the surface passivation effect and the core/shell structure of ZnS/Zn(OH)2played a significant role in the ECL process and that the similarity of the ECL and PL spectra of semiconductor NPs was related with the extent of the surface passivation. The ECL intensity of ZnS NPs in alkaline aqueous solution was greatly enhanced by an addition of K2S2O8.
     Electrogenerated Chemiluminescence of ZnO Nanoparticles in Alkaline Aqueous Solution with Peroxydisulfate ZnO nanoparticles were prepared by the method of homogeneous precipitation with urea and zinc nitrate. ZnO NPs were characterized by TEM, UV-Vis, PL and X-ray diffraction. A strong ECL emission of ZnO NPs suspended in aqueous solution at a Pt electrode or in nanoparticulate layers modified electrodes including Pt, carbon past and graphite electrode was observed when a potential was applied between0V(vs. Ag/AgCl, Sat. KCl) and-2.0V in0.25M NaOH containing peroxydisulfate. A lineal range between the ECL intensity and the concentration of suspended ZnO NPs in the range from1.0×10-5to1.0×10-3g/mL was obtained. The electrochemical behavior of ZnO NPs was also studied at a ZnO NPs modified carbon paste electrode by entrapping ZnO NPs in carbon paste, which revealed that the electrochemical behavior of ZnO NPs was depended upon the surface passivation effect in a strong alkaline medium.
     Electrogenerated Chemiluminescence of TiO2Nanoparticles in Alkaline Aqueous Solution TiO2NPs were prepared by the sol-gel method and were characterized by TEM, UV-Vis and XRD. The ECL behavior of TiO2NPs in the alkaline aqueous solution containing K2S2O8was studied. An ECL emission was observed during cyclic potential scan between0V and-2.0V. The ECL intensity had good linear relationship with the concentration of TiO2in the range from2.0×10-5g/mL to4.0×10-4g/mL. Moreover the modified electrode by TiO2NPs was also investigated.
     In Chapter3, two ECL analytical methods for the determination of pharmaceuticals were developed.
     Electrogenerated Chemiluminescence of Ruthenium Complex Immobilized in a Highly Cross-linked Polymer and Its Analytical Applications ECL of a ruthenium complex polymer modified carbon paste electrode and its analytical applications were investigated. A ruthenium complex polymer was designed by a highly cross-linked polymer of ruthenium (Ⅱ) bis (2,2'-bipyridine)(2,2'-bipyridyl-4,4'-dicarboxylic acid). The ECL behaviors of ruthenium complex polymer modified carbon paste electrode were investigated in the absence and presence of tripropylamine (TPA). The modified carbon paste electrode exhibited a long-term stability and fine reproducibility. The ECL intensity of the modified electrode was linear with the concentration of TPA in the range from2.0×10-6to3.8×10-3M with a detection limit (S/N=3) of6×10-7M. It was also found that raceanisodamine can enhance the ECL intensity of the modified electrode. The ECL intensity of the modified carbon paste electrode was linear with the concentration of raceanisodamine in the range from3.3×10-6g/mL to1.8×10-4g/mL with a detection limit (S/N=3) of2×10-6M, and the standard deviation for1.0×10-4g/mL in repeated35times measurements is3.8%. This work demonstrates that the entrapment of ruthenium complex in a highly cross-linked polymer is a promising approach to construct an ECL modified electrode which has a long-term stability and fine reproducibility. This work demonstrates that the entrapment of ruthenium complex in a highly cross-linked polymer is a promising approach to construct an ECL modified electrode which has a long-term stability and fine reproducibility and that the ECL modified electrode has a potential application in the ECL detector.
     Electrogenerated Chemiluminescence Analysis for Amoxicillin It was founded that the amoxicillin produced a weak ECL emission at graphite electrode at-0.7V during potential scan from+1.5V to-1.0V. This weak ECL emission was enhanced greatly by H2O2and CTAB. Based on this finding, a novel sensitive ECL method for the determination of amoxicillin in pharmaceutical preparation was developed. Moreover, the mechanism of the ECL of amoxicillin-CTAB-H2O2was also discussed.
     In Chapter4. Three flow injection chemiluminescence analytical methods for the determination of vitamin B4, rifampicin and amoxicillin were developed respectively.
     Determination of VB4with Luminol-H2O2Chemiluminescence System A novel sensitive flow injection chemiluminescence(FI-CL) method for the determination of vitamin B4in pharmaceutical preparation is presented. It is based on the strong enhancement of VB4on the CL between luminol and H2O2in alkaline condition. Various factors affecting the CL emission intensity of the system have been investigated carefully. The enhancement of CL emission intensity is linear with the concentration of vitamin B4in the range from1.0×10-8to1.0×10-5g/mL. The limit of detection is3×10-9g/mL(3a). The relative standard deviation is1.4%for2.0×10-6g/mL vitamin B4in eleven replicate measurements. The proposed method has been successfully applied for the determination of vitamin B4in pharmaceutical preparation of tablets.
     Flow Injection Chemiluminescence Determination of Rifampicin It was founded that the rifampicin was oxidized by acidic potassium hypermanganate potassium, resulting in generating a weak chemiluminescence emission. Moreover, this weak chemiluminescence emission was greatly enhanced by sodium sulfite. Based on this finding, a novel sensitive FI-CL method for the determination of rifampicin in pharmaceutical preparation is developed. Various factors affecting the CL emission intensity of the system have been investigated. The enhancement of CL emission intensity is linear with the concentration of rifampicin in the range from5×10-8g/mL to1.0×10-5g/mL. The limit of detection is3×10-8g/mL (3σ). The relative standard deviation is2.6%for2.0×10-6g/mL rifampicin in eleven replicate measurements. The proposed method has been successfully applied for the determination of rifampicin in pharmaceutical preparation. Moreover the CL mechanism was also discussed.
     Flow Injection Chemiluminescence Determination of Amoxicillin It was founded that the amoxicillin was oxidized by potassium ferricyanide in alkaline medium, resulting in generating a weak chemiluminescence emission. The chemiluminescence intensity can be enhanced greatly by sodium sulfite. Based on these findings, a novel sensitive FI-CL method for the determination of amoxicillin in pharmaceutical preparation is developed. Various factors affecting the CL emission intensity of the system have been investigated. The enhancement of CL emission intensity is linear with the concentration of amoxicillin in the range from5.0×10-8to2.0×10-5g/mL. The limit of detection is3×10-8g/mL (3σ). The relative standard deviation is1.5%for2.0×10-6g/mL amoxicillin solution in eleven replicate measurements. The proposed method has been successfully applied for the determination of amoxicillin in pharmaceutical preparation of tablets.
引文
[1]Richter M M, Electrochemiluminescence (ECL) [J]. Chemical Reviews,2004,104:3003-3036.
    [2]Bard A J, editor, Electrogenerated Chemiluminescence, [M]Ed:Marcel Dekker:New York 2004.
    [3]Karsten A F, Miloslav P, George G G. Recent applications of electrogenerated chemilum-inescence in chemical analysis [J]. Talanta,2001,54:531-559.
    [4]Kulmala S, Suomi J. Current status of modern analytical luminescence methods [J]. Anal. Chim. Acta,2003,500:21-69.
    [5]Gerardi R D, Barnett N W, Lewis S W. Analytical applications of tris (2,2'-bipyridyl) ruthenium(Ⅲ) as a chemiluminescent reagent[J]. Anal. Chim. Acta,1999,378(1-3):1-41.
    [6]Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence [J]. Trends in analytical chemistry,1999,18(1):47-62.
    [7]Gerardi R D, Barnett N W, Lewis S W. Analytical applications of tris (2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent[J]. Anal. Chim. Acta,1999, 378(1-3):1-41.
    [8]Karsten A F, Miloslav P, George G G. Recent applications of electrogenerated chemiluminescence in chemical analysis [J]. Talanta,2001,54:531-559.
    [9]Yin X B, Dong S J, Wang E K. Analytical applications of the electrochemiluminescence of tris (2,2-bipyridyl) ruthenium and its derivatives [J]. Trends in Analytical Chemistry,2004,23(6): 432-441.
    [10]Kulmala S, Suomi J.Current status of modern analytical luminescence methods [J]. Anal. Chim. Acta,2003,500:21-69.
    [11]王鹏,张文艳,周鸿,朱果逸.免疫电化学发光[J].分析化学,1998,26(7):898-903.
    [12]陈曦,王小如,黄本立.电致化学发光研究的新进展[J].分析化学,1998,26(6):770-778.
    [13]王鹏,袁艺,朱果逸,张密林.电化学发光分析的新进展[J].分析化学,1999,27(10):1219-1225.
    [14]徐国宝,董绍俊.电化学发光及其应用[J].分析化学,2001,29(1):103-108.
    [15]张成孝,漆红兰.电化学发光分析研究进展[J].世界科技研究与发展,2004,26(4):7-13.
    [16]陈国南,林振宇.生物活性物质的电致化学发光检测[J].世界科技研究与发展,2004,26(4):66-74.
    [17]林金明.化学发光基础理论与应用[M].化学工业出版社,2004,7-8.
    [18]Rypka, M., Lasovsky, J.Micellar halide and energy transfer efects in electrochemiluminescence [J]. J. Electroanal. Chem.,1996,416:41-45.
    [19]Kulmala S, Helin M, Ala-Kleme T, Va're L, Papkovsky D, Korpela T, Kulmala A. Electrochemiluminescenct labels for applications in fully aqueous solution at oxide-covered aluminum electrode [J]. Anal. Chim. Acta,1999,386,1-6.
    [20]Ikonopisov S. Problems and contradictions in galvanoluminescence, a critical review [J]. Electrochim. Acta,1975,20:783-793.
    [21]Tajima, S. Luminescence, breakdown and colouring of anodic oxide films on aluminium [J]. Electrochim. Acta,1977,22:995-1011.
    [22]Kulmala, S, Ala-Kleme, T, Vare, L, Helin, M, Lehtinen, T. Hot electron-induced electrogenerated luminescence of TI (Ⅰ) at disposable oxide-covered aluminum electrodes [J]. Anal. Chim. Acta,1999,398:41-47.
    [23]Fabrizio E F, Prieto I, Bard A J. Hydrocarbon cation radical formation by reduction of peroxydisulfate [J]. J. Am. Chem. Soc.,2000,122:4996-4997.
    [24]Jackson W A, Bobbit D R. Voltammetric and chemiluminescent characterization of a heptyl-thiol derivative of ruthenium tris bipyridine self-adsorbed onto indium tin oxide substrates [J]. Microchem. J.,1994,49:99-109.
    [25]Sato Y, Uosaki K. Electrochemical and electrogenerated chemiluminescence properties of a tris (bipyridyl) ruthenium (Ⅱ)-alkanethiol derivative on ITO and gold electrodes [J]. Denki Kagaku, 1993,61:816-817.
    [26]Sato Y, Uosaki K. Electrochemical and electrogenerated chemiluminescence properties of tris (2,2'-bipyridine) ruthenium (Ⅱ)-tridecanethiol derivative on ITO and gold electrodes [J]. J. Electroanal. Chem.,1995,380:57-66.
    [27]Sato Y, Uosaki K.Formation and electrochemical characteristics of self-assembled monolayer of 11-ferrocenylundecanethiol on indium-tin-oxide [J]. Denki Kagaku,1994,62:1269-1275.
    [28]Wilson R., Kremeskoter J, Schifrin D J, Wilkinson J S. Electrochemiluminescence detection of glucose oxidase as a model for flow injection immunoassays [J]. Biosensor&Bioelectronics, 1996,11:805-810.
    [29]Ala-Kleme T, Kulmala S, Latva M. Generation of free radicals and electrochemiluminescence at pulse-polarized oxide-covered silicon electrodes in aqueous solutions [J]. Acta. Chem. Scand.,1997,51:541-546.
    [30]Laakso P, Anttila H, Kairisto V, Eskola J, Kulmala S, Ala-Kleme T. Hot electron-induced electrogenerated chemiluminescence of SYBR(?) Green I Anal. Chim. Acta,2005,541:85-89.
    [31]Suomi J, Ylinen T, Hakansson M, Helin M, Jiang Q H, Ala-Kleme T, Kulmala S.Hot electron-induced electrochemiluminescence of fluorescein in aqueous solution[J]. Journal of Electroanalytical Chemistry,2006,586:49-55.
    [32]Jiang Q H, Spehar A M, Hakansson M, Suomia J, Ala-Kleme T, Kulmala S.Hot electron-induced cathodic electrochemiluminescence of rhodamine B at disposable oxide-coated aluminum electrodes [J]. Electrochimica Acta 2006,51:2706-2714.
    [33]Spehar-Deleze A M, Suomi J, Jiang Q H, Rooij N D, Koudelka-Hep M, Kulmala S, Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes [J]. Electrochimica Acta 2006,51:5438-5444.
    [34]Jiang Q H, Ketamo H, Niskanen A J, Suomia J, Hakansson M, Kulmala S. Effects of thermal oxidation conditions of silicon electrodes on cathodic electrochemiluminescence of Ru(bpy)32+ chelate[J]. Electrochimica Acta 2006,51:3332-3337.
    [35]Jiang Q H, Suomi J, H°akansson M, Niskanen A J, Kotirant M, Kulmala S. Cathodic electrogenerated chemiluminescence of Ru(bpy)32+ chelate at oxide-coated heavily doped silicon electrodes[J]. Anal. Chim. Acta,2005,541:159-165.
    [36]Helin M, Hakansson M, Canty P, Spehar A M, Kulmala S. Hot electron-induced electrogenerated chemiluminescence of 1-aminonaphthalene-4-sulphonate at oxide-covered aluminium electrodes in aqueous solution [J]. Anal. Chim. Acta,2002,454:193-201.
    [37]Hakansson M, Helina M, Putkonen M, Q. Jiang, M. Kotiranta, J. Suomia, Niskanen A J, Ala-Kleme T, Kulmala S. Electrochemiluminescence of Tb (Ⅲ) chelates at optically transparent tunnel emission electrodes fabricated by atomic layer deposition [J]. Anal. Chim. Acta,2005,541:137-141.
    [38]H°akansson M, Jiang Q, Spehar A M, Suomi J, Kotirant M, Kulmal S.Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb (Ⅲ) at aluminum cathodes [J].Anal. Chim.Acta,2005,541:171-177.
    [39]H'akansson M, Jiang Q, Helin M, Putkonen M, Niskanen A J, Pahlberg S, Ala-Kleme T, Heikkil L, Suomia J, Kulmala S. Cathodic Tb (Ⅲ) chelate electrochemiluminescence at oxide-covered magnesium and n-ZnO:Al/MgO composite electrodes [J]. Electrochimica Acta, 2005,51:289-296.
    [40]Mika Helin, Qinghong Jiang, Hanna Ketamo, Markus H°akansson a, Anna-Maria Spehar, Sakari Kulmala, Timo Ala-Kleme Electrochemiluminescence of coumarin derivatives induced by injection of hot electrons into aqueous electrolyte solution[J]. Electrochimica Acta,2005,51: 725-730.
    [41]Jiang Q H, Ha kansson M, Suomi J, Ala-Kleme T, Kulmala S. Cathodic electrochemilumine-scence of lucigenin at disposable oxide-coated aluminum electrodes[J]. Journal of Electroanalytical Chemistry,2006,591:85-92.
    [42]Staninski K, Lis S, Komar D.Electrochemiluminescence on Dy (Ⅲ) and Tb (Ⅲ)-doped Al/Al2O3 surface electrode [J]. Electrochemistry Communications,2006,8:1071-1074.
    [43]Jiang Q, H°akansson M, Spehar A M, Ahonenb J, Ala-Kleme T, Kulmala S. Hot electron-induced time-resolved electrogenerated chemiluminescence of a europium (Ⅲ) label in fully aqueous solutions [J]. Analy. Chim. Acta 2006,558:302-309.
    [44]Havery N. Luminescence during electrolysis [J]. J. Phys. Chem.,1929,33:1456-1459.
    [45]王智泳,郭文英,狄俊伟,屠一锋.ITO玻璃上鲁米诺的电化学发光行为研究[J].光谱学与光谱分析,2005,25(10):1564-1567.
    [46]屠一锋,黄炳强,郭文英,陈瑾.中性体系中鲁米诺电化学发光行为[J].分析化学,2002,6:729-731.
    [47]储海虹,齐莹莹,徐杨,黄炳强,屠一锋.中性介质中r对鲁米诺电化学发光的增敏作用及机理研究[J].光谱学与光谱分析,2005,25(5):675-677.
    [48]徐杨,郭文英,黄炳强,屠一锋.中性介质鲁米诺电化学发光测定过氧化氢[J].光谱实验室,2003,20(5):694-696.
    [49]屠一锋,郭文英,黄炳强.影响鲁米诺体系电致化学发光因素的研究[J].光谱实验室,2001,18(2):185-188.
    [50]Sakura S, Imai H. Determination of Sub-nmol hydrogen peroxide by electrochemillumine scence of luminol in aqueous solution [J]. Anal. Sci.,1988,4:9-12.
    [51]Haapakka K E, Kankare J J. Apparatus for mechanistic and analytical studies of the electrogenerated chemiluminescence of luminol [J]. Anal. Chim. Acta,1982,138:253-262.
    [52]Haapakka K E, Kankare J J, The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution [J]. Anal. Chim. Acta,1982,138:263-275.
    [53]Kulmala S, Ala-Kleme T, Kulmala A, Papkovsky D, Loikas K. Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes[J]. Anal. Chem.,1998,70:1112-1118.
    [54]Yu H X, Cu H.Comparative studies on the electrochemiluminescence of the luminol system at a copper electrode and a gold electrode under different transient-state electrochemical techniques[J]. Journal of Electroanalytical Chemistry 2005,580:1-8.
    [55]Wro'blewska A, Reshetnyak O V, Koval chuk E P, Pasichnyuk R I, Blazejowski J. Origin and features of the electrochemiluminescence of luminol-experimental and theoretical investigations[J]. Journal of Electroanalytical Chemistry,2005,580:41-49.
    [56]Zhang G F, Chen H Y. Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system [J]. Analy. Chim. Acta 2000,419:25-31.
    [57]Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris (2,2'-bipyridine) ruthenium (Ⅱ) dichloride [J]. J. Am. Chem. Soc. 1972,94:2862-2863.
    [58]Lin J M, Yamada M. Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay[J]. Journal of Microchemical,1998,58 (1),105-116.
    [59]Tamamushi B, Akiyama H. Notes on the chemiluminescence of dimethyldiacridylium-nitrate [J]. Trans. Faraday Soc,1939,35:491-494.
    [60]Legg K D, Hercules D M. Electrochemically generated chemiluminescence of lucigenin[J] J. Am. Chem. Soc.,1969,91:1902-1907.
    [61]Haapakka K E, Kankare J J. Electrogenerated chemiluminescence of lucigenin in aqueous alkaline solutions at a platinum electrode [J]. Anal. Chim. Acta,1981,130:415-418.
    [62]Sun Y G, Cui H, Lin X Q. Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution [J]. J. Luminese,2001,92:205-211.
    [63]张棘,严凤霞,王敏,方禹之,光泽精-H2O2-KCl中性非缓冲体系电生化学发光行为及机理研究[J].光谱学与光谱分析,1995,15(1):109-113.
    [64]Nuzzo R G, Fusco F A, Allara D L. Spontaneously organized molecular assemblies. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces [J]. J. Am. Chem. Soc.,1987,109:2358-2361.
    [65]Su Y Y, Wang J, Chen G N. Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin [J]. Talanta,2005,65:531-536.
    [66]Su Y Y, Wang J, Chen G N. The enhanced electrochemiluminescence of lucigenin by some hydroxyanthraquinones [J]. Talanta,2006,68:883-887.
    [67]Chen G N, Zhang L, Lin R E, Yang Z C, Duan J P, Chen H Q, Hibbert D B.The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin [J]. Talanta,2000,50:1275-1281.
    [68]Chen J H, Lin Z Y, Chen G N. Enhancement of electrochemiluminesence of lucigenin by ascorbic acid at single-wall carbon nanotube film-modified glassy carbon electrode [J].Electrochimica Acta,2007,52:4457-4462.
    [69]Lin Z Y, Sun J J, Chen J H, Guo L, Chen G N. Enhanced electrochemiluminescent of lucigenin at an electrically heated cylindrical microelectrode[J]. Electrochemistry Communications,2007, 9:269-274.
    [70]Okajima T, Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants [J]. Journal of Electroanalytical Chemistry,2002,534:181-187.
    [71]Cui H, Dong Y P. Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode [J]. Journal of Electroanalytical Chemistry,2006,595:37-46.
    [72]Sun Y G, Cui H, Lin X Q. Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution [J]. Journal of Luminescence,2006,92:205-211.
    [73]Collinson M M, Wightman R M. High-frequency generation of electrochemiluminescence at micro-electrodes [J]. Anal. Chem.,1993,65:2576-2582.
    [74]Debad J D, Lee S K, Qiao S X, Pascal R A, Bard A J.Electroscopic properties and electrogenerated chemiluminescence of decaphenylanthracene and octaphenylnaphthalene[J], Acta Chem. Scand.,1998,52:45-50.
    [75]Oyama M, Mitani M, Okazaki S. Formation of -excimer or -exciplex in electrogenerated chemiluminescence involving perylene molecule revealed using a dual-electrolysis stopped-flow method [J]. Electrochem.Commun.2000,2:363-366.
    [76]Ritchie E L, Pastore P, Wightman R M. Free energy control of reaction pathways in electrogenerated chemiluminescence [J]. J. Am. Chem. Soc,1997,119:11920-11925.
    [77]Oyama M, Milani M, Washida M, Masuda T, Okazaki S.Two-dimensional CCD detection of electrogenerated chemiluminescence (ECL)on an electrode surface. ECL reaction involving microcrystals of the perylene dimmer cation radical salt [J]. J. Electroanal. Chem,1999,473: 166-172.
    [78]Choi J P, Bard A J. Electrogenerated chemiluminescence 73:acid-base properties, electrochemistry, and electrogenerated chemiluminescence of neutral red in acetonitrile [J]. Journal of Electroanalytical Chemistry,2004,573:215-225.
    [79]Okajima T, Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants [J]. J Electroanal Chem.,2002,534:181-187.
    [80]Leland J K, Powell M J. Electrogenerated chemiluminescence:an oxidative-reduction type ECL reaction sequence using tripropyl amine [J].J. Electrochem. Soc.,1990,137:3127-3131.
    [81]朱连德,朱果逸.电化学发光传感器研究进展[J].分析科学学报,2003,19(3):277-281.
    [82]易长青,陈曦.Ru(bpy)32+固相电致化学发光研究进展[J].世界科技研究与发展,2004,26(4):56-65.
    [83]Yin X B, Wang E K. Capillary electrophoresis coupling with electrochemiluminescence detection:a review [J]. Analy. Chim. Acta,2005,533:113-120.
    [84]Zhang X, Bard A J. Electrogenerated chemiluminescent emission from an organized (L-B) monolayer of a tris(2,2'-bipyridine)ruthenium(2+)-based surfactant on semiconductor and metal electrodes [J].J. Phys. Chem. [J],1988,92 (20):5566-5569.
    [85]Miller C J, McCord P, Bard A J. Study of langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence [J]. Langmuir,1991,7:2781-2787.
    [86]Sawaguchi T, Ishio A, Matsue T, Uchida I, Itaya K.Electrogenerated chemiluminescnce from Ru(by)2(ndbpy)LB monolayer and its application to oxlate sensor. Denki Kagaku [J].1989,57 (12):1209-1210.
    [87]Obeng Y S, Bard A J. Electrogenerated chemiluminescence.53. Electrochemistry and emission from absorbed monolayers of a tris(bipyridyl) Ruthenium (II)-based surfactant on gold and tin oxide electrodes[J]. Langmuir,1991,7:195-201.
    [88]Sato Y, Uosaki K. Electrochemical and electrogenerated chemilu2minescence properties of tris (2,2'2bipyridine) Ruthenium (Ⅱ)2 tridecanethiol derivative on ITO and gold electrodes [J]. J. Electroanal. Chem,1995,384:57-66
    [89]Dennany L, Forster R J, Rusling J F. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films [J]. J. Am. Chem. Soc.,2003,125: 5213-5218.
    [90]Wang H Y, Xu G B, Dong S J. Electrochemistry and electrochemiluminescence of stable tris (2, 2'-bipyridyl) ruthenium (Ⅱ) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode [J]. Talanta,2001,55:61-67.
    [91]Bi L H, Wang H Y, Shen Y, Wang E K, Dong S J. Multifunctional organic-inorganic multilayer films of tris (2,2'-bipyridine) ruthenium and decatungstate [J]. Electrochem. Comm,2003,5: 913-918.
    [92]Guo Z H, Shen Y, Wang M K, Zhao F, Dong S J. Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2'-bipyridyl) ruthenium (Ⅱ) multilayer filmson indium tin oxide electrodes [J]. Anal. Chem,2004,76:184-191.
    [93]Rubinstein I, Bard A J. Polymer films on electrodes.4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached Ru(bpy)3+[J]. J. Am. Chem. Soc, 1980,102:6641-6642.
    [94]Rubinstein I, Rishpon J, Gottesfeld S. An impedance study of electrochemical processes at nafion coated electrodes [J]. J. Electrochem. Soc,1986,133:729-734.
    [95]Wang J, Golden T, Permselectivity and ion-exchange properties of Eastman-AQ polymers on glassy carbon electrodes [J]. Anal. Chem,1989,61:1397-1400.
    [96]Lu Z L, Dong S J. Researches on chemically modified electrodes:Part ⅩⅩⅣ. Preparation and characterization of nafion polymer film modified electrodes containing Fe (Ⅱ)-phen complex [J]. J. Electroanal. Chem,1987,233:19-27.
    [97]Wang J, Lu Z. Ion-exchange voltammetry at poly (ester-sulfonic acid) film coated electrodes for trace analysis [J]. J. Electroanal.Chem,1989,266:287-296.
    [98]孙勤枢,刘柏峰,董绍俊.离子交换型聚合物AQ薄膜修饰电极及其溶出行为[J].分析化学,1992,20:123-127.
    [99]董绍俊,田敏,刘柏峰.二茂铁-AQ修饰碳纤维微葡萄糖传感器的研究[J].分析化学,1993,21:255-258.
    [100]Vining W J, Meyer T J. A chemically modified electrode for the catalytic oxidation of chloride to chlorine [J]. J. Electroanal. Chem,1985,195:183-187.
    [101]Vining W J, Meyer T J. Redox properties of the water oxidation catalyst (bpy)2(H2O) RuORu (H2O) (bpy)24+ in thin polymeric films-electrocatalytic oxidation of Cl- to Cl2. Inorg. Chem, 1986,25:2023-2033.
    [102]Szentirmay M N, Martin C R. Ion-exchange selectivity of nafion films on electrode surfaces[J]. Anal. Chem.,1984,56:1898-1902.
    [103]Martin A F, Nieman T A. Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris (2,2'-bipyridyl) Ruthenium (Ⅱ) chemiluminescence sensor [J]. Anal. Chimica. Acta,1993,281:475-481.
    [104]Tudos A J, Ozinga J J, Poppe H, Kok W Th. Transport of catechols through perfluorinated cation-exchange films on electrodes [J]. Anal. Chem,1990,62:367-374.
    [105]Dvorak O, DeArmond M K. Electrode modification by the sol-gel method [J]. J. Phys. Chem, 1993,97:2646-2648.
    [106]Armelao L, Bertoncello R, Gross S, Badocco D, Pastore P. Construction and characterization of Ru(Ⅱ)tris(bipyridine)2 based silica thin film electrochemiluminescent sensors. [J].Electroanalysis,2003,15:803-811.
    [107]Khramov AN, Collinson M M. Electrogenerated chemiluminescence of tris (2,2'-bipyridyl) ruthenium (Ⅱ) ion-exchanged in nafion2silica composite films [J]. Anal. Chem.,2000,72: 2943-2948.
    [108]Choi H N, Cho S H, Lee W Y. Electrogenerated chemiluminescence from tris(2,2'-bipyridyl) ruthenium(II) immobilized in titaniaperfluorosulfonated lonomer composite films[J]. Anal. Chem,2003,75:4250-4256.
    [109]Wang H Y, Xu G B, Dong S J. Electrochemiluminescence sensor using tris (2,2'-bipyridyl) ruthenium (II) immobilized in Eastman-AQ55D-silica composite thin films [J]. Anal. Chim. Acta,2003,480:285-290.
    [110]Wang H Y, Xu G B, Dong S J. Electrochemiluminescence of tris (2,2'2bipyridine) ruthenium (Ⅱ) immobilized in poly (pstyrene sulfonate)-silica-Triton X-100 composite thin films [J]. Analyst,2001,126:1095-1099.
    [111]Wang H Y, Xu G B, Dong S J. Electrochemiluminescence of tris (2,2'-bipyridyl) ruthenium (Ⅱ) ion-exchanged in polyelectrolyte2 silica composite thin films [J]. Electroanalysis,2002,14: 853-857.
    [112]Cao W D, Jia J B, Yang X R, Dong S J, Wang E K. Capillary electrophoresis with solid-state electrochemiluminescence detector[J]. Electrophoresis,2002,23:3692-3698.
    [113]Michel P E, van der Wal P D, Fiaccabrino G C, de Rooij N F, Koudelka-Hep M. Reagentless sensor integrating electrodes, photodetector, and immobilized cosubstrate for electrochemiluminescence based assays[J]. Electroanalysis,1999,11:1361-1367.
    [114]Collinson M M, Novak B, Martin S A, Taussig J S. Electrochemiluminescence of ruthenium (Ⅱ) tris (bipyridine) encapsulated in sol-gel classes [J]. Anal. Chem,2000,72:2914-2918.
    [115]Collinson M M, Taussig J S, Martin S A. Solid-state electrogenerated chemiluminescence from gel entrapped ruthenium (Ⅱ) tris (bipyridine) and tripropylamine [J]. Chemistry of Materials. 1999,11:2594-2599.
    [116]Collinson M M, Martin S A. Solid-state electrogenerated chemiluminescence in sol-gel derived monoliths [J]. Chem. Comm,1999,10:899-890.
    [117]Deepa P N, Kanungo M, Claycomb G, Sherwood P M A, Collinson M M. Electrochemically deposited sol-gel derived silicatefilms as a viable alternative in thin-film design [J]. Anal. Chem,2003,75:5399-5405.
    [118]Collinson M M, Moore N, Deepa P N, Kanungo M. Electrodeposition of porous silicate films from ludox colloidal silicae. Langmuir,2003,19:7669-7672.
    [119]Zhao C Z, Egashira N, Kurauchi Y, Ohega K. Substrate selectivity of an electrochemiluminescence Pt electrode coated with a Ru (bpy) 32+ modified chitosan silica gel membrane [J]. Anal. Sci,1997,13:333-336.
    [120]Zhao C Z, Egashira N, Kurauchi Y, Ohega K. Electrochemiluminescence sensor having a Pt electrode coated with a Ru (bpy)32+ modified chitosan silica gel membrane[J]. Anal. Sci.,1998, 14:439-441.
    [121]Sykora M, Meyer T J. Electrogenerated chemiluminescence in SiO2 sol-gel polymer composites. Chem. Mater,1999,11:1186-1189.
    [122]Lee J K, Lee S H, Kim M, Kim H, Kim D H, Lee W Y.Organosilicate thin film containing Ru (bpy) 32+ for an electrogenerated chemiluminescence (ECL) sensor[J]. Chem. Comm.,2003, 13:1602-1603.
    [123]Xun X P, Du Y, Dong S J, Wang E K. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection[J].Anal. Chem.2005,77: 8166-8169.
    [124]Sun X P, Du Y, Zhang L X, Dong S J, Wang E K. Pt nanoparticles:Heat treatment-based preparation and Ru (bpy)32+-mediated formation of aggreates taht can form stable films on bare solid eelctrode surface for solid-state electrochemiluminescence detection [J].Anal. Chem.2006, 78:6674-6677.
    [125]Sun X P, Du Yan, Zhang L X, Dong S J, Wang E K.Luminescent supramolecular microstructures containing Ru(bpy)32+:solution-based self-assembly preparation and solid-state eelctrochemiluminescence detection application[J]. Anal. Chem.2007,79:2588-2592.
    [126]Du Y, Wei H, Kang J Z, Yan J L, Yin X B, Yang X R, Wang E K. Microchip capillary electrophoresis with solid-state electrochemiluminescence detector[J].Anal.Chem.2005,77: 7993-7997.
    [127]Du Y, Qi B, Yang X R, Wang E K. Synthesis of PtNPs/AQ/Ru(bpy)32+ colloid and its application as a sensitive solid-state electrochemiluminescence sensor[J]. Material J. Phys. Chem. B 2006,110:21662-21666.
    [128]Choi H N, Cho S H, Lee W Y. Electrogenerated chemiluminescence from tris (2,2'-bipyridyl) ruthenium (II) immobilized in titania-perfluorosulfonated ionomer composite films [J]. Anal. Chem.2003,75:4250-4256.
    [129]Choi H N, Lee J Y, Lyu Y K, Lee W Y. Tris (2,2'-bipyridyl) ruthenium (Ⅱ) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol-gel-derived titania-Nafion composite films [J]. Anal. Chimi. Acta,2006,565:48-55.
    [130]Ding S N, Xu J J, Zhang W J, Chen H Y. Tris (2,2'-bipyridyl) ruthenium (Ⅱ)-Zirconia-Nafion composite modified electrode applied as solid-state electrochemilumi-nescence detector on electrophoretic microchip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin [J]. Talanta,2006,70:572-577.
    [131]Zhang L H, Dong S J. Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles[J]. Anal. Chem.2006,78:5119-5123.
    [132]Zhang L H, Guo Z H, Xu Z A, Dong S J.Highly sensitive electrogenerated chemiluminescence produced at Ru(by)32+ in Eastman-AQ55D-carbon nanotube composite film electrode[J]. Journal of Electroanalytical Chemistry [J].2006,592:63-67.
    [133]Zhang L H, Dong S H. Electrogenerated chemiluminescence sensing platform using Ru(bpy)32+ doped silica nanoparticles and carbon nanotubes [J]. Electrochemistry Communications 2006,8:1687-1691.
    [134]Zhang L H, Xu Z H, Dong S J.Electrogenerated chemiluminescence biosensor based on Ru(bpy)32+ and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material[J]. Analy. Chim. Acta,2006,575:52-56.
    [135]Zhang L H, Xu Z H, Sun X P, Dong S J. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)32+-Au nanoparticles aggregates[J]. Biosensors and Bioelectronics,2007,22:1097-1100.
    [136]Egashira N, Kondoh N, Kurauchi Y, Ohga K. Selective determination of oxalate ions with a fiberoptic electrochemiluminescence sensor having a carbon paste electrode modified with bis (2,2'-bipyridine)-(4,4'-dinonadecyl-2,2'bipyridine) ruthenium (Ⅱ).Denki Kagaku,1992,60: 1148-1151.
    [137]Abruna H D, Bard A J. Electrogenerated chemiluminescence.40. A chemiluminescent polymer based on the tris (4-vinyl-4'-methyl-2,2'-bipyridyl) ruthenium (Ⅱ) system [J]. J. Am. Chem. Soc.1982,104:2641-2642.
    [138]Maness K M, Terrill R H, Meyer T J, Murray R W, Wightman R M. Solid-state diode like chemiluminescence based on serial immobilized concentration gradients in mixed valent poly [Ru(vbpy)3] (PF6) 2 films[J]. J. Am. Chem. Soc,1996,118:10609-10616.
    [139]Elliott C M, Pichot F, Bloom C J, Rider L S. Highly efficient solidstate electrochemically generated chemiluminescence from estersubstituted trisbipyridineruthenium(II) based polymers [J]. J. Am. Chem. Soc.1998,120:6781-6784.
    [140]Forster R A, Hogan C F. Electrochemiluminescent metallopolymercoatings:Combined light and current detection in flow injection analysis [J]. Anal. Chem.2000,72:5576-5582.
    [141]Zhang C X, Zhang S C, Zhang Z J. Determination of copper in water by electrochemical stripping chemiluminescence analysis in situ[J]. Analyst,1998,123(6):1383-1386.
    [142]Qin W, Zhang Z J, Liu H J. Chemiluminescence flow-through sensor for copper based on an anodic stripping voltammetric flow cell and an ion-exchange column with immobilized reagents [J]. Anal. Chem.,1998,70(17):3579-3582.
    [143]Du J X, Li J J, Yang L J, Lu J R. Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential electrolysis technique [J]. Anal. Chim. Acta,2003,481(2):239-244.
    [144]Li J J, Du J X, Lu J R. Flow injection electrogenerated chemiluminescence determination of vanadium and its application to environmental water sample [J]. Talanta,2002,57(1):53-57.
    [145]Huang J C, Zhang C X, Zhang Z J. Flow injection chemiluminescence determination of isoniazid with electrogenerated hypochlorite[J]. Fresenius Journal of Anal. Chem.,1999,363: 126-128.
    [146]Zhang Z J, Li B X, Zheng X W. Investigation of chemiluminescence with electrogenerated reagents and its analytical application[J]. Chinese J. Chem.,2003,21:1403-1409.
    [147]Zhang Y T, Zhang Z J, Song Y H, Wei Y. Detection of glucocorticoid residues in pig liver by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5--luminol chemiluminescence detection[J]. Journal of Chromatography A,2007,1154:260-268.
    [148]Zhang Y T, Zhang Z J, Song Y H. Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO--luminol chemiluminescence detection [J]. Journal of Chromatography A,2006,1129:34-40.
    [149]Li B X, Zhang Z J, Wu M L. Flow-injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(Ⅲ) as oxidant[J] Talanta,2000,51:515-521.
    [150]Li B X, Zhang Z J, Liu W. Flow-injection chemiluminescence determination of chlortetracycline using on-line electrogenerated [Cu(HIO6)2]5-as the oxidant [J]. Talanta,2001, 55:1097-1102.
    [151]Li B X, Zhang Z J, Wu M L. Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver II as the oxidant [J]. Microchemical Journal,2001,70: 85-91.
    [152]Zheng X W, Yang M, Zhang Z J.Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant [J]. Anal. Chim. Acta,2001, 440:143-149.
    [153]Li B X, Zhang Z J, Wu M L.Flow-injection chemiluminescence determination of sulfite using on-line electrogenerated silver(II) as the oxidant[J]. Anal. Chim. Acta,2001,432:311-316.
    [154]Zhang Y T, Zhang Z J, Qi G C, Sun Y H, Wei Y, Ma H Y. Detection of indomethacin by high-performance liquid chromatography with in situ electrogenerated Mn(Ⅲ) chemiluminescence detection[J]. Anal. Chim. Acta,2007,582:229-234.
    [155]Zhang Y T, Zhang Z J, Sun Y H Y, Wei Y.Development of an analytical method for the determination of (3-Agonist residues in animal tissues by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5--Luminol chemiluminescence detection [J].J. Agric. Food Chem.2007,55:4949-4956.
    [156]Zhang C X, Zhou G J, Zhang Z J, Aizawa M. Highly sensitive electrochemical luminescence determination of thiamine[J]. Anal. Chim. Acta,1999,394:165-170.
    [157]Zhang M, Zhang C, Qi H L.Energy transfer electrogenrat edchemiluminscence for the determination of sulfite [J]. Microchim. Acta 2004,144:155-160.
    [158]Liu L, Chen S, Zhao H, Jin, L. Terbium sensitized determination of tosufloxacin using electrochemiluminescence method [J]. Anal. Sci.2005,21,373-376.
    [159]Chen S L, Liu Y, Zhao H C, Jin L P, Zhang Z L,Zheng Y Z. Determination of norfloxacin using a terbium-sensitized electrogenerated chemiluminescence method[J]. Luminescence 2005,21:20-25.
    [160]Liang Y D, Gao W, Song J F. Electrochemiluminescence determination of pipemidic acid using sulfite as energy transfer mediator [J]. Bioorganic & Medicinal Chemistry Letters,2006,16: 5328-5333.
    [161]Wilson R, Schiffrin D J. Chemiluminescence of luminol catalyzed by electrochemically oxidized ferrocenes [J]. Anal. Chem.,1996,68:1254-1257.
    [162]Taylor C E IV, Creager S E. Electrochemiluminescence-based detection of ferrocene derivatives at monolayer-coated electrodes [J]. J. Electroanal. Chem.,2000,48:114-120.
    [163]Wilson R, Schiffrin D J. Electrochemically oxidized ferrocenes as catalysts for the chemiluminescence oxidation of luminol [J]. J. Electroanal. Chem.,1998,448:125-130.
    [164]Zhang C X, Qi H L. Highly sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution[J]. Analytical Science,2002,18(7):819-822.
    [165]Qi H L, Zhang C X. Electrogenerated chemiluminescence reaction of lucigenin with isatin at a platinum electrode [J]. Luminescence,2004,19:21-25.
    [166]Blackburn G F, Shah H P, Kenten J H, Leland J, Kamin R A, Link J, Peterman J, Powell M J, Shah A, Talley D B, Tyagi S K, Wilkins E, Wu T G, Massey R J. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics[J]. Clin. Chem.,1991,37(9):1534-1539.
    [167]R Wilson, Clavering C, Hutchinson A. Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate [J]. Anal. Chem.,2003,75:4244-4249.
    [168]Ikariyama Y, Kunoh H, Aizawa M. Electrochemical luminescence-based homogeneous immunoassay [J]. Biochem. Biophys. Res. Commun.,1985,128:987-992.
    [169]Zhang C X, Zhang H H, Feng M L. Homogeneous electrogenerated chemiluminescence immunoassay using a luminol-labeled digoxin hapten[J]. Anal Lett,2003,36(6):1103-1114.
    [170]Qi H L, Zhang C X. Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin [J]. Anal. Chim. Acta,2004,501(1):31-35.
    [171]Zhou M, Roovers J, Robertson G P, Grover C P. Multilabeling biomolecules at a single site.1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays [J]. Anal. Chem.,2003,75:6708-6717.
    [172]Yang H J, Leland J K, Yost D, Massey R J. Electrochemiluminescence:A new diagnostic and research tool [J]. Biotechnology,1994,12:193-194.
    [173]Horninger D, Eirikis E, Pendley C, Giles-Komar J, Davis H M, Miller B E. A one-step competitive electrochemiluminescence-based immunoassay method for the quantification of a fully human anti-TNF antibody in human serum [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,38:703-708.
    [174]Wilson R, Clavering C, Hutchinson A. Paramagnetic bead based enzyme electrochemilumi-nescence immunoassay for TNT [J]. Journal of Electroanalytical Chemistry,2003,557: 109-118.
    [175]Yan G H, Xing Da, Tan S C, Chen Q.Rapid and sensitive immunomagnetic-electroch-emiluminescent detection of p53 antibodies in human serum[J]. Journal of Immunological Methods,2004,288:47-54.
    [176]漆红兰.纳米粒子组装电话学生物传感器和电化学发光米免疫分析法的研究[D].博士学位论文,陕西师范大学,2005年.
    [177]Carter M T, Bard A J. Electrochemical investigation of the interaction of metal chelates with DNA, electrogenerated chemiluminescent investigation of the interaction of tris (1, 10-phenanthroline ruthenium (II) with DNA [J]. Bioconjug. Chem.,1990,1(4):257-263.
    [178]Rodriguez M, Bard A J. Electrochemical studies of the interaction of metal chelates with DNA. 4. Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2,2'-bipyridine)osmium(II) with DNA[J]. Anal Chem.,1990,62(24):2658-2662.
    [179]Kuwabara T, Noda T, Ohtake H, Ohtake T, Toyama S, Ikariyama Y. Classification of DNA-binding mode of antitumor and antiviral agents by the electrochemiluminescence of ruthenium complex[J]. Anal. Biochem.2003,314:30-37.
    [180]Miao W J, Bard A J. Electrogenerated chemiluminescence.72. Determination of Immobilized DNA and C-reactive protein on Au (111) electrodes using Tris (2,2-bipyridyl) ruthenium (II) labels [J]. Anal. Chem.,2003,75:5825-5834.
    [181]Dennany L, Forster R J, Rusling J F. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films [J]. J. Am. Chem. Soc.,2003,125: 5213-5218.
    [182]Yang M L, Liu C Z, Qian K J, He P G, Fang Y Z. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis[J]. Analyst,2002,127: 1267-1271.
    [183]Miao W, Bard A J. Electrogenerated chemiluminescence.77. DNA hybridization detection at high amplification with [Ru(bpy) 3]2+-containing microspheres [J]. Anal. Chem.,2004,76(18): 5379-5386.
    [184]Wang H, Zhang C X, Li Y, Qi H L.Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes [J]. Anal.Chim. Acta,2006,575:205-211.
    [185]Li Y, Qi H L, Fang F, Zhang C X. Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2-bipyridyl) ruthenium derivative tags[J]. Talanta,2007,72:1704-1709.
    [186]Li Y, Qi H L, Peng Y G, Yang J, Zhang C X. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J].Electrochemistry Communications, 2007,9:2571-2575.
    [187]Chang Z, Zhou J M, Zhao K, Zhu N N, He P G, Fang Y Z. Ru(bpy)32+-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization[J]. Electrochimica Acta,2006,52:575-580.
    [188]Wang X Y, Zhou J M, Yun W, Xiao S S, Chang Z, He P G. Fang Y Z. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J]. Ana. Chim. Acta,2007,598: 242-248.
    [189]Wei H, Du Y, Kang J Z, Wang E K. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,20-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation[J]. Electrochemistry Communications,2007,9:1474-1479.
    [190]Yin X B, Wang E K. Capillary electrophoresis coupling with electrochemiluminescence detection:a review [J]. Analy. Chim. Acta,2005,533:113-120.
    [191]李延,张成孝.电化学发光在药物分析中应用的研究进展[J].西北药学杂志,2006,21(1):4547.
    [192]Liu S, Liu Y, Li J, Guo M, Pan W Yao S. Determination of mefenacet by capillary electrophoresis with electrochemiluminescence detection[J]. Talanta,2006,69:154-159.
    [193]Gao Y, Tian Y L, Sun X H, Yin X B, Xiang Q, Ma G, Wang E K.Determination of ranitidine in urine by capillary electrophoresis-electrochemiluminescent detection [J]. Journal of Chromatography B,2006,832:236-240.
    [194]Huang Y, Pan W, Guo M L, Yao S Z. Capillary electrophoresis with end-column electrochemiluminescence for the analysis of chloroquine phosphate and the study on its interaction with human serum albumin[J]. Journal of Chromatography A,2007,1154:373-378.
    [195]Sun X H, Liu J F, Cao W D, Yang X R, Wang E K, Fung Y S. Capillary electrophoresis with electrochemiluminescence detection of procyclidine in human urine pretreated by ion-exchange cartridge[J]. Anal.Chim. Acta,2002,470:137-145.
    [196]Li Y, Wang C, Sun J. Zhou Y, You T, Wang E, Fung Y. Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemiluminescence detection[J]. Anal.Chim.Acta,2005,550:40-46.
    [197]Wen P, Liu Y, Yao S. Determination of difenidol hydrochloride by capillary electrophoresis with electrochemiluminescence detection [J]. J.Chromatogr.A,2006,831:17-23.
    [198]Fang L, Ym X, Sun X, Wang E. Determination of disopyramide inhuman urine by capillary electrophoresis with electrochemiluminescence detection of tris(2,2-bipyridyl)ruthenium (Ⅱ)[J]. Anal.Chim. Acta,2005,537:25-30.
    [199]Yan J, Liu J, Cao W, Sun X, Yang X, Wang E. Determination of benzhexolhydrochloride by capillary zone electrophoresis with an end-columnelectrochemiluminescence detection[J]. Microchem. J.,2004,76:11-16.
    [200]Hsieh Y C, Whang C W.Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection [J]. Journal of Chromatography A, 2006,1122:279-282.
    [201]Liu J, Cao W Y, Wang E. Determination of diphenhydramine by capillary electrophoresis with tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrochemiluminescence detection[J].Talanta,2003,59: 453-459.
    [202]Ikehar T, Habu N, Nishino I, Kamimori H. Determination of hydroxyproline in rat urine by high-performance liquid chromatography with electrogenerated chemiluminescence detection using tris(2,2'-bipyridyl) ruthenium(II)[J]. Anal. Chim. Acta,2005,536:129-133.
    [203]Li J G, Zhao F J, Ju H X.Simultaneous electrochemiluminescence determination of sulpiride and tiapride by capillary electrophoresis with cyclodextrin additives[J]. Journal of Chromatography B,2006,835:84-89.
    [204]Gao Y, Tian Y L, Wang E K. Simultaneous determination of two active ingredients in Flos daturae by capillary electrophoresis with electrochemiluminescence detection[J]. Anal. Chim. Acta,2005,545:137-141.
    [205]Li J G, Zhao F J, Ju H X. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection[J]. Anal. Chim. Acta,2006, 575:57-61.
    [206]Yin X B, Kang J Z, Fang L Y, Yang X R, Wang E K. Short-capillary electrophoresis with electrochemiluminescence detection using porous etched joint for fast analysis of lidocaine and ofloxacin[J]. Journal of Chromatography A,2004,1055:223-228.
    [207]Yuan J P, Yin J Y, Wang E K.Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection[J]. Journal of Chromatography A,2007,1154:368-372.
    [208]Zhou M, Ma Y J, Ren X N, Zhou X Y, Li L, Chen H.Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection [J].Anal. Chim. Acta,2007,587:104-109.
    [209]Deng B Y, Kang Y H, Li X F, Xu Q M. Determination of erythromycin in rat plasma with capillary electrophoresis-electrochemiluminescence detection of tris(2,2'-bipyridyl) ruthenium (Ⅱ) [J].Journal of Chromatography B,2007,857:136-141.
    [210]Chi Y, Xie J, Chen G. Electrochemiluminescent behavior of allopurinol in the presence of Ru(bpy)32+[J]. Talanta,2006,68:1544-1549.
    [211]Yi C Q, Tao Y, Wang B, Chen X. Electrochemiluminescent determination of methamphetamine based on tris(2,2'-bipyridine)mthenium(Ⅱ) ion-association in organically modified silicate films[J]. Anal.Chim.Acta,2005,541:75-83.
    [212]Wang C, Huang H. Flow injection analysis of glucose based on its inhibition ofelectrochemiluminescence in a Ru(bpy)32+-tripropylamine system[J]. Anal.Chim.Acta,2003, 498:61-68.
    [213]Zhao X, You T, Qiu H, Yan J, Yang X, Wang E. Electrochemiluminescence detection with integrated indium tin oxide electrode on electrophoretic microchip for direct bioanalysis of lincomycin in the urine[J]. J.Chromatogr.B,2004,810:137-142.
    [214]Wu X P, Huang F X, Duan J P, Chen G N. Electrochemiluminescent behavior of melatonin and its important derivatives in the presence of Ru(bpy)32+[J]. Talanta,2005,65:1279-1285.
    [215]Ines N. Tomita, Luis O.S. Bulhoes.Electrogenerated chemiluminescence determination of cefadroxil antibiotic [J]. Anal. Chim. Acta,2001,442:201-206.
    [216]Li F, Cui H, Lin X Q. Determination of adrenaline by using inhibited Ru(bpy)32+ electrochemiluminescence[J]. Anal. Chim. Acta,2002,471:187-194.
    [217]Li F, Pang Y Q, Lin X Q, Cui H. Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes[J]. Talanta,2003,59:627-636.
    [218]Song Q J, Greenway G M, Mccreedy T. Tris (2,2'-bipyridine) ruthenium (II) electrogenrated chemiluminescence of alkaloid type drugs with solid phase extraction sample preparation[J]. Analyst,2001,126(1):37-40.
    [219]陈曦,李梅金,李真,易长青,王小如,王波.某些含氮神经药物的流动注射钌联毗啶电致化学发光研究[J].分析化学,2002,30(5):513-517.
    [220]张毅,张美宁,漆红兰,张成孝.电化学发光法测定氟哌啶醇[J].研究陕西师范大学学报(自然科学版),2005,33(3):78-81.
    [221]王芬,章竹君,张丽惠.电化学发光法测定人尿中的磷酸苯丙哌林[J].分析试验室,2006,25(2):40-43.
    [222]昌征,郑行望.修饰石墨电极表面电化学发光反应微环境的研究及其分析应用[J].分析化学,2007,35(2):247-250.
    [223]Zhao L, Tao Y, Yang X Q, Zhang L Y, Oyma M, Chen X. Elctrochemiluminescnet behaviors of alkaloids and tris(2,2'-bipyridine)ruthenium in organically modified silicate film[J]. Talanta, 2006,70:104-110.
    [224]Park Y J, Lee1 D W, Lee W Y. Determination of P-blockers in pharmaceutical preparations and human urine by high-performance liquid chromatography with tris(2,2'-bipyridyl) ruthenium(II) electrogenerated chemiluminescence detection[J]. Anal. Chim. Acta,2002,471: 51-59.
    [225]Chen X, Yi C Q, Li M J, Lu X, Li Z, Li P W, Wang X R.Determination of sophoridine and realated lupin alkaloids using tris (2,2'-bipyridine) ruthenium electrogenerated chemilumi nescence [J]. Anal.Chim.Acta,2002,466(1):79-86.
    [226]Uchikura K. Determination of aromatic and branched2chain amino acids in plasma by HPLC with electrogenerated Ru (bpy)32+ chemiluminescence detection[J]. Chem. Pharm. Bull.,2003, 51 (9):1092-1094.
    [227]Zorzi M, Pastore P, Magno F. A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru (bpy)32+ in aqueous solution. Anal. Chem.,2000,72 (20):4934-4939.
    [228]Tsukagoshi K, Okuzono N, Nakajima R. Separation and determination of emetine dithiocarbamate metal complexes by capillaryelectrophoresis with chemiluminescence detection of the tris (2,2'-bipyridine)2ruthenium(Ⅱ) complex[J]. J. Chromatogr. A,2002,958 (122):283-289.
    [229]Tsukagoshi K, Miyamoto K, Nakajima R, Ouchiyam N.Sensitive determination of metal ions by liquid chromatography with tris (2,2'-bipyridine) ruthenium (Ⅱ) complex electrogenerated chemiluminescence detection. J. Chromatogr. A,2001,919 (2):331-337.
    [230]薛宽宏,包建春.纳米化学-纳米体系的化学建构及应用[M].化学工业出版社.
    [231]Leheny A R, Rossetti R, Brus L E. Tetrathiafulvalene photoionization in micellar solutions:a time-resolved Raman scattering study of interfacial solvation [J]. J.phy.chem.1985,89: 4091-4093.
    [232]Rossetti R, Brus L E. Picosecond resonance Raman scattering study of methylviologen reduction on the surface of photoexcited colloidal cadmium sulfide crystallites [J]. J. Phy. Chem.1986,90:558-560.
    [233]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties [J]. J. Phy. Chem.,1991,95:525-532.
    [234]A.Hagfeld, M. Gratzer. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.1995,95:49-68.
    [235]水森,岳林海,刘清,徐铸德,郑遗凡,成豪.纳米CaC03微晶的晶格畸变和反常红外特性[J].无机化学学报,1999,15(6):715-720.
    [236]吴广明,王汪,沈军.实验条件对纳米多孔Si仇薄膜结构及特性的影响[J].物理学报,2001,50(1):175-181.
    [237]Uchida H, Yoshida M, Watanabe M. Effects of Ionic conductivities of zirconia electrolytes on polarization properties of platinum anodes in solid oxide fuel cells [J]. J. Phys. Chem.,1995, 99:3282-3287.
    [238]Ohtsuka S, Koyama T, Tsunetomo K, Nagata H, Tanaka S. Nonlinear optical property of CdTe microcrystallites doped glasses fabricated by laser evaporation method[J]. Appl. Phys. Lett., 1992,61 (25):2953-2954.
    [239]Henglein A. In colloidal semiconductors:metal oxides [J]. Topics in current chemistry,1988, 143:113-127.
    [240]Leland J K, Bard A J. Photochemistry of colloidal semiconducting polymorphs [J]. J. physic. Chem.,1987,91:5076-5083.
    [241]Chamarro M A, Gourdon C, Lavallard P. Selective excitation of nanocrystals by polarized light [J]. Solid State Commun.,1992,84:967-970.
    [242]Horvath J, Birringer R, Gleiter H. Diffusion in nanocrystatline materials [J], Solid State Commun.,1987,62:319-326.
    [243]Hofler H J, Averback R S, Hahn H, Gleiter H. Diiffusion of bismuth and gold in nanocrystalline copper [J], J. Appl. Phys.,1993,74:3832-3839.
    [244]苏慧兰.纳米材料的低温溶剂热合成和室温溶胶-凝胶法合成[D].中国科学技术大学博士学位论文,2001,5
    [245]Li Z, Foster C M, Guo D. Growth of high quality single-domain single-crystal films of PbTiO3 [J]. Appl. Phys. Lett.,1994,65(9):1106-1108.
    [246]Gregg B A, Nozik A J.Existence of a light intensity threshold for photoconversion processes [J]. J.Phy.Chem.1993,97:13441-13443.
    [247]Nedeljkovic J M, Nenadovic M T, Micic O I, Nozik A J. Enhanced photoredox chemistry in quatized semiconductor colloids[J]. J.Phy.Chem.1986,90:12-13.
    [248]Anpo M, Shima T, Kodama S, Kubokawa Y. Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2:Size quantization effect and reaction intermediates [J]. J.Phy.Chem.1987,91:4305-4310.
    [249]Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide:A detailed spectroscopic study [J]. J.Phy.Chem.1987,91:3789-3798.
    [250]Kormann C, Bahnemenn D, Hoffmann M R. Preparation and characterization of quantum size titanium oxide [J]. J. Phy.Chem.,1988,92:5196-5201.
    [251]崔正刚,殷福珊.微乳化技术与应用[M].北京:中国轻工业出版社,1999.
    [252]周彦昭.微乳液法制备纳米粉体综述[J].陕西科技大学学报,2004,22(5):167-170.
    [253]李汉军,施尔畏,王步国.水热法制备氧化锌粉末[J].无机材料学报.1998,13(1):27-32.
    [254]Chen D R, Jiao X L, Cheng G. Hydrothermal synthesis of zinc oxide powders with different morphologies [J]. Solid state communications [J],2000,113:363-366.
    [255]张金中,王中林,刘俊,陈少伟,刘刚玉.曹茂盛曹传宝译.自组装纳米结构[M]化学工业出版社.2004,180-196
    [256]王占国,陈涌海,叶小玲.纳米半导体技术[M].化学工业出版社,2006年.
    [257]Genzel L, Martin T P, Kreibig U.Dielectric function and plasma resonances of small metal particles[J].Z.Physik B,1975,21:339-346.
    [258]Alvarez M M, Khoury J T, Schaaff T G, Shafigullin M N, Vezmar I, Whetten R L, Optical absorption spectra of nanocrystal gold molecules, J.Phys.Chem. B,1997,101:3706-3712.
    [259]Roberti T W, Cherepy N J, Zhang J Z. Nature of the ower-dependent ultrafast relaxation process of photoexited charge carriers in Ⅱ-Ⅵ semiconductor quantum dots:Effects of particle size, surface, and electronic structure [J]. J. Phys. Chem.,1998,108,2143-2151.
    [260]Zhang J Z. Interfifacial charge carrier dynamics of colloidal semiconductor nam\noparticles [J]. J.Phys.Chem.B,2000,104:7239-7253.
    [261]Norris D J, Bawendi M G Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots [J]. Phys.Rev.B Condens, Matter,1996,53:16338-16346.
    [262]Brus L E, Efros A L, Itoh T. Special issue on spectroscopy of isolated and assembled semiconductor nanocrystals- introduction [J]. J.Lumin.70,1996,7-8.
    [263]Banin U, Lee C J, Guzelian A A, Kadavanich A V, Alivisatos A P, Jaskolski W, Bryant G W, Efros A L, Rosen M. Size-dependent electronic level strcture of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J]. J. Chem. Phys.,1998,109:2306-2309.
    [264]徐叙熔,苏勉曾主编[M].发光学与发光材料,化学工业出版社2004,1-10.
    [265]Murray C B, Norris D J, Bawendi M G Systhesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystalities [J]. J. Am. Chem. Soc.,1993,115: 8706-8715.
    [266]Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility [J]. J.Am.Chem.Soc.1997,119:7019-7029.
    [267]Palinginis P, Hailin W. High-resolution spectral hole burning in CdSe/ZnS core/shell nanocrystals [J]. Appl. Phys. Lett,2001,78:1541-1543.
    [268]Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H. Strongly photoluminescent CdTe nanocrystals by proper surface modification[J]. J.Chem.Phys.B,1998,102:8360-8363.
    [269]Quan Z W, Wang Z L, Yang P P, Lin J, Fang J Y. Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) luminescent nanocrystals[J]. Inorg. Chem.2007,46:1354-1360.
    [270]Vossmeyer T, Katsikas L, Giersig M, Popovic I G, Diesner K, Chemseddine A, Eychmuller A, Weller H. CdS nanoclusters-synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reverisible absorbance shift[J]. J.Phys.Chem,1994,98:7665-7673.
    [271]Wang Y, Suna A, Mchugh J, Hilinski E F, Lucas P A, Johnson R D. Opticl transient bleaching of quantum-confined CdS clusters-the effects of surface-traped electron hole pairs[J]. J. Phys.Chem.,1990,92:6927-6939.
    [272]Brus L E. Electro-electro and electron-hole interaction in small semiconductor crystallities: The size dependence of the lowest excited electronic state [J]. J.Phys.Chem.1984,80: 4403-4409.
    [273]Norris D J, Bawendi M G Structure in the lowest absorption feature of CdSe quantum dots [J]. J.Phys.Chem.1995,103:5260-5268.
    [274]Tittle J, Gohde W, Koberling F, Basche T, Kornowski A, Weller H, Eychmuller A. Flurenscence spectroscopy on single CdS nanocrystal[J].,J.Phys.Chem.1984,80:4403-4409.
    [275]Norris D J, Bawendi M G. Structure in the lowest absorption feature of CdSe quantum dots [J]. J.Phys.Chem.B,1997,101:3013-3016.
    [276]Szunerits S, Walt D R. Fabrication of an optoelectrochemical microring array, Anal. Chem., 2002,74,1718-1723.
    [277]Cui H, Xu Y, Zhang Z F. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode [J]. Anal. Chem., [J].2004,76:4002-4010.
    [278]Cui H, Zhang Z F, Shi M J, Xu Y, Wu Y L.Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen proxide[J].Anal. Chem.,2005, 77:6402-6406.
    [279]Zhang Z F, Cui H, Lai C Z, Liu L J. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications[J]. Anal. Chem.2005,77:3324-3329.
    [280]Cui H, Zou G Z, Lin X Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode[J]. Anal. Chem.2003,75:324-331.
    [281]Cui H, Zhang Z F, Shi M J. Chemiluminescent reactions induced by gold nanoparticles [J]. J. Phys. Chem. B 2005,109:3099-3103.
    [282]Dong Y P, Cui H, Xu Y. Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes [J]. Langmuir 2007,23:523-529.
    [283]Cui H, Dong Y P. Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode [J]. Journal of Electroanalytical Chemistry,2006,595:37-46.
    [284]Guo Z H, Shen Y, Wang M K, Zhao F, Dong S J.Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/Tris (2,2'-bipyridyl) ruthenium (Ⅱ) multilayer films on indium tin oxide electrodes [J]. Anal. Chem.,2004,76:184-191.
    [285]Guo Z H, Dong S J. Electrogenerated chemiluminescence from Ru(bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films[J]. Anal. Chem.,2004,76: 2683-2688.
    [286]Poznyak S K, Talapin D V, Shevchenko E V, Weller H. Quantum dot chemiluminescence [J]. Nano Lett.,2004,4(4):693-698.
    [287]Ding Z F, Quinn B M, Haram S K, Pell L E, Korgel B A, Bard A J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots[J]. Science,2002, 296(17):1293-1297.
    [288]Myung N, Bae Y, Bard A J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals [J]. Nano. Lett.2003,3(8):1053-1055.
    [289]Myung N, Ding Z F, Bard A J. Electrogenerated chemiluminescence of CdSe nanocrystals [J]. Nano. Lett.2002,2(11):1315-1319.
    [290]Myung N, Lu X M, Johnston K P, Bard A J. Electrogenerated chemiluminescence of Ge nanocrystals [J]. Nano. Lett.2004,4(1):183-185.
    [291]Bae Y J, Myung N, Bard A J. Elctrochemistry and elctrogenerated chemiluminescence of CdTe nanoparticles [J]. Nano Lett.2004,4:1153-1161.
    [292]Bae Y J,Lee D C, Rhogojina E V, Jurbergs D C, Korgel B A, Bard A J. Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution[J].Nanotechnology[J].2006,17:3791-3797.
    [293]Zou G, Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution [J]. Anal. Chem.,2004,76(23):6871-6876.
    [294]Zou G, Ju H, Ding W P, Chen H Y. Electrogenerated chemiluminescence of CdSe hollow spherical assemlies in aqueous system by immobilization in carbon paste [J]. Journal of Eletroanalytical chemistry,2005,579:175-180.
    [295]Ren T, Xu J Z, Tu Y F, Xu S, Zhu J J. Electrogenerated chemiluminescence of CdS spherical assemblies[J]. Electrochemistry Communications,2005,7:5-9.
    [296]Jie G F, Liu B, Miao J J, Zhu J J. Electrogenerated chemiluminescence of CdS nanotubes and its sensing application in aqueous solution[J]. Talanta,2007,71:1476-1480.
    [297]Miao J J, Ren T, Dong L, Zhu J J, Chen H Y.Double-templates synthesis of CdS nanotubes with strong electrogenerated chemiluminescnce [J].Small,2005,1(8-9):802-805.
    [298]Liu B, Ren T, Zhang J R, Chen H Y, Zhu J J, Burda C. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water[J]. Electrochemistry Communications,2007, 9:551-557.
    [299]Zhou B, Liu B, Jiang L P, Zhu J J. Ultrasonic-assisted size controllable systheisis of Bi2Te3 nanoflakes with electrogenrated chemiluminescence[J]. Ultrasonic Sonochemistry,2007, 14:229-234.
    [300]Han H Y, Sheng Z H, Liang J G. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution[J]. Anal. Chim. Acta,2007,596: 73-78.
    [301]Chen M, Pan L J, Huang Z Q, Cao J M, Zheng Y D, Zhang H Q. A novel route to CdS nanocrystals with strong electrogenerated chemiluminescence [J]. Materials Chemistry and Physics,2007,101:317-321.
    [302]Shi C G, Xu J J, Chen H Y. Electrogenerated chemiluminescence and electrochemical bi-functional sensors for H2O2 based on CdS nanocrystals/hemoglobin multilayers [J]. Journal of Electroanalytical Chemistry,2007,610:186-192.
    [303]Wang Z P, Li J, Liu B, Hu J Q, Yao X, Li J H. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant sensitized effect [J]. J.Phys.Chem.B 2005,109:23304-23311.
    [304]Yin Y D, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature,2005,437:664-670.
    [305]Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science,1996, 271:933-937.
    [306]Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes [J].Chem. Rev.2005,105:1025-1102.
    [307]Marcel B J R, Mario M P G, Weiss S, and Alkoran A P. Semiconductor nanocrystals as fluorescent biological labels [J].Science,1998,281:2013-2015.
    [308]Chan W CW, Nie S M. Quantum dot bioconjugates for ultra sensitive nonisotopic dection [J].Science,1998,281:2016-2018.
    [309]Bailey R E, Smith A M, Nie S M. Quantum dots in biology and medicine [J]. Physica E,2004, 24:1-12.
    [310]Li X D, Wang X N, Xiong Q H, Eklund P C. Mechanical properties of ZnS nanobelts[J].Nano Lett.,2005,5:1982-1986.
    [311]Kar S, Chaudhuri S. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons [J]. J. Phys. Chem. B 2005,109:3298-3302.
    [312]Leeb J, Gebhardt V, Mulller G, Haarer D, Su D, Giersig M, McMahon G, Spanhel L. Colloidal synthesis and electroluminescence properties of nanoporous MnⅡZnS films [J].J. Phys. Chem. B,1999,103:7839-7845
    [313]Ma D D D, Lee S T, Mueller P, Alvarado S F. Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires [J].Nano Lett.2006,6:926-929.
    [314]Wang L, Chen H Q, Wang LY, Wang G F, Li L, Xu F G. Determination of proteins at nanogram levels by synchronous fluorescence scan technique with a novel composite nanoparticle as a fluorescence probe[J]. Spectrochim. Acta Part A 2004,60:2469-2473.
    [315]Qi H L, Zhang C X. Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin.Anal. Chim. Acta.2004,501(1):31-35.
    [316]Burs L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J].J. Chem. Phys.1984,80, 4403-4409.
    [317]Reiss P, Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J].Nano Lett.2002,2:781-784.
    [318]Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture [J].Nano Lett.2001,1:207-211.
    [319]Fan F R F, Leempoel P, Bard A J. J. Semiconductor electrodes I.I. efficient electroluminescence at ZnS Electrode in aqueous electrolytes [J].Electrochem. Soc.1983,130:1866-1875.
    [320]Haram S K, Quinn B M., and Bard A J. Electrochemistry of CdS Nanoparticles:A correlation between optical and electrochemical band gaps [J]. J. Am. Chem. Soc.2001,123:8860-8861.
    [321]Chen S, Truax A. Sommers J M.Alkanethiolate protected PbS nanoparticles:Synthesis, spectroscopic and electrochemical studies [J].Chem. Mater.2000,12:3864-3870
    [322]Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K,Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nat. Mater.,2005,4: 42-46.
    [323]Yu Q X, Xu B, Wu Q H, Liao Y, Wang G Z, Fang R C, Lee H Y, Lee C T. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode[J]. Appl. Phys. Lett.2003, 83:4713-4715.
    [324]Auret F D, Goodman S A, Hayes M, Legodi M J, Laarhoven H A, Look D C. The influence of high energy proton bombardment on the electrical and defect properties of single-crystal ZnO [J]. J. Phys. Condens. Matter,2001,13:8989-8999.
    [325]Look D C, Reynolds D C, Hemsky J W, Jones R L, Sizelove J R. Production and annealing of electron irradiation damage in ZnO [J].Appl. Phys. Lett.1999,75:811-813.
    [326]Yang Y L, Yan H W, Fu Z P, Yang B F, Xia L S, Xu Y D, Zuo J, Li F Q. Photoluminescence investigation based on laser heating effect in ZnO-Ordered nanostructures[J]. J. Phys. Chem. B, 2006,110:846-852.
    [327]Wang Z L, Lin C K, Liu X M, Li G Z, Luo Y, Quan ZW, Xiang H P, Lin J. Tunable photoluminescent and cathodoluminescent properties of ZnO and ZnO:Zn phosphors[J]. J. Phys. Chem. B,2006,110:9469-9476.
    [328]Konenkamp R, Word R C, Godinez M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes [J]. Nano letters,2005,5:2005-2008.
    [329]Geng J, Liu B, Xu L, Hu F N, Zhu J J. Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties[J]. Langmuir, 2007,23 (20):10286-10293
    [330]Li G R, Lu X H, Qu D L, Yao C Z, Zheng F L, Bu Q, Dawa C R, Tong Y T. Electrochemical growth and control of ZnO dendritic structures[J].J. Phys. Chem. C,2007,111:6678-6683.
    [331]Liao L, Lu H B, Li J C, He H, Wang D F, D. Fu J, Liu C. Size dependence of gas sensitivity of ZnO nanorods[J]. J. Phys. Chem. C,2007,111:1900-1903.
    [332]Kar S, Dev A, Chaudhuri S, Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays [J]. J. Phys. Chem. B 110 (2006)17848-17853.
    [333]Kar S, Paul B, Chaudhuri S. One-dimensional ZnO nanostructure arrays:synthesis and characterization [J].J. Phys. Chem. B,2006,110:4605-4611.
    [334]Dev A, Kar S, Chaudhuri S, Chaudhuri S. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route[J].Nanotechnology,2006, 17,1533-1540.
    [335]Qian L, Yang X R.Effective enhancenment of perxydisulfate electrochemiluminescence on C60/DDAB films[J]. Eletrochemistry Communications,2007,9:393-397.
    [336]Han H Y, Sheng Z H, Liang J G Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution[J]. Anal. Chim. Acta,2007,596: 73-78.
    [337]Jie G F, Liu B, Miao J J, Zhu J J. Electrogenrated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution[J]. Talanta,2007,71:1476-1480.
    [338]Liu B, Ren T, Zhang J R, Chen H Y, Zhu J J, Burda C. Spectroelctrochemistry of hollow spherical CdSe quantum dot assembies in water[J] Electrochemistry Conmmunications,2007, 9:551-557.
    [339]Chen M, Pan L J, Huang Z Q, Cao J M, Zheng Y D, Zhang H Q. A novel route to CdS nanocrystals with strong electrogenerated chemiluminescence [J]. Materials Chemistry and Physics,2007,101:317-321.
    [340]Reshetnyak O V, Koval'chuk E P, Skurski P, Rak R, Blazejowski J. The origin of luminescence accompanying electrochemical reduction or chemical decomposition of peroxydisulfates[J]. Journal of Luminescence,2003,105:27-34.
    [341]Reshetnyak O V, Koval|chuk E P. A possible scheme of electrochemiluminescence generation on platinum cathodes in aqueous solutions of peroxydisulfates [J]. Electrochimica Acta,1998, 43(5-6):354-358.
    [342]Li G R, Dawa C R, Bu Q, Lu X H, Ke Z H, Hong H E, Zheng F L, Yao C Z, Liu G K, Tong Y X. Electrochemical self-assembly of ZnO nanoporous structures[J]. J. Phys. Chem. C,2007, 111:1919-1923.
    [343]Li G R, Dawa C R, Bu Q, Zhen F L, Lu X H, Ke Z H, Hong H E, Yao C Z, Liu P, Tong Y X. Electrochemical synthesis of orientation-ordered ZnO nanorod bundles [J]. Electrochemstry Communications,2007,9:863-868.
    [344]Nakato Y, Ogawa H, Morita K, Tsubomura H.Luminescence spectra from n-TiO2 and n-SrTiO3 semiconductor Electrodes and those doped with transltion-metal oxides as related with intermediates of the phtooxidation reaction of water[J]. J.Phys.Chem.1986,90:6210-6216.
    [345]吴腊英.纳米二氧化钛的制备结构性与能研究[D].硕士论文,北京化工大学,2002.05.
    [346]李旦振,郑宜,付贤智.纳米二氧化钛的光致发光[J].材料研究学报,2000,14(6):639-642.
    [347]杨小儒,郭震宁,李君仁,刘明强.纳米二氧化钛薄膜的制备及光致发光研究[J].功能材料,2007,38(6):1016-1019.
    [348]Morita H, Konishi M. Electrogenerated chemiluminescence derivatization reagents for carboxylic acids and amines in high-performance liquid chromatography using tris(2, 2'-bipyridine) ruthenium (Ⅱ) [J]. Anal. Chem.2002,74:1584-1589.
    [349]Rora A, Eijkel J C T, Morf W E, Manz A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device[J]. Anal. Chem.2001,73:3282-3288.
    [350]Rubinstein I, Bard A J. Electrogenerated chemiluminescence aqueous ECL systems based on Ru(2,2'-bipyridine)32+ and oxalate or organic acids[J]. J. Am. Chem. Soc.1981,103:512-516.
    [351]Nestler O, Sevrin K, A rutheium porphrin catalyst immobilized in a highly cross-linked polymer[J].Org. Lett.2001,3:3907-3909.
    [352]Santora B P, Gagne M R, Moloy K G, Radu N S. Porogen and cross-linking effects on the surface area, pore volume distribution, and morphology of macroporous polymers obtained by bulk polymerization [J]. Macromolucules 2001,34:658-661.
    [353]Liu J Q, Wulff G Functional mimicry of the active site of carboxypeptidase by a molecular imprinting strategy:cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity[J]. J. Am. Chem. Soc.,2004,126: 7452-7453.
    [354]Nicholls I, Rastrom O, Mosbach K. Insights into the rule of the hydrogen bond and polymers synthesis peptide receptor mimics [J]. J. Chromatography 1995,691:349-353.
    [355]Editorial Committee of the Pharmacopoeia of people's Republic of China, The Pharmacopoeia of people's Republic of China (Part II), Beijing:chemical Industry Press,2000,752
    [356]Editorial Committee of the Pharmacopoeia of people's Republic of China, The Pharmacopoeia of people's Republic of China (Part II), Beijing:chemical Industry Press,2005:640
    [357]Wang H, Zhang C X, Li Y, Qi H L. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes[J]. Anal. Chim. Acta,2006,575:205-211.
    [358]Shimidzu T, Iyoda T, Izaki K. Photoelectrochemical properties of bis(2,2'-bipyridlne) (4,4'-dlcarboxy-2,2'-bipyrldlne)ruthenlum(II) chloride[J]. J. Phys. Chem.1985,89:642-645.
    [359]国家药典委员会.中华人民共和国药国药典.二部[S].北京:化学工业出版社,1995,126
    [360]国家药典委员会.中华人民共和国药典2000版二部[s].北京:化学工业出版社,2000,338
    [361]Gamal A Saleh. Two selective spectrophotometric methods for the determination of amoxicillin and cefadroxil [J].Analyst,1996,121 (5):641-645.
    [362]王峰,黄薇.胶束增敏荧光光度法测定阿莫西林[J].内蒙古师范大学学报,2006,35(2):204-207.
    [363]马丽花,陈亮,黄淑萍.抗菌素阿莫西林荧光分析法的研究[J].光谱学与光谱分析,1999,19(2):230-232.
    [364]Omar Shakoor, Robert B Taylor, Ronald R Moody. Analysis of amoxycillin in capsules and oral suspensions by high-performance liquid chromatography[J].Analyst,1995,120(8): 2191-2194.
    [365]范柏,郭成明.高效液相色谱法测定阿莫西林颗粒剂的含量[J].中国抗生素杂志,1997,22(2):149-151.
    [366]李媛,郎惠云,李会娥,谢志海.流动注射在线过滤稀释-原子吸收分光光度法测定阿莫西林,分析化学,2000,28(10):1252-1255.
    [367]任乃林,陈宜菲,韩大雄.极谱法测定阿莫西林胶囊的含量[J].分析测试技术与仪器,2004,10(1):50-52.
    [368]范顺利,张磊,买文宁,吴志皓.流动注射-化学发光法测定阿莫西林[J].理化检验-化学分册,2003,39(5):257-262
    [369]石杰,赵开楼,龚雪云,宋庆国.高锰酸钾—甲醛—阿莫西林体系化学发光的研究及应用[J].分析科学学报,2006,22(1):43-45
    [370]唐玉海,孙媛媛,姚宏,党晓怡,李伟平.流动注射化学发光法测定阿莫西林[J].分析试验室,2004,23(7):22-24.
    [371]Liang P, Sanchez Rosa, Martin Mark T. Electrochemiluminescence-based detection of β-lactam antibiotics and β-lactamases. Anal.Chem.1996,68:2426-2431.
    [372]Khan A V, Kasha M. Red chemiluminescence of molecular oxygen in aqueous solution [J].J. Chem. Phys.1963,39:2105-2107.
    [373]高峻玲,崔检忠,孙树勋.氧自由基检测技术的研究进展[J].华北煤炭医学学报,1999,1(5):403-404.
    [374]斯璟萍,王晓华,李娅娜,牛姗姗.关于红细胞保存液中腺嘌呤测定方法的探讨[J].现代检验医学杂志,2004,19(3):29-29.
    [375]冯小花,麦洋,董川,刘长松.纸基质室温磷光法测定痕量腺嘌呤[J].福州大学学报,1999,27(5):131-133.
    [376]董晓东,侯宛玲,张玉彬,苏绍哲.高效液相色谱法测定红细胞保存液中腺嘌呤含量[J].分析化学,2000,28(11):1448-1448.
    [377]张礼知,田诚,陆晓华.联机卡尔曼滤波极谱法同测腺嘌呤和黄嘌呤[J].华中理工大学学报),1998,26(11):71-73.
    [378]赵阁,刘快之,张彭湃,郭新勇,张治军.碳纳米管修饰电极差示脉冲阳极溶出伏安法测定腺嘌呤[J].化学研究[J].2003,14(3):55-58.
    [379]杨更亮,李海鹰,刘海燕.毛细管区带电泳法测定冬虫夏草中的腺苷、腺嘌呤和尿嘧啶[J].分析化学,2002,30(9):1081-1084.
    [380]Kaotaka K, Kenichino N.Chemiluminescent derivatization of adenyl compounds with glyoxal derivatives in the presence of heteropoly acids and its application to the simple and sensitive determination of DNA[J].J Bioluminescence chemiluminescence,1998,13:25-30.
    [381]Kaotaka K, Kenichino N,Shuzo A.Chemiluminescence method for the determination of adenine after reaction with phenylglyoxal[J].Analytica Chimica Acta,1993,278 (2):275-278.
    [382]谭奥,苏茵.利福平滴眼液含量测定方法的改进[J].中国抗生素杂志,2005,30(3):174-175.
    [383]Alonso Lomillo M A, Dominguez Renedo O, Arcos Martinez M. J. Resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide by differential pulse polarography and partial least squares method[J]. Anal Chim. Acta,2001,449(1-2):167-177.
    [384]Espinosa-Mansilla A, Acedo Valenzuela M I, Munoz de la Pena A. Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid [J].Anal. Chim. Acta,2001,427(1):129-136.
    [385]刘伟,李保新,章竹君.测定利福平的化学发光新体系[J].分析化学,2002,30(1):86-88.
    [386]张琰图,杨维平,章竹君.铁氰化钾化学发光体系测定利福平的研究[J].分析试验室,2003,22(2):33-35
    [387]陈文山,张迎雪.鲁米诺-过氧化氢化学发光体系测定利福平[J].化学研究,2004,15(1):37-39.
    [388]Hindson B J, Barnett N W. Analytical applications of acidic potassium permanganate as a chemiluminescence reagent [J]. Anal Chim Acta,2001,445 (1):1-19.
    [389]Zhuang Y F, Zhang S C, Yu J S, Ju H X.Flow injection determination of papaverine based on its sensitizing effect on the chemiluminescence reaction of permanganate-sulfite[J].Anal Bioanal Chem,2003,375 (2):281-286.
    [390]Abbott R W, Townshend A., Gill R. Determination of morphine by flow injection analysis with chemiluminescence detection [J].Analyst,1986,111(6):635-638.
    [391]Liang Y D, Song J F, Xu M. Electrochemiluminescence from successive electro- and chemo-oxidation of rifampicin and its application to the determination of rifampicin in pharmaceutical preparations and human urine[J].Sepctrochimica Acta Part A,2007,67(2): 430-436.
    [392]许申鸿,杭瑚.邻苯三酚-碳酸盐缓冲体系化学发光体系的研究[J].生物化学与生物物理进展,1999,26:488-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700