用户名: 密码: 验证码:
树脂基碳毡复合层力阻特性的细观统计建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于国家自然科学基金项目“核安全壳应力监测的复合敏感层传感机理及成像”,围绕碳毡复合层的力学传感特性,开展了不同尺度下碳毡复合层的力阻效应及其机理等研究工作。研究内容包括碳纤维毡复合层分别在手糊成型工艺和真空袋压成型工艺下的宏观力阻特性、碳纤维单丝在不同表面改性方式下的力阻效应、基于随机高阶电阻网络的碳毡复合层的统计建模及其应用等工作。主要获得了以下几个方面的研究成果:
     (1)通过系列实验得到了碳毡复合层分别在手糊工艺和真空袋压工艺下其力阻特性及灵敏度上的力阻响应规律,结果表明手糊成型工艺下碳毡复合层具有高灵敏度但稳定性欠缺,真空袋压工艺下碳毡复合层高稳定性但灵敏度较低的传感特征,发现并分析了影响复合层力阻效应的实质在于纤维单丝自身的力阻特性、纤维搭接处电阻的变化以及碳毡无规导电网络受载下的响应。
     (2)表面改性对碳纤维单丝的力阻传感特性有所作用。硝酸液相氧化4h可使得碳单丝灵敏系数和线性度达到最优,经丙酮表面处理后其灵敏系数以及线性度有较为显著的提高。
     (3)同一外载荷在纤维方向产生的应变对碳纤维单丝电阻变化率的作用强于垂直纤维方向上的应变对电阻变化率的作用,且两者力阻效应反向。得到了外载荷作用下碳纤维单丝电阻变化率与偏轴拉伸角度间的非线性关系,62°拉伸偏转角为正负力阻效应的临界角度。
     (4)建立了N×N阶电阻网络计算模型,结合碳毡导电机理的研究背景对此模型进行了改进,并通过自设计程序予以实现大规模计算,通过多组不同阶数下精密电阻随机组网的统计实验,在置信度为95%下验证了模型和算法的可靠性和高精确度。
     (5)捕捉到了碳纤维单丝接触处的电阻响应在不同受载阶段下的实验现象,分析发现纤维搭接处受到外加载荷在尚未破坏前,搭接处的电阻表现为接触电阻,压应变增大接触电阻表现出同步线性减小,压应变减小接触电阻同步线性地增大。当外载荷超过阂值后接触处发生破坏,搭接处纤维间的相对位置发生微弱改变,原接触电阻表现为由隧道效应产生的非接触电阻,阻值急剧增大且随外载同步变化。
     (6)基于N×N阶电阻网络计算模型,建立由改性后碳纤维单丝拼构形成的纤维网络单元,通过图像处理技术获得了计算模型的中各阻值,结果表明计算所得网络初始电阻与实测阻值较为接近,且所建网络模型能较好地体现碳毡复合层的力阻传感特性。
     (7)微米尺度下进行碳毡复合层的细观统计建模,得到碳毡内平均搭接长度为12.2μm等重要网络参数。基于随机电阻网络模型分别估测了不同尺寸的碳毡复合层的初始电阻,估测均值较为接近相应实测值,首次通过该模型对碳毡复合层的力阻特性进行了描述,结果表明本文所建电阻网络模型可用于定量地表征碳毡复合层受外载时体现出的力阻特性。
The dissertation was supported by the project of National Science Foundation "The mechanism of compound sensitive surface and imaging method of stress monitoring for nuclear safety shells". With aiming at the loading-resistance sensing character of carbon fiber layer with resin-matrix, the research with macro-scale and micro-scale on the functional properties and its mechanism of the polymer-matrix carbon fiber layer was carried out. The study includes carbon fiber layer loading sensitivity under different manufacturing technologies, loading sensitivity's varaiance with diffenet carbon fiber surface's modification, the statistical modeling to the carbon fiber layer based on random resistor network. The following conclusions and innovation can be obtained:
     Firstly, with analysis to the gauge factor of sensing character, carbon fiber layer with manual molding lechnology has high gauge factor and lower stablility to its resistance changing, ther layer with vacuum pressure process has excellent stablility but lower gauge factor.
     Secondly, The interface properties of carbon fiber within the composite material has a great effect to its functional characteristics. The work is focused on the research of CF electro-mechanical response after its surface modification using acetone and nitric acid oxidation. With characterization by XPS and SEM, there exist the various changes on the CF surface not only the chemical elements or chemical groups. With changing CF's resistance under uniaxial tension, the CF has differerent electro-mechanical response to loading force. Through statistical analysis, the research shows the sensibility of CF to the electro-mechanical effect can be improved by the surface modification with acetone process or nitric acid oxidization.
     Thirdly, The electro-mechanical response of single carbon fiber under off-axis tension is focused on in this wok in micrometer scale. The resistance of CF was tested under off-axis tension. The experimental result indicates that CF resistance change under different angle's off-axis tension varies nonlinearly. Strain parallel to CF orientation increases resistance of CF, more effective than strain perpendicular to CF does. The angle 62°between CF orientation and loading direction is the critical value for positive and negative electro-mechanical response.
     The fourth, with modified N×N random resistor network, the modeling to the carbon fiber layer is studied. With concise resistor network,the accuracy and reliability of program to the modified N×N random resistor network is validated.
     The fifth, touch resistance with two adjacent fibers has different corresponding style to the loading within different loading procedure. Touch resistnce gets lower when loading increases and becomes much higer after the touch spot is broken.
     The sixth, with modified N×N random resistor network, the loading resistance corresponding character of carbon fiber layer formed by singer filament can be explained soundly.
     Finally, the statistical modeling to the carbon fiber layer under micrometer-scale is established with 12.2μm average length of fiber touching segment. The resistances of carbon fiber layer with different dimensions are estimated with in accordance to the measuring value. The model can be used to de-couple the loading resistance character of carbon fiber layer.
引文
[1]国家发展和改革委员会, 《中华人民共和国国民经济和社会发展第十一个五年规划纲要(2006年~2010年)》,2006年3月,21-32.
    [2]盛春芳.从可持续发展战略高度着眼,加快我国商品混凝土的推广应用.建设机械技术与管理,2002,1:6-7.
    [3]沈冰.混凝土与水泥制品行业2008年经济运行情况与2009年展望.建筑装饰材料世界,2009,2:6-14.
    [4]薛彦涛,黄世敏,姚秋来.汶川地震钢筋混凝土框架结构震害及对策.工程抗震与加固改造.2009,31(5):93-100.
    [5]翟伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法.地震工程与工程振动,2002.22(1):43~48
    [6]李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002.101-153
    [7]Carino JN, Sansalone M, Impact-echo:A new method for inspecting construction materials. Proc. Conf. NDT&E Manuf. Constr., University of Illinois at Urbana-Champaign,1988
    [8]Ohtsu M, Watanabe T. Stack imaging of spectral amplitudes based on impact-echo. NDT&E International,2002.35:189-196
    [9]Kim DS, et al. Feasibility study of the IE-SASW ethod for nondestructive evaluation of containment building structures in nuclear power plants. Nuclear Engineering and Design,2002.219:97-110
    [10]傅翔,宋人心等.冲击回波法检测预应力预留孔灌浆质量.施工技术,2003.32(11):37-38
    [11]Krause M, Mielentz F, Milman B, et al. Ultrasonic Imaging of Concrete Members Using an Array System. NDT&E International,2001.34:403-408
    [12]Salawu OS. Detection of structural damage through changes in frequency: a review. Engineering Structures,1997.19(9):718-741
    [13]Hidalgo PA, Jordan RM, Martinez MP. An analytical model to predict the inelastic seismic behavior of shear-wall, reinforced concrete structures. Engineering Structures,2002.24:85-98,
    [14]Ilyeung-Yun Kim, Woonbong Hwang. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams. Composite Structures, 2002.55:51-62
    [15]Chotard TJ, Pasquiet J, Benzeggagh ML. Impact response and residual performance of GRP pultruded shapes under static and fatigue loading.Composites Science and Technology, 2002.60:895-912
    [16]Crema LB, Castellani A, Romani A. Damage detection by eigenfrequency measurements in macroelement divided structures. In:Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801,1997.476-483
    [17]Ratcliffe CP. Damage detection using a modified laplacian operator on mode shape data. Journal of Sound and Vibration,1997.204(3):505-522
    [18]Maeck J, De Roeck G., Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates. Journal of Sound and Vibration,1999.225(1):153-223
    [19]Maeck J, Abdel Wahab M, De Roeck G. Damage localization in reinforced concrete beams by dynamic stiffness determination. Proceedings of International Model Analysis Conference 17, Kissimmee, Florida, USA,1999.1289-1295
    [20]Maeck J, De Roeck G. Detection of damage in civil engineering structures by dynamic stiffness derivation. Proceedings of Eurodyn 99, Prague, Czech Republic,1999.485-490
    [21]B.A.奥尔特.固体中的声场和波.北京:科学出版社.1982.45-63
    [22]H.J.佩囚著.振动与波动物理学.(陈难先,赫松安译).北京:人民教育出版社,1980.75-89
    [23]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988.80-93
    [24]Yih-Hsing Pao,Chao-Chow Mow.弹性波的衍射与动应力集中.北京:科学出版社,1993.63-78
    [25]Ruotolo R, Surace C. Damage assessment of multiple cracked beams:numerical results and experimental validation. Journal of Sound and Vibration,1997.206(4):567-88
    [26]Stubbs N, Osegueda R. Global non-destructive damage evaluation in solids. International Journal of Analytical and Experimental Modal Analysis,1990.5(2):67-79
    [27]Carrasco CJ, Osegueda RA, Ferregut CM, Grygier M. Damage localization in a space truss model using modal strain energy. In:Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801,1997.1786-1792
    [28]Doebling SW, Hemez FM, Peterson LD, Farhat C. Improved damage location accuracy using strain energy-based model selection criteria. AIAA J,1997,35(4):693-699
    [29]Molyneaux TK, Millard SG, et al. Radar assessment of structural concrete using neural networks. NDT&E International,1995.28(5):281-288
    [30]Shaw MR, Molyneaux TCK, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks. Non-Destructive Testing and Condition Monitoring,2003.45(12):813-816
    [31]Shaw P, Bergstrom J, In-situ testing of reinforced concrete structures using stress waves and high-frequency ground penetrating radar. Non-Destructive Testing and Condition Monitoring,2000.42(7):454-457
    [32]张季如,陈超敏,管昌生.路面水泥混凝土质量检测的Ⅹ射线衍射分析.广西工学院学报,2001.12(4):29~32
    [33]詹炳根.尿素包装厂房结构混凝土损伤调查与损伤机理分析.土木工程学报,2006.39(7):52-60
    [34]徐超.基础底板的检测与处理.安徽建筑,2002.(7):62~62
    [35]Nagataki S, Kamada T,Matsumoto A. Application of infrared thermography technique for evaluation of cracks in concrete structures. Journal of the Society of Materials Science, Japan,1997.46(2):198-203
    [36]Akbar Darabi Xavier Maldague. Neural network based defect detection and depth estimation in TNDE. NDT&E International.2002.35:165-175
    [37]Takahide Sakagami, keiji Ogura. Thermographic NDT based on transient temperature field under Joule effect heating. SPIE Proceedings,1994.2245:120-130
    [38]Maierhofer C, Wiggenhauser, et al. Quantitative numerical analysis of transient IR-experiments on buildings. Infrared Physics and Technology,2004.46(1):173-180
    [39]Wiggenhauser H.Active IR-applications in civil engineering. Infrared Physics & Technology,2002.43:233-238
    [40]Maierhofer Ch,Brink A,Rollig M,et al. Transient thermography for structural investigation of concrete and composites in the near surface region, Infrared Physics&Technology 2002.43:271-278
    [41]Takahide Sakagami, Shiro Kubo. Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography. Infrared Physics&Technology,2002. 43:311-316
    [42]孙格靓,王厚亮,李建保.碳纤维增强混凝土构件的内部缺陷红外热像技术检测.炭素技术,2002.(4):47~49
    [43]梅林,陈自强,王裕文.脉冲加热红外热成像无损检测的有限元模拟及分析.西安交通大学学报,2000.(1):66~70
    [44]黄莉.基于红外热像的碳纤维混凝土损伤分析与研究:[博士学位论文].武汉:武汉理工大学.2005
    [45]张荣成.红外热像法检测建筑物外墙饰面施工质量的试验研究.建筑科学,2002.18(1):40~44
    [46]杜红秀,张雄,乔俊莲.红外热像用于水泥砂浆火灾损伤的检测与评定.同济大学学报,2000.27(4):422~425
    [47]徐宁光,孙良新.复合材料内部损伤的光纤图像显示方法.复合材料内部损伤的光纤 图像显示方法.复合材料学报,1998,15(1):112-115.
    [48]向永江.具有光纤神经系统的新颖复合材料结构的发展及展望.南京航空学院学报,1993,25(1):82-91
    [49]M easures R M. Smart structures w ith nerves of glass. Pro Aerospace Sci,1989,26: 289-351.
    [50]李以农,陈兵奎,郑玲.压电材料在结构缺陷识别中的应用机理研究.机械工程材料,2003,27(6):25-28.
    [51]裴先茹,高海荣.压电材料的研究和应用现状.安徽化工,2010,36(3):4-6,10.
    [52]王丹生,朱宏平,金柯,陈晓强.压电智能梁的阻抗分析与损伤识别.固体力学学报,2008,29(4):402-6.
    [53]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究.稀有金属材料与工程,2001,30(1):1-4.
    [54]贾振元,王福吉,张永顺,郭东明.超磁致伸缩材料驱动微型马达的原理与应用,中国机械工程,2002,14(13):1161-1165.
    [55]朱林剑,高文泉,包海涛,赵兴,杨卫化.基于超磁致伸缩材料的谐波传动研究,磁性材料及器件,2009,40(3):35-37,52.
    [56]任勇生.智能材料在土木结构监测和振动控制中的应用.太原理工大学学报,2000,31(5):486-493.
    [57]王健,沈亚鹏.形状记忆合金作动器的设计及优化.力学学报,1998,30(4):450-460.
    [58]Thomson. Psuedoelastic hysteresis of shape memory wires for passive structural damping: Theory and experiments[c]. In Smart Structures and Materials, SPIE,1993,2193:316-352.
    [59]王锦成,李光 杨胜林 江建明 高分子材料的智能性及其应用合成技术及应用2001,16(4):17-21.
    [60]张福强,王立新.本征导电聚合物的智能性.功能高分子学报,1996,9(3):461—467.
    [61]Sihai Wen, D.D.D.L. Chung. Carbon fiber-reinforced cement as a thermistor. Cement and Concrete Research,1999,29:961-965.
    [62]P.-W. Chen, D.D.L. Chung. Concrete reinforced with up to 0.2 vol.% of short carbon fibers, Composites 1993,24 (1):33-52.
    [63]X. Fu, W. Lu, D.D.L. Chung. Improving the strain sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers, CemConcr Res 1998,28 (2):183-187.
    [64]Yang Zaifu, Tang Zuquan, Li Zhuoqiu,Qian Jueshi. Electrical resistance stability of high content carbon fiber reinforced cement composite. J Chongqing Univ-Eng.Ed, 2005,4(1):19-22.
    [65]Sihai Wen, D.D.L.Chung. Effects of Stress on th electric polarization in cement. Cement and concrete research,2001,31:291-295.
    [66]Sihai Wen, D.D.L.Chung. Electric polarization in carbon reinforced cement. Cement and concrete research,2001,31:141-147.
    [67]Xu Ysh, D.D.L.Chung. Cement-based mateials improved by surface treated admixtures. ACI Mater.J,2000,97(3):333-342.
    [68]陆萍,吴海军.基于动力响应的大型桥梁健康监测的一些问题.重庆交通学院学报,2004,23(6):15-18.
    [69]邬晓光,徐祖恩.大型桥梁健康监测动态及发展趋势.长安大学学报(自然科学版)2003,23(1):39-42.
    [70]Pu-Woei Chen, D.D.L.Chung. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J. American Ceramic Society, 1995.78(3):816-818
    [71]Xuli Fu, D.D.L.Chung. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cem. Concr. Res.,1996.26(1):15-20
    [72]Zeng-Qiang Shi and D.D.L. Chung, Carbon Fiber Reinforced Concrete for Traffic Monitoring and Weighing in Motion, Cem. Concr. Res.1999.29(3):435-439
    [73]Xuli Fu, D.D.L.Chung. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar. Cem. Concr. Res.,1997.27(9):1313-1318
    [74]Yunsheng Xu and D.D.L. Chung, Cement-Based Materials Improved by Surface Treated Admixtures. ACI Mater, J.2000.97(3):333-342
    [75]李卓球.智能复合材料及其结构体系.武汉:武汉理工大学出版社,2005.10-50.
    [76]Xu Dong-liang,Li Zhuo-qiu, Song Xian-hui,Lv Yong. Detecting the Resistivity Distribution of Carbon Fiber Reinforced Concrete by Electrical Resistance Tomography Method. Journal of Southwest Jiaotong University.,2006,14(4):228-335.
    [77]Zhu Sirong, Li Zhuoqiu, Song Xianhui.Electro-thermal effects and deformation response of carbon fiber mat cement beams. ACTA MECHANICA SOLIDA SINICA. 2003,16(4):359-365.
    [78]Mingqing Sun, Zhuoqiu Li, Xianhui Song. Piezoelectric effect of hardened cement paste. Cement & Concrete Composites.2004,26:717-720.
    [79]Zuquan TANG, Zhuoqiu LI, Jueshi Qian, Kejin WANG.Experimental Study on Deicing Performance of Carbon Fiber Reinforced Conductive Concrete. J.Mater. Sci. Technol.,2005,21(1):113-117.
    [80]孙明清,李卓球,徐东亮.混凝土梁的力电效应研究.土木工程学报.2003,36(12):60-62.
    [81]郑立霞,宋显辉,李卓球.利用CFRC压敏性监测钢筋锈蚀的模拟实验研究,实验力学.200,419(2):206-210.
    [82]宋显辉,张华,李卓球.碳纤维增强混凝土裂纹钝化后的弯曲强度评价.实验力学.2004,19(3):366-370.
    [83]郑立霞,宋显辉,李卓球.CFRC材料在准三向受压情况下的压敏性研究.硅酸盐通报.2004,23(4):40-43.
    [84]朱四荣,李卓球,宋显辉.日光直射下混凝土梁的力学响应.华中科技大学学报(自然科学版).2005,33(4):93-96.
    [85]孙明清,赵开锐,王小英, 李卓球,洪敏.水泥净浆梁通电时的变形效应.硅酸盐学报.2006,34(2):220-224.
    [86]朱四荣,李卓球,宋显辉.碳纤维水泥砂浆梁变形调节的实验分析.建筑材料学报.2003,6(3):308-311.
    [87]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究.建筑材料学报.2004,7(2):215-220.
    [88]郑立霞,宋显辉,李卓球.不同电参数对CFRC应变敏感性的响应.武汉理工大学学报.2004,26(1):35-37.
    [89]宋显辉,潘志橼,王建军,李卓球.碳纤维混凝土局部损伤检测的实验研究.武汉理工大学学报.2004,26(3):44-46,50.
    [90]宋显辉,郑立霞,李卓球.碳纤维水泥变形传感器研制.测控技术.2004,23(2):22-24.
    [91]宋显辉,吕泳,徐东亮,李卓球.机敏混凝土电阻率层析成像的实验研究.2005,测控技术.24(1):11-13.
    [92]A. Todoroki and J. Yoshida., Electrical resistance change of unidirectional CFRP due to applied load, JSME Int J.A. Papers 47(3),357-364(2004).
    [93]王国建,郭建龙,屈泽华.碳纳米管/环氧树脂复合材料力学性能影响因素的研究.玻璃钢/复合材料,2007,4:18-22.
    [94]孙晓刚.碳纳米管/环氧树脂复合材料研究[J].机械工程材料,2004,28(10):51-53.
    [95]Shoukai Wang and D.D.L. Chung, "Piezoresistivity in Continuous Carbon Fiber Polymer-Matrix Composite", Polym. Compos.2000,21(1):13-19.
    [96]Fang, Xi, Zhu, Sirong, Li, Zhuoqiu, Lv, Yong. Effects of Different Surface Modification to the Carbon Fiber Electro-Mechanical Response. Advanced Materials Research, 2011,214:597-601.
    [97]Fang, Xi, Li Zhuoqiu, Zhu Sirong, Lv Yong. Crack Detecting by Carbon Fiber Polymer-matrix Layer. Applied Mechanics and Materials,2011,52-54:1747-1751.
    [98]Fang Xi, Li Zhuoqiu, Zhu Sirong, Lv Yong. The Sensing Characteristics Responded by Resistance of Carbon Fiber Layer with Epoxy-matrix. Advanced Materials Research,2011, 228-229:1039-1042.
    [99]卢艳华,王钧,徐任信,杨小利,段华军.温度对碳纤维/乙烯基酯树脂导电复合材料电性 能的影响.高科技纤维与应用,2007,32(5):18-20,24.
    [100]易回阳,肖建中,甘章华.高分子基PTC复合材料的研究及其应用.化学研究与应用,2003,15(6):749—762.
    [101]汤浩陈欣方罗云霞复合型导电高分子材料PTC效应的研究与应用高分子材料科学与工程,1996,12(3):6-12.
    [102]王可.复合型导电高分子材料PTC/NTC效应的研究:[博士学位论文].吉林:吉林大学.2006
    [103]Dwayne A. Gordon, Shoukai Wang and D.D.L. Chung, "Piezoresistivity in Unidirectional Continuous Carbon Fiber Polymer-Matrix Composites:Single-Lamina Composite Versus Two-Lamina Composite", Composite Interfaces 11(1),95-103 (2004).
    [104]Shoukai Wang, D.D.L. Chung and Jaycee Chung, "Self-Sensing of Damage in Carbon Fiber Polymer-Matrix Composite Cylinder by Electrical Resistance Measurement", J. Intelligent Material Systems and Structures 17(1),57-62 (2006).
    [105]Shoukai Wang, D.D.L. Chung and Jaycee Chung, "Self-Sensing of Damage in Carbon Fiber Polymer-Matrix Composite by Measurement of the Electrical Resistance or Potential Away from the Damaged Region", J. Mater. Sci.40(24),6463-6472 (2005).
    [106]Shoukai Wang and D.D.L. Chung, "Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement", Carbon 44(13), 2739-2751(2006).
    [107]D.D.L. Chung, "Damage Detection Using Self-Sensing Concepts", J. Aerospace Eng. (Proceedings of the Institution of Mechanical Engineers, Part G) 221(G4),509-520 (2007).
    [108]Zhen Mei, Victor H. Guerrero, Daniel P. Kowalik and D.D.L. Chung, "Reverse Piezoelectric Behavior of Carbon Fiber Thermoplastic-Matrix Composite", Polym. Compos. 23(5),697-701 (2002).
    [109]Zhen Mei, Victor H. Guerrero, Daniel P. Kowalik and D.D.L. Chung, "Mechanical Damage and Strain in Carbon Fiber Thermoplastic-Matrix Composite, Sensed by Electrical Resistivity Measurement", Polym. Compos.23(3),425-432 (2002).
    [110]Zhen Mei and D.D.L. Chung, "Thermoplastic Matrix Phase Transitions in a Carbon Fiber Composite, Studied by Contact Electrical Resistivity Measurement of the Interface between Two Unbonded Laminae", Polym. Compos.23(5),824-827 (2002).
    [111]Victor H. Guerrero and D.D.L. Chung, "Interlaminar Interface Relaxation Upon Heating Carbon Fiber Thermoplastic-Matrix Composite, Studied by Electrical Resistance Measurement", Compos. Interfaces Lett.9(6),557-563 (2002).
    [112]Shoukai Wang, Daniel P. Kowalik and D.D.L. Chung, "Self-Sensing Attained in Carbon Fiber Polymer-Matrix Structural Composites by Using the Interlaminar Interface as a Sensor", Smart Mater. Struct.13(3),570-592 (2004).
    [113]Shoukai Wang and D.D.L. Chung, "The Interlaminar Interface of a Carbon Fiber Epoxy-Matrix Composite as an Impact Sensor", J. Mater. Sci.40,1863-1867 (2005).
    [114]张小玉,李卓球,宋显辉.碳纤维智能层的传感功能特性研究.华中科技大学学报(城市科学版),2008,25(2):36-38.
    [115]宋显辉刘冬 吕泳 李卓球.碳纤维树脂基复合材料的传感特性研究.工程塑料应用,2007,35(2):48-51.
    [116]刘冬,李卓球,宋显辉,朱四荣,郑华升.树脂基碳纤维复合材料应变传感稳定性研究.武汉理工大学学报,2008,30(12):8-10.
    [117]Zheng, H.S,Wu, D.H, Li, Z.Q,Song, X.H, Liu, D. Dynamic response of carbon fiber smart layers. Proceedings of the Second International Conference on Heterogeneous Material Mechanics,2008.ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008,762-765.
    [118]Lv Yong, Li Zhuoqiu, Song Xianhui, Wu Jing. Interface Effect of Fiber and Matrix in Carbon Fiber Compound Material. Proceedings of the Second International Conference on Heterogeneous Material Mechanics,2008. ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008,766-770.
    [119]J.B.Park, T.Okabe, N.Takeda, W.A. Curtin. Electromechanical modeling of unidirectional CFRP composites under tensile loading condition. Composites Part A:Applied Science and Manufacturing,2002,33(2):267-275.
    [120]Z. Xia, T. Okabe, J.B. Park, W.A. Curtin, N. Takeda. Quantitative damage detection in CFRP composites:coupled mechanical and electrical models. Composites Science and Technology,2003,63:1411-1422.
    [121]Ying Xi, Yuezhen Bin, C.K. Chiang, Masaru Matsuo. Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon, 2007,45:1302-1309.
    [122]Sirong Zhu and D.D.L. Chung. Analytical Model of Piezoresistivity for Strain Sensing in Carbon Fiber Polymer-Matrix Structural Composite under Flexure. Carbon,2007,45(8): 1606-1613.
    [123]N. Johner,* C. Grimaldi,I. Balberg and P. Ryser。Transport exponent in a three-dimensional continuum tunneling-percolation model. PHYSICAL REVIEW B 2008.77, 174204-1-174204-11
    [124]C. Grimaldi, T. Maeder, P. Ryser, and S. Strassler. Segregated tunneling-percolation model for transport nonuniversality. arXiv:cond-mat/0306665v1 [cond-mat.dis-nn] 26 Jun 2003
    [125]Sonia Vionnet-Menotl, Claudio Grimaldi,Thomas Maeder, Sigfrid Str'asslerand Peter Ryser. Tunneling-percolation origin of nonuniversality:theory and experiments.arXiv:cond-mat/0503647vl [cond-mat.dis-nn] 28 Mar 2005
    [126]Takashi Komori and Motoyoshi Itoh. A Modified Theory of Fiber Contact in General Fiber Assemblies. Textile Research Journal,j.1994,64(9):519-528.
    [127]C.C. Cheng and K.E. Duckett. The Direction Distribution on Cross-Contact Points in Anisotropic Fiber Assemblies. Textile Research Journal 1979.49:379-384
    [128]Jingsong Xie, Jingyong Houb, Yafang Han. A discussion of the contact behaviour of a carbon fiber composite for electric contact applications. Composites Science and Technology 59(1999)1189-1194
    [129]Ning Hu, Yoshifumi Karubea, Cheng Yan, Zen Masuda, Hisao Fukunaga。Tunneling Effect in a Polymer/Carbon Nanotube Nanocomposite Strain Sensor。Acta Materialia,56(13). pp.2929-2936.
    [130]D. Toker, D. Azulay, N. Shimoni, I. Balberg, and O. Millo. Tunneling and percolation in metal-insulator composite materials. PHYSICAL REVIEW B2003.68:041403-1-041403-4.
    [131]沈烈,益小苏.一个单向碳纤维增强树脂基复合材料导电结构.复合材料学报,1998,15(3):66-70
    [132]李选杨斌碳纤维纱线及其织物结构电阻的响应中国科技论文在线,http://www.paper.edu.cn.
    [133]陆婷.杨斌.导电纤维纺织结构的传感性能研究[J].浙江理工大学,2009,26(4):1-4.
    [134]C. Pennetta, L. Reggiani. Electrical instability of thin films driven by Joule heating. Computational Materials Science 20 (2001) 451±455
    [135]Zahra Ranjbar,Siamak Moradian,and Saeed Rastegar. Formation of a percolating cluster in films prepared by cathodic electrodeposition of a mixture of lower and higher molecular weight epoxy-amine adducts. Journal of Colloid and Interface Science 264 (2003) 420-430
    [136]K. W. TSE, C. A. MOYER and S. ARAJS. Electrical Conductivity of Graphite Fiber-Epoxy Resin Composites. Materials Science and Engineering,49 (1981) 41 46
    [137]E. Sadeghi*, M. Bahrami, N. Djilali. Analytic determination of the effective thermal conductivity of PEM fuel cell gas diffusion layers. Journal of Power Sources 179 (2008) 200-208
    [138]Qingxi S. Xia, Mary C. Boyce, David M. Parks. A constitutive model for the anisotropic elastic-plastic deformation of paper and paperboard. International Journal of Solids and Structures 39 (2002) 4053-4071.
    [139]Takashi Komori and Kunio Marishima. Estimation of Fiber Orientation and Length in Fiber Assemblies. Textile Research Journal 1978 48:309 DOI: 10.1177/004051757804800601
    [140]Y. B. Yi and L. Berhan, A. M. Sastry. Statistical geometry of random fibrous networks, revisited: Waviness,dimensionality, and percolation. JOURNAL OF APPLIED PHYSICS 2004.96(31)1318-1327
    [141]Jan, & tram, Sami Saarinen, Kaarlo Niskanen, Juhani KurkijWi. Microscopic mechanics of fiber networks. J. Appl. Phys.1 March 1994.75 (5):2383-2392.
    [142]Z.H. Xia, W.A. Curtin. Modeling of mechanical damage detection in CFRPs via electrical resistance. Composites Science and Technology 67 (2007) 1518-1529
    [143]C.A. Bronkhorst. Modelling paper as a two-dimensional elastic-plastic stochastic network. International Journal of Solids and Structures 40 (2003) 5441-5454
    [144]J. Asikainen and T. Ala-Nissila. Percolation and spatial correlations in a two-dimensional continuum deposition model. PHYSICAL REVIEW E MAY 2000.61(5):5002-5008
    [145]I.Balberg,N.Binenbaum.computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks.physical review B.1983 28(7):3778-3812
    [146]I.Balberg, N.Binenbaum.direct determination of the conductivity exponent in directed percolation, physical review B1986.33(3):2017-2019
    [147]Fangming Du,John E. Fischerand Karen I. Winey。Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites。PHYSICAL REVIEW B2005.72,121404-1-121404-4
    [148]I.Balberg,N.Binenbaum, C.H.Anderson. Critical behavior of the two-dimensional sticks system.physical review letters.1983,51(18):1605-1608.
    [149]A.M. Sastry, C.-W. Wang, L. Berhan. Deformation and Failure in Stochastic Fibrous Networks:Scale, Dimension and Application. University of Michigan, Ann Arbor 48109-2125
    [150]M. OSTOJA-STARZEWSKI, D.C. STAHL Random Fiber Networks and Special Elastic Orthotropy of Paper. Journal of Elasticity 60:131-149,2000.
    [151]M.GRUJICIC,G.CAO,W.NRAY.A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials.jounal of materials science 39(2004)1-9
    [152]Florent Dalmas, Remy Dendievel, Laurent Chazeau, Jean.Yves Cavaille, Catherine Gauthier. Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangle fibrous networks. Acta Materialia 54 (2006) 2923-2931
    [153]Chunyu Li, Tsu-Wei Chou. Modeling of damage sensing in fiber composites using carbon nanotube networks.Composites Science and Technology 68 (2008) 3373-3379.
    [154]吴科如,陈兵,姚武.碳纤维机敏水泥基材料性能研究.同济大学学报,2002,30(4):456-463.
    [155]C.H.Park,W.I.Lee,Y.e.Yoo. A study on fiber orientation in the compression molding of fiber reinforced polymer composite materail.Materials Processing Technology,2001,233-239.
    [156]Jay H.Phelps,Charles L.Tucker. An anisotropic rotary diffusion model for fiber orientation in short-and long-fiber thermoplastics.Journal of Non-newtonian Fluid Mechnaics, 2009,156:165-176.
    [157]Shiladitya Basu,Anthorny M.Waas, Damodar R.Ambur.Compressive failure of fiber composites under multi-axial loading. Journal of the Mechanics and Physics of Solids,2006,54:611-634.
    [158]Colin Eberhardt, Ashley Clarke Michel Vincent, Thomas Giround. Fiber orientation measurements in short-glass-fiber composites-Ⅱ:a quantitative error estimante of the 2D image analysis technique.Composites Science and Technology,2001,61:161-1974.
    [159]J.W.kim,D.G.Lee.Measurementof fiber orientation angle in FRP by intensity method. Journal of materials processing Technology,2008,201:755-760.
    [160]张小玉.碳纤维智能层的特性及其场域监测:[博士学位论文].武汉:武汉理工大学.2007.
    [161]杨小平.炭纤维层压导电复合材料及其活性炭纤维纸功能化的研究与应用:[博士学位论文].北京:北京理工大学.2001.
    [162]李永安.梯形网络等效电阻的网络分析[J].大学物理,2002,21(12):9-10
    [163]谭志中,罗达峰,李颂.2*N阶网络对角等效电阻的再研究[J].南通大学学报(自然科学版),2008,7(2):73~76
    [164]姚东来,吴银忠.无规电阻网络的等效电阻[J].大学物理,2003,22(3):9~11
    [165]吕芳,李奋荣.电阻星形(Y形)网络与三角形(△形)网络等效变换两种推导方法的比较[J].内蒙古科技与经济,2000:115-116.
    [166]X.Cheng, A.M.Sastry,B.E.Layton. Transport in Stochasitc Fibrous Networks. Journal of Engineering Materials and Technology,2001, Vol.123:12-19.
    [167]吴芝亮.质子交换膜燃料电池接触电阻数学建模与参数分析:[博士学位论文].天津:天津大学.2008.
    [168]X.F.Wu, Y.A.Denis. Elasticity of planar fiber networks. Journal of Applied Physics, 2005,98:093501-093509

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700