用户名: 密码: 验证码:
硫/多孔碳复合正极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探索和发展具有高能量密度、低成本和环境友好的二次电池新体系是便携式电子产品、电动汽车、储能电站等应用领域的迫切需求。锂硫二次电池具有高达2600Wh/kg的理论比能量,而且单质硫具有资源丰富、环境友好等特点,极具应用开发前景,是当前化学电源领域的研究热点。然而,单质硫是电子和离子绝缘体,且硫电极的放电中间产物易在电解液中溶解流失,导致硫电极的电化学活性低、循环稳定性差,严重制约了锂硫二次电池的开发进程。本论文以发展高循环稳定性的硫/碳复合正极材料为目的,在多孔碳基体的制备及结构优化方面开展了系统的研究。主要研究内容和结果如下:
     1.分别采用化学活化法和模板法制备了三种不同结构的介孔碳,包括以石墨化中间相碳微球(MCMB)和未石墨化中间相碳微球(CMS)为原料的化学活化介孔碳AMCMB和ACMS,以及以蔗糖为碳源、SBA-15为模板制备的规则孔道结构介孔碳CMK-3,并分别以它们为导电载体制备了硫/碳复合材料。考察了介孔碳/硫复合材料在有机醚类电解液中的电化学性能,探讨了碳基体孔结构对单质硫电化学行为的影响。研究结果表明,三种介孔碳基体均可以有效抑制多硫化锂中间产物的溶解流失,从而使复合硫电极在循环过程中表现出高达99%的充放电库伦效率。其中,有序介孔碳CMK-3因具有孔容高、孔径分布窄、孔道结构长等孔结构特征,以之为基体的复合硫电极不仅硫的负载量高,而且比容量大、循环性能好,表明具有半开放体相孔道结构的介孔碳,在抑制多硫化物的溶解流失方面具有结构上的优势。硫含量为70%的CMK-3/S复合材料,首周放电比容量为1395mAhg-1;循环50周以后,仍保持有848mAhg-1的比容量。
     2.为了探究抑制多硫化锂中间产物溶解流失的更有效方法,提出了以具有丰富体相孔结构的微球碳为基体分散负载硫,同时配合使用对多硫化物难溶或不溶的电解液体系,发展高循环稳定性硫电极体系的新思路。为了证实这一设想,实验选择蔗糖为碳源,分别采用水热法和加热回流法制备出多种微孔碳球(MCS),并通过气相转移法制备了硫/微孔碳复合材料(S/MCS).通过比较不同微孔碳球与硫组成的硫碳复合材料在可抑制多硫化锂溶解的有机碳酸酯电解液体系中的电化学性能,考察了碳球粒径、导电添加剂对硫电极反应活性和循环稳定性的影响。研究结果表明,以气相沉积碳纤维(VGCF)为导电添加剂、0.15M低浓度蔗糖溶液为反应液,通过加热回流方法制备的MCS-VGCF复合碳微球,因具有小的碳球粒径和良好的三维导电网络结构,与硫复合形成的硫/碳复合材料S/MCS-VGCF在1M LiPF6/PC-EC-DEC电解液中,不仅具有较高的比容量、良好的循环稳定性,而且在充放电过程中,表现出100%的超高库伦效率,说明因多硫化物中间产物溶解而引发的“穿梭效应”得到了完全抑制。其初始可循环容量为1200mAhg-1;100周后,比容量仍保持在720mAh g-1以上,展示出良好的应用前景。
     3.通过比较S/MCS-VGCF复合材料在有机醚类电解液和有机碳酸酯电解液中的充放电行为,探讨了微球碳/硫复合材料在有机碳酸酯电解液中的反应机理。研究结果表明,采用具有锂离子传导性的微孔碳材料为基体分散负载单质硫,同时使用对多硫化物中间产物不溶或难溶的有机碳酸酯电解液体系,可以实现活性硫在硫/碳固-固界面上的直接原位还原与氧化,而不需要电解液相的直接参与,为发展高循环稳定性硫电极提供了新的思路和技术途径。
     4.为探讨聚合物表面修饰对硫/碳复合材料电化学性能的影响,分别选用高比表面的BP2000和高导电性的KS6石墨作为碳基体,制备了硫碳复合材料;并通过进一步的聚丙烯腈(PAN)包覆,制备出两类碳-硫-聚丙烯腈三元复合材料,考察了复合硫电极在碳酸酯电解液中的电化学性能。结果表明,PAN的表面修饰有效改善了硫/碳复合材料的电性能。PAN含量为40%的PAN-BP2000/S复合材料,初始可循环容量为568mAh g-1,循环100周后,可逆容量仍保持为557mAhg-1;单质硫、PAN.KS6的质量比为4:5:1的KS6-PAN/S复合材料,初始可逆容量为1162mAh g-1,循环50周后,容量仍保持在1000mAh g-1以上
The ever-increasing demand for electric energy storage, ranging from portable electronics to electric vehicles and to renewable power stations, stimulates the development of improved rechargeable lithium batteries with substantially enhanced energy density and greatly reduced cost. In this technology development, lithium-sulfur batteries (Li-S) are revisited as a promising candidate for large scale electric storage, because of its high theoretical energy density of2600Wh Kg-1and particularly the natural abundance and low toxicity of sulfur. Despite a great progress has been achieved, commercial development of Li-S batteries is still hindered by the insufficient cyclability and low utilization of the electrode-active materials, which are given rise by the insulating nature of sulfur and the dissolution loss of the intermediates generated during discharge of sulfur. This PhD. work focuses on developing S/C composite cathode material with high capacity and good cycling performance. The main results are summarized as follows:
     1. Three kinds of mesoporous carbons, AMCMB, ACMS and CMK-3. were prepared and then used as conductive substrate for encapsulating sulfur to form S/C composite. The AMCMB and ACMS mesoporous carbon substrates were prepared by chemically activating graphitized mesophase carbon microbeads (MCMB) and non-graphitized mesophase carbon microbeads (CMS) using KOH as activation reagent, respectively. Highly ordered CMK-3mesoporous carbon was synthesized by a nanocasting method using silaceous SBA-15as hard template and sucrose as carbon source. The electrochemical performance of the S/C composites using these mesoporous carbon substrates were characterized by gavanostatically cycling them in organic ether-based electrolyte. The results showed that all three S/C composite electrods exhibit a superhigh coulombic efficiency of~99%, indicating that the mesoporous carbons as prepared in this work could effectively suppress the dissolution loss of the polysulfide intermediates. Benefiting from the highly-ordered and half-opened channel structure of CMK-3, the CMK-3/S compostie not only posseses high sulfur loading content, but also exhibits high capacity and good cycling performance. The initial discharge capacity of CMK-3/S composite with70wt.%sulfur content is1395mAh g-1. After50cycles, the composite still keeps a capacity of~848mAh g-1, corresponding to a capacity retention of61%.
     2. An alternative way to suppress the dissolution loss of the ploysulfide is proposed by dispersing or encapsulating sulfur into the microporous cabon spheres, which has rich inner micropores and small particle size, and simultaneously using the electrolytes with only poorer polysulfide solubility. To demonstrate the feasibility of this idea, several kinds of microporous carbon microspheres(MCS) were synthesized by hydrothermal method and heating reflux method with sucrose as carbon source, respectively, and then the S/MCS composites were prepared by vaporizing sulfur into the micropores of carbon spheres at elevated temperature. The effects of carbon sphere size and conductive additive on the electrochemical behaviors of the S/MCS composites were investigated by gavanostatic charge and discharge test. The experiment results showed that, in the carbonate electrolyte of1M LiPF6/PC-EC-DEC, the S/C composite obtained from a conductive matrix of nanofiber-wired carbon spheres, exhibits not only stable cycling performance with a reversible capacity of720mAh g-1after100cycles, but also superior high coulombic efficiency of~100%upon extended cycling (except the first three cycles), showing a good application prospect in Li-S batteries.
     3. The structural and electrochemical analysis indicates that the improved electrochemical behaviors of the S/MCS composite arise from a new reaction mechanism, in which Li+ions and electrons transport through the carbon matrix into the interior of the cathode and then react with the embedded sulfur in the S/C solid-solid interfaces, avoiding the dissolution of the intermediates into the bulk electrolyte. This working mechanism suggested a new idea for developing high perfrmance sulfur electrode in the future.
     4. To investigate the influence of conductive polymer coating on the electrochemical behaviors of S/C composite, we chose a high specific area carbon BP2000and a high electrical conductive carbon KS6as conductive supports to prerpare two kinds of PAN-coated S/C composites by ball milling the mixtures of conductive carbon with sulfur, and then spraying a suspension of S/C composite and PAN/DMF solution into a water bath, and their electrochemical performances were also evaluated by galvanostatic discharge—charge cycling in carbonate-based eletrolyte. The results showed that the PAN-BP2000/S composite can deliver a reversible capacity of568mAh g-1at the first cycle. After100cycles, the capacity still remains at557mAh g-1. The initial reversible capacity of the PAN-KS6/S composite with a mass ratio of5:1:4is1162mAh g-1.After50cycles, the reversible capacity still keeps at1000mAh g-1, indicating a highly stable cycling performance.
引文
[1]F. T. Wagner, B. Lakshmanan, M. F. Mathias, Electrochemistry and the Future of the Automobile, J. Phys. Chem. Lett.,2010,1,2204
    [2]P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Li-O2and Li-S batteries with high energy storage, Nat. Mater.,2012,11,19
    [3]D. Herbert, J. Ulam, U.S. Patent,3043896,1962
    [4]K. M. Abraham, R. D. Rauh, S. B. Brummer, A low temperature Na/S battery incorporating A soluble S cathode, Electrochim. Acta,1978,23,501
    [5]Y.Mikhaylik, I. Kovalev, High Energy Rechargeable Li-S Cells for EV Application, Sion Power Corporation,2010
    [6]R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, S. B. Brummer, A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte, J. Electrochem. Soc.,1979, 126,523
    [7]J. Shim, K. A. Striebel, E. J. Cairns, The Lithium/Sulfur Rechargeable Cell, J. Electrochem. Soc.,2002,149, A1321
    [8]S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, H. T. Kim, Rechargeable Lithium Sulfur Battery:I. Structural Change of Sulfur Cathode During Discharge and Charge, J. Electrochem. Soc.,2003,150, A796
    [9]Y. V. Mikhaylik, J. R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, J. Electrochem. Soc.,2004,151, A1969
    [10]H. Yamin, J. Penciner, A. Gorenshtain, M. Elam, E. Peled, The electrochemical behavior of polysulfides in tetrahydrofuran, J. Power Sources,1985,14,129
    [11]F. Gaillard, E. Levillain, Visible time-resolved spectroelectrochemistry:application to study of the reduction of sulfur (S8) in dimethylformamide, J. Electroanal. Chem.,1995,398,77
    [12]P. Leghie, J. P. Lelieur, E. Levillain, Final comment on Reply to "Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide", Electrochem. Commun.,2002,4,628
    [13]Y. Jung, S. Kim, New approaches to improve cycle life characteristics of lithium-sulfur cells, Electrochem. Commun.,2007,9,249
    [14]X. Ji, L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem.,2010,20,9821
    [15]H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, J. Y. Lee, Discharge process of Li/PVdF/S cells at room temperature, J. Power Sources,2006,153,360
    [16]J. A. Dean, Lange's Handbook of Chemistry,3rd edn,3
    [17]S. E. Cheon, S. S. Choi, J. S. Han, Y. S. Choi, B. H. Jung, H. S. Lim, Capacity Fading Mechanisms on Cycling a High-Capacity Secondary Sulfur Cathode, J. Electrochem. Soc., 2004,151,A2067
    [18]B. M. L. Rao, J. A. Shropshire, Effect of Sulfur Impurities on Li/TiS2 Cells, J. Electrochem. Soc.,1981,128,942
    [19]M. Y. Chu, U.S. Patent,5686201,1997
    [20]S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, H. T. Kim, Rechargeable Lithium Sulfur Battery, J. Electrochem. Soc.,2003,150, A800
    [21]B. H. Jeon, J. H. Yeon, K. M. Kim, I. J. Chung, Preparation and electrochemical properties of lithium-sulfur polymer batteries, J. Power Sources,2002,109,89
    [22]J. R. Akridge, Y. V. Mikhaylik, N. White, Li/S fundamental chemistry and application to high-performance rechargeable batteries, Solid State Ionics,2004,175,243
    [23]X. He, J. Ren, L. Wang, W. Pu, C. Jiang, C. Wan, Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries, J. Power Sources,2009,190,154
    [24]辛森,郭玉国,万立骏,高能量密度锂二次电池电极材料研究进展中国科学:化学2011,41,1229
    [25]S. J. Visco, C. C. Mailhe, L. C. De Jonghe, M. B. Armand, A Novel Class of Organosulfur Electrodes for Energy Storage, J. Electrochem. Soc.,1989,136,661
    [26]M. L. Liu, S. J. Visco, L. C. De Jonghe, Electrode Kinetics of Organodisulfide Cathodes for Storage Batteries, J. Electrochem. Soc.,1990,137,750
    [27]M. L. Liu, S. J. Visco, L. C. De Jonghe, Novel Solid Redox Polymerization Electrodes, J. Electrochem. Soc.,1991,138,1896
    [28]S. C. Canobre, R. A. Davoglio, S. R. Biaggio. R. C. Rocha-Filho, N. Bocchi, Performance of a polyaniline(DMcT)/carbon fiber composite as cathode for rechargeable lithium batteries, J. Power Sources,2006,154,281
    [29]张敬华,其鲁,舒东,杨立红,张晓雨,聚3-甲氧基噻吩对二巯基噻二唑的电化学改性的研究,北京大学学报(自然科学版),2006,42,18
    [30]J. E. Park, S. G. Park, A. Koukitu, O. Hatozaki, N. Oyama, Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery, Synth. Met., 2004,140,121
    [31]K. Naoi, K. i. Kawase, Y. Inoue, A New Energy Storage Material:Organosulfur Compounds Based on Multiple Sulfur-Sulfur Bonds, J. Electrochem. Soc.,1997,144, L170
    [32]K. Naoi, K. i. Kawase, Y. Inoue, Proceedings of the Symposium on Exploratory Research and Development of Batteries for Electric and Hybrid Vehicles,1996,131
    [33]蔡迎军,王维坤,赵景茂,余仲宝,王安邦,多硫化碳炔作为锂二次电池正极材料的研究,化工科技2008,16,1
    [34]J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Adv. Funct. Mater.,2003,13,487
    [35]J. Wang, L. Liu, Z. Ling, J. Yang, C. Wan, C. Jiang, Polymer lithium cells with sulfur composites as cathode materials, Electrochim. Acta,2003,48,1861
    [36]X. g. Yu, J. y. Xie, J. Yang, H. j. Huang, K. Wang, Z. s. Wen, Lithium storage in conductive sulfur-containing polymers, J. Electroanal. Chem.,2004,573,121
    [37]L. C. Yin, J. L. Wang, F. J. Lin, J. Yang, Y. n. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy Environ. Sci.,2012,5,6966
    [38]S. c. Zhang, L. Zhang, W. k. Wang, W. j. Xue, A Novel cathode material based on polyaniline used for lithium/sulfur secondary battery, Synth. Met.,2010,160,2041
    [39]L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life, Adv. Mater.,2012,24,1176
    [40]L. Qiu, S. Zhang, L. Zhang, M. Sun, W. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochim. Acta,2010,55,4632
    [41]杨裕生,王维坤,范克国,曹高萍,王安邦,锂电池正极材料有机多硫化物的展望,电池,2002,32,1
    [42]苑克国,王安邦,余仲宝,王维坤,杨裕生,1,3-二氧戊环基LiCF3SO3电解液对锂硫电池正极材料单质硫的电化学性能影响,高等等学校化学学报,2006,27,1738
    [43]王维坤,王安邦,曹高萍,杨裕生,锂电池阴极材料多硫代聚苯撑的制备及电化学性能,高等学校化学学报,2005,26,918
    [44]J. Wang, J. Yang, J. Xie, N. Xu, A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries, Adv. Mater.,2002,14,963
    [45]WeikunWang, Electrochim. Acta,2010,55,4632
    [46]G. X. Xu, B. T. Yu, Q. Lu, A Novel Inorganic Polymer as Cathode Material for Secondary Lithium Batteries, Macromol. Mater. Eng.,2005,290,996
    [47]J. Lee, J. Kim, T. Hyeon, Recent Progress in the Synthesis of Porous Carbon Materials, Adv. Mater.,2006,18,2073
    [48]艾新平,曹余良,杨汉西,锂-硫二次电池界面反应的特殊性与对策分析,电化学,2012,18,224
    [49]X. Ji, K. T. Lee, L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater.,2009,8,500
    [50]赵春荣,王维坤,余仲宝,王安邦,杨裕生,大孔碳-硫复合材料的高温制备及其电化学性能,第14届电化学会议2007
    [51]C. Zhao, W. Wang, Z. Yu, H. Zhang, A. Wang, Y. Yang, Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities, J. Mater. Chem.,2010,20,976
    [52]N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries, Angew. Chem., Int. Ed,2011,50,5904
    [53]G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Lett., 2011,11,4462
    [54]A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater.,2007,6,183
    [55]Y. L. Cao, X. L. Li, I. A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries, Phys. Chem. Chem. Phys.,2011,13,7660
    [56]H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, H. J. Dai, Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability, Nano Lett.,2011,11,2644
    [57]L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, Y. g. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells, Energy Environ. Sci.,2011,4,5053
    [58]S. Evers, L. F. Nazar, Graphene-enveloped sulfur in a one pot reaction:a cathode with good coulombic efficiency and high practical sulfur content, Chem. Commun.,2012,48,1233
    [59]Liwen Ji, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells-sup, Energy Environ. Sci.,,2011,
    [60]B. Zhang, C. Lai, Z. Zhou, X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta,2009,54,3708
    [61]L. X. Yuan, H. P. Yuan, X. P. Qiu, L. Q. Chen, W. T. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, J. Power Sources,2009,189,1141
    [62]J. J. Chen, X. Jia, Q. J. She, C. Wang, Q. Zhang, M. S. Zheng, Q. F. Dong, The preparation of nano-sulfur/MWCNTs and its electrochemical performance, Electrochim. Acta,2010,55, 8062
    [63]J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, Y. Li, Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte, Electrochem. Commun.,2002,4, 499
    [64]F. Wu, S. X. Wu, R. J. Chen, G. Q. Wang, Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries, Chin. Chem. Lett.,2009,10,1255
    [65]X. Liang, Z. Wen, Y. Liu, H. Zhang, L. Huang, J. Jin, Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery, J. Power Sources,2011,196,3655
    [66]X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzer, J. Liu, Optimization of mesoporous carbon structures for lithium-sulfur battery applications, J. Mater. Chem.,2011,21,16603
    [67]J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries, Angew. Chem., Int. Ed.,2012,51,3591
    [68]B. Zhang, X. Qin, G. R. Li, X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci.,2010,3,1531
    [69]R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries, Adv. Mater., 2011,23,5641
    [70]X. Liang, Y. Liu, Z. Wen, L. Huang, X. Wang, H. Zhang, A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries, J. Power Sources,2011,196, 6951
    [71]M. Sun, S. Zhang, T. Jiang, L. Zhang, J. Yu, Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries, Electrochem. Commun., 2008,10,1819
    [72]Y. Fu, A. Manthiram, Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers As a Cathode Material for Lithium-Sulfur Batteries, J. Phys. Chem. C,2012, 116,8910
    [73]Y. Fu, A. Manthiram, Enhanced Cyclability of Lithium-Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic-Electronic Conductor, Chem. Mater.,2012,24,3081
    [74]F. Wu, S. Wu, R. Chen, J. Chen, S. Chen, Sulfur-Polythiophene Composite Cathode Materials for Rechargeable Lithium Batteries, Electrochem. Solid-State Lett.,2010,13, A29
    [75]F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries, J. Phys. Chem. C,2011,115,6057
    [76]马萍,张宝宏,巩桂英,徐宇虹,聚苯胺/硫复合材料作锂二次电池正极的研究,功能材料与器件学报,2007,13,5
    [77]X. Zhu, Z. Wen, Z. Gu, Z. Lin, Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries, J. Power Sources,2005,139,269
    [78]Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating, Nano Lett.,2011, 5,9187
    [79]G. C. Li, G. R. Li, S. H. Ye, X. P. Gao, A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries, Adv. Energy Mater.,2012,1238
    [80]M. Y. Chu, L. C. De Jonghe, U. S. Patent,6030720,1999
    [81]E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, Lithium-Sulfur Battery:Evaluation of Dioxolane-Based Electrolytes, J. Electrochem. Soc.,1989,136,1621
    [82]E. Peled, A. Gorenshtein, M. Segal, Y. Sternberg, Rechargeable lithium sulfur battery (extended abstract), J. Power Sources,1989,26,269
    [83]R. D. Rauh, F. S. Shuker, J. M. Marston, S. B. Brummer, Formation of lithium polysulfides in aprotic media, J. Inorg. Nuclear Chem.,1977,39,1761
    [84]H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, Lithium Sulfur Battery, J. Electrochem. Soc.,1988,135,1045
    [85]D. R. Chang, S. H. Lee, S. W. Kim, H. T. Kim, Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery, J. Power Sources,2002, 112,452
    [86]D. Aurbach, O. Youngman, Y. Gofer, A. Meitav, The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions-I. Uncontaminated solutions, Electrochim. Acta,1990,35, 625
    [87]D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources,2000,89,206
    [88]J. W. Choi, J. K. Kim, G. Cheruvally, J. H. Ahn, H. J. Ahn, K. W. Kim, Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes, Electrochim. Acta,2007,52, 2075
    [89]J. W. Choi, G. Cheruvally, D. S. Kim, J. H. Ahn, K. W. Kim, H. J. Ahn, Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive, J. Power Sources,2008,183,441
    [90]W. Wang, Y. Wang, Y. Huang, C. Huang, Z. Yu, H. Zhang, A. Wang, K. Yuan, The electrochemical performance of lithium-sulfur batteries with LiClO4 - DOL/DME electrolyte,,j appl. Electrochemical,2010,40,321
    [91]C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C,2009,113, 4712
    [92]S. Kim, Y. Jung, S. J. Park, Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes, J. Power Sources, 2005,152,272
    [93]L. X. Yuan, J. K. Feng, X. P. Ai, Y. L. Cao, S. L. Chen, H. X. Yang, Improved discharge ability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochem. Commun.,2006,8,610
    [94]J. H. Shin, E. J. Cairns, Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte, J. Electrochem. Soc.,2008,155, A368
    [95]J. Wang, S. Y. Chew, Z. W. Zhao, S. Ashraf, D. Wexler, J. Chen, S. H. Ng, S. L. Chou, H. K. Liu, Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon,2008,46,229
    [96]H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, K. K. Cho, T. H. Nam, Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte, Electrochim. Acta,2006,52,1563
    [97]J. H. Shin, Y. T. Lim, K. W. Kim, H. J. Ahn, J. H. Ahn, Effect of ball milling on structural and electrochemical properties of (PEO)nLiX (LiX = LiCF3SO3 and LiBF4) polymer electrolytes, J. Power Sources,2002,107,103
    [98]郑洪河,锂离子电池电解质,北京:化学工业出版社,2007,168
    [99]B. Kumar, S. J. Rodrigues, S. Koka, The crystalline to amorphous transition in PEO-based composite electrolytes:role of lithium salts, Electrochim. Acta,2002,47,4125
    [100]J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, B. C. Kim, Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries, Electrochim. Acta,2004,50,69
    [101]R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Conductivity and thermal studies of blend polymer electrolytes based on PVAc-PMMA, Solid State Ionics,2006,177,2679
    [102]C. Wang, J. J. Chen, Y. N. Shi, M. S. Zheng, Q. F. Dong, Preparation and performance of a core-shell carbon/sulfur material for lithium/sulfur battery, Electrochim. Acta,2010,55, 7010
    [103]J. Hassoun, B. Scrosati, A High-Performance Polymer Tin Sulfur Lithium Ion Battery, Angew. Chem., Int. Ed.,2010,49,2371
    [104]J. Sanz, A. Varez, J. A. Alonso, M. T. Fernandez, Structural changes produced during heating of the fast ion conductor Li0.18La0.61TiO3. A neutron diffraction study, J. Solid State Chem.,2004,177,1157
    [105]M. Tatsumisago, Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ionics,2004,175,13
    [106]R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system, Solid State Ionics,2000,130,97
    [107]A. Hayashi, M. Tatsumisago, Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes, Electron. Mater. Lett., 2012,8,199
    [108]A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes, Electrochem. Commun.,2003, 5,701
    [109]N. Machida, H. Maeda, H. Peng, T. Shigematsu, All-Solid-State Lithium Battery with LiCoo.3Ni0.7O2 Fine Powder as Cathode Materials with an Amorphous Sulfide Electrolyte, J. Electrochem. Soc.,2002,149, A688
    [110]M. Nagao, A. Hayashi, M. Tatsumisago, Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte, Electrochim. Acta,2011,56, 6055
    [111]M. Nagao, A. Hayashi, M. Tatsumisago, High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries, J. Mater. Chem.,2012,22, 10015
    [112]H. Sun, X. He, J. Ren, J. Li, C. Jiang, C. Wan, Hard carbon/lithium composite anode materials for Li-ion batteries, Electrochim. Acta,2007,52,4312
    [113]Y. M. Lee, N. S. Choi, J. H. Park, J. K. Park, Electrochemical performance of lithium/sulfur batteries with protected Li anodes, J. Power Sources,2003,119,964
    [114]S. T. A., U. S. Patent,7247408 2007
    [115]Y. V. Mikhaylik, U. S. Patent,0187840,2008
    [116]D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries, J. Electrochem. Soc.,2009,156, A694
    [117]Y. V. Mikhaylik, U. S. Patent,7352680,2008
    [118]X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, J. Power Sources,2011,196, 9839
    [119]Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, Y. Cui, New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy, Nano Lett.,2010,10,1486
    [1]刘粤惠,刘平安,x射线衍射分析原理与应用,化学工业出版社,2006
    [2]章晓中,电子显微分析,清华大学出版社2008
    [3]D. B. williams, C. B. Carter, Transmission electron microscopy:a textbook for materials science [M], New York Sptinger,1996
    [4]A. Sayari, M. Jaroniec, Nanoporous Materials III[M], Amsrerdam:Elsevier,2002
    [5]徐如人,庞文琴,分子筛与多孔材料化学,群学出版社,2004
    [6]M. Danzer, P. Gallagher, Handbook of thermalanalysis and calorimetry:Recent advances,techniques and applications[M], Elsevier Science Ltd.,2007
    [7]辛仁轩,等离子体发射光谱分析,化学工业出版社,2005
    [1]V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries:a review, Energy Environ, Sci.,2011,4,3243
    [2]F. F. Cao, Y. G. Guo, L. J. Wan, Better lithium-ion batteries with nanocable-like electrode materials, Energy Environ. Sci.,2011,4,1634
    [3]P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater.,2012,11,19
    [4]D. Peramunage, S. Lich, A solid sulfur cathode for aqueous batteries, science,1993,26,1029
    [5]X. P. Gao, H. X. Yang, Multi-electron reaction materials for high energy density batteries, Energy Environ. Sci.,2010,3,174
    [6]G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci.,2011,4,1986
    [7]R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, S. B. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte J. Electrochem. Soc.,1979, 126,523
    [8]S. E. Cheon, S. S. Choi, J. S. Han, Y. S. Choi, B. H. Jung, H. S. Lim, Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode, J. Electrochem. Soc.,2004, 151.A2067
    [9]X. Ji, K. T. Lee, L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater.,2009,8,500
    [10]R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Nat. Mater.,2011, 23,5641
    [11]N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 2011,50,5904
    [12]N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries, Angew. Chem. Int. Ed.,2011,50,5904
    [13]L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, Y. g. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells, Energy Environ. Sci.,2011,4,5053
    [14]X. Ji, K. T. Lee, L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater.,2009,8,500
    [15]J. J. Chen, X. Jia, Q. J. She, C. Wang, Q. Zhang, M. S. Zheng, Q. F. Dong, The preparation of nano-sulfur/MWCNTs and its electrochemical performance, Electrochim. Acta,2010,55, 8062
    [16]L. X. Yuan, H. P. Yuan, X. P. Qiu, L. Q. Chen, W. T. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, J. Power Sources,2009,189,1141
    [17]R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries, Adv. Mater., 2011,23,5641
    [18]B. Zhang, X. Qin, G. R. Li, X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci.,2010,3,1531
    [19]张青莲,氧硫硒分族,无机化学丛书,1984,第五卷,
    [20]许斌,陈鹏,中间相碳微珠(MCMB)的开发、性质和应用,新型碳材料,1996,11,1
    [21]山田泰弘等.,碳素(日),1977
    [22]R. Xue, Z. Shen, Formation of graphite-potassium intercalation compounds during activation of MCMB with KOH, Carbon,2003,41,1851
    [23]Y. Ji, T. Li, L, Zhu, X. Wang, Q. Lin, Preparation of activated carbons by microwave heating KOH activation, Appl. Surf. Sci.,2007,254,506
    [24]R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons, Adv. Mater.,2001, 13,667
    [25]J. Wang, S. Y. Chew, Z. W. Zhao, Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon,2008,46, 229
    [26]X. Ji, L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem.,2010,20,9821
    [27]X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J. G. Zhang, B. Schwenzer, J. Liu, Optimization of mesoporous carbon structures for lithium-sulfur batter applications J. Mater. Chem.,2011,21,16603
    [28]S. Jun, S. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, J. Am. Chem. Soc.,2000,122,10712
    [29]S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, H. T. Kim, Rechargeable Lithium Sulfur Battery, J. Electrochem. Soc.,2003,150, A800
    [30]徐如人,庞文琴,分子筛与多孔材料化学,科学出版社,2004
    [I]R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, S. B. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte, J. Electrochem. Soc.,1979,126, 523
    [2]B. Zhang, X. Qin, G. R. Li, X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci.,2010,3,1531
    [3]R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries, Adv. Mater., 2011,23,5641
    [4]程立强,刘应亮,张静娴,袁定胜,徐常威,孙广辉,球形碳材料的研究进展,化学进展,2006,18,10
    [5]H. Li, Z. Wang, L. Chen, X. Huang, Research on Advanced Materials for Li-ion Batteries, Adv. Mater.,2009,21,
    [6]Q. Wang, H. Li, L. Chen, X. Huang, Monodispersed hard carbon spherules with uniform nanopores, Carbon,2001,39,2211
    [7]张青莲,无机化学丛书氧硫硒分族,科学出版社,第五卷,1984
    [8]原渊,李现红,秦学,活性炭微球的制备及其电容性能研究,中国工程院化工、冶金与材料工程学部第七届学术会议,2009,
    [9]J. Guo, Y. Xu, C. Wang, Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium sulfur Batteries, Nano Lett.,2011,11,4288
    [10]C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C,2009,113, 4712
    [11]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc.,2002,149,A627
    [12]X. Q. Yu, J. P. Sun, K. Tang, H. Li, X. J. Huang, L. Dupont, J. Maier, Reversible lithium storage in LiF/Ti nanocomposites, Phys. Chem. Chem. Phys.,2009,11,9497
    [I]Y. Fu, A. Manthiram, Enhanced Cyclability of Lithium-Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic-Electronic Conductor, Chem. Mater.,2012,24,3081
    [2]X. Liang, Y. Liu, Z. Wen, L. Huang, X. Wang, H. Zhang, A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries, J. Power Sources,2011,196, 6951
    [3]F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/Polythiophene with a Core/Shell Structure:Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries, J. Phys. Chem. C,2011,115,6057
    [4]F. Wu, S. Wu, R. Chen, J. Chen, S. Chen, Sulfur-Polythiophene Composite Cathode Materials for Rechargeable Lithium Batteries, Electrochem. Solid-State Lett.,2010,13, A29
    [5]X. Zhu, Z. Wen, Z. Gu, Z. Lin, Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries, J. Power Sources,2005,139,269
    [6]马萍,张宝宏,巩桂英,徐宇虹,聚苯胺/硫复合材料作锂二次电池正极的研究,功能材料与器件学报,2007,13,5
    [7]L. Qiu, S. Zhang, L. Zhang, M. Sun, W. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochim. Acta,2010,55,4632
    [8]J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Adv. Funct. Mater.,2003,13,487
    [9]J. Wang, J. Yang, J. Xie, N. Xu, A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries, Adv. Mater.,2002,14,963
    [10]L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy Environ. Sci.,2012,5,6966
    [11]K. Jobst, L.sawtschenko, M.Schwarzenberg, L.Wuckel, Highly Porous thermally structurized Polyacrylonitrile 1.Synthesis, structure and electrical properties. Synth. Met., 1992,47,279
    [12]X. G. Yu, J. Y. Xie, J. Yang, H. J. Huang, K. Wang, Z. S. Wen, Lithium storage in conductive sulfur-containing polymers, J. Electroanal. Chem.,2004,573,121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700