用户名: 密码: 验证码:
含Fe_(1-δ)O废渣砂浆的导电性和机敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机敏混凝土是具有自感知、自适应和损伤自修复等智能特性的多功能材料,利用这些特性可以实现结构的在线健康监测和损伤检测,在大型土木工程结构和基础设施的健康监测以及电子设备的电磁屏蔽等领域具有广阔的应用前景。目前主要是利用碳纤维、石墨、炭黑、钢纤维等导电材料制作导电机敏混凝土。但是碳纤维价格高昂,在混凝土中分散性较差,表面处理也较为复杂;石墨或炭黑掺量较高时,导电混凝土强度明显下降;钢纤维在混凝土的碱性环境中易钝化,使钢纤维导电混凝土的电阻率随着龄期的增长明显增大。上述问题严重制约了导电机敏混凝土的应用,因此研究导电性、压敏性和力学性能良好、价格低廉且实用价值高的导电机敏混凝土具有非常重要的意义。
     铁氧化物(Fe_(1-δ)O)包括FeO、Fe_2O_3和Fe_3O_4,都是非化学计量化合物,并且都存在结构缺陷,因此Fe_(1-δ)O具有半导体的性质。FeO和Fe_3O_4在常温下的电阻率分别为5×10~(-2)Ω·cm和4×10~(-3)Ω·cm,与沥青基碳纤维的电阻率基本相同。磁选粉煤灰和钢渣中Fe_(1-δ)O的含量约为30%,因此磁选粉煤灰和钢渣有可能作为导电材料用于制备导电砂浆。利用磁选粉煤灰和钢渣,采用制备普通砂浆的工艺制备的废渣砂浆价格非常低廉。通过对比试验发现,当磁选粉煤灰掺量超过40%或钢渣掺量超过50%时,废渣砂浆的导电性与掺加粗细集料的碳纤维混凝土或石墨混凝土的导电性基本相同,而压敏性和力学性能优于上述两种导电混凝土。
     利用含Fe_(1-δ)O废渣制备出了导电性和压敏性良好、价格低廉且同时具有良好力学性能的导电砂浆,不仅拓宽了机敏混凝土的研究范围,也有利于促进新型智能建筑材料的研究与应用。在分析废渣砂浆的导电性和压敏性机理的基础上,系统地研究了含Fe_(1-δ)O废渣砂浆的导电性和不同荷载条件下废渣砂浆的压敏性,以及含水率、温度、废渣掺量、养护制度等因素对废渣砂浆导电性和压敏性的影响。通过试验发现:(1)随着废渣掺量的增加,废渣砂浆的导电性和压敏性逐渐增大;随着龄期的延长,废渣砂浆的导电性逐渐减弱,压敏性逐渐增大,但28d龄期后导电性和压敏性趋于稳定。(2)随着废渣砂浆导电性的增强和龄期的延长,含水率、温度、养护制度和试件尺寸等因素对废渣砂浆导电性和压敏性的影响逐渐减弱。(3)废渣导电砂浆具有良好的压敏性,荷载作用方式对压敏性有很大影响。(4)随着加荷速度的增加,废渣砂浆的压敏性逐渐增强。(5)三轴受压时,随着围压的增大,在较低应力状态下,废渣砂浆的压敏性有所减弱。(6)废渣砂浆的电阻变化和应力变化具有较好的相关性,在循环荷载作用下,当应力小于弹性极限时,随着应力的循环变化,废渣砂浆的电阻也产生循环变化,但电阻变化滞后于应力变化。
     通过模拟冻融循环,干湿循环,酸、碱、盐侵蚀和碳化等侵蚀性环境,研究了废渣砂浆在侵蚀性环境中导电性和压敏性的变化,以及导电性和压敏性变化与力学性能变化的关系。经历多次冻融循环、酸溶液以及硫酸盐侵蚀,废渣砂浆的导电性和压敏性明显降低;经历多次干湿循环,废渣砂浆导电性和压敏性逐渐降低;NaCl溶液和碱溶液浸泡后,废渣砂浆的导电性和压敏性明显增强;人工碳化对废渣砂浆的导电性和压敏性没有明显影响。在侵蚀性环境中,废渣砂浆的力学性能变化与导电性变化明显相关,通过监测废渣砂浆的电阻变化,可以反映其力学性能的变化。这也说明通过监测混凝土材料在侵蚀性环境中的电阻变化,可以为评估其耐久性和损伤提供参考。
Smart concrete has self-diagnosis, adaptive function, and damage self-repairing, so it can be used to monitor structure health and detect injury. Carbon fiber, graphite, carbon black, and steel fiber can be used to make smart concrete. But carbon fiber is high in price, low in dispersion and complicate in surface treatment. With the increasing of graphite and carbon black content, the compressive strength of conductive concrete decreases markedly. Steel fibers are easy to be oxidized, so the electrical resistivity of steel fiber reinforced concrete increase with age. The above problems hamper the application of conductive concrete. So it is very important to study the conductive smart concrete which has electrical conductivity, compressive sensitivity, and good mechanical properties.
     Fe_(1-δ)O includes FeO, Fe_2O_3 and Fe_3O_4, all of which are nonstoichiometric compounds and have structure defect, so Fe_(1-δ)O have the properties of semiconductor. The electrical resistivity of FeO and Fe_3O_4 are 5×10~(-2)Ω·cm and 4×10~(-3)Ω·cm respectively, which are basically the same as that of pitch-based carbon fiber. The content of Fe_(1-δ)O is over 30% in the magnetic fly ash and steel slag, so the above-mentioned two kinds of waste may be used as conductive materials to make electrical conductive mortar. Using the magnetic fly ash and steel slag as the conductive materials, the price of the waste mortar, which is made by the technique in making normal mortar, is very low. When the waste content is beyond the percolation threshold, they have good conductivity, compression sensitivity and excellent mechanical properties. With the increasing of waste content, its electrical resistivity is close to that of CFRC and graphite concrete to which the coarse aggregate is added; while its compression sensitivity is better than the above two types of concrete.
     Fe_(1-δ)O waste conductive mortar is a smart material. The author analyzes the mechanism of conductive and compression sensitivity. On the basis of the study of electrical conductivity and smart properties, the author first studies its conductive properties and smart properties under different loading conditions, and then studies some factors that influence the electrical conductivity and smart properties, including the water content, temperature, content of waste, curing regime. Main results are as follows:
     ①The electrical conductivity and compressive sensitivity of conductive mortar increase with the increasing of waste content. With the age increasing, the electrical conductivity decreases and the compressive sensitivity increases.
     ②With the increasing of electrical conductivity and age, the influences of water content, temperature, curing regime and specimen size are weakening gradually.
     ③The loading modes have great influence on the compression sensitivity of conductive mortar. Under the pressure, conductive mortars have good compression sensitivity.
     ④Under the uniaxial loading, with the increasing of loading rate, the compression sensitivity increases.
     ⑤Under the triaxial loading, with the increasing of confining pressure, when under relatively low stress, the compression sensitivity weakens
     ⑥Under the recycling loading, when the maximum stress is within the elastic limit, the resistivity of mortar changes periodically with the stress changing, but the change of resistivity lags behind that of the stress.
     On the basis of the above examination, the author studies the erosion environment condition which influences the electrical conductivity and smart properties of mortar, including freeze-thaw cycle, dry-wet cycle, acid, alkali, salt and carbonation. At the same time, the author studies the relationship of electrical conductivity and smart properties changing with the mechanical properties.
     Freeze-thaw, acid and sulfate have remarkable adverse influences on the electrical conductivity, compressive sensitivity, and mechanical properties. After dry-wet cycles, the electrical conductivity and compressive sensitivity decrease slowly. After long-term immersion into alkali solution and salt solution, the electrical conductivity and compressive sensitivity increase remarkably. Carbonation has no effect on the electrical conductivity or compressive sensitivity. The change in electrical conductivity is remarkably related to the mechanical properties. Therefore by monitoring the resistivity change of waste mortar can reflect the change of mechanical properties. That indicates monitoring the resistivity change of cement-based materials can provide reference for evaluating the durability and injury of cement-based materials.
引文
边炳鑫.2000.粉煤灰颗粒在水介质中的分选机理的研究[J].黑龙江矿业学院学报,10(1):7-10.
    曹楚男. 2005.中国材料的自然环境腐蚀[M].北京:北京化学工业出版社.
    曹震,赵晓华,谢慧才.2003.碳纤维水泥基复合材料的阻-温特性[J].功能材料,34(4): 466-467.
    陈兵,姚武,吴科如,等.2002.受压荷载下碳纤维水泥基复合材料机敏性研究[J].建筑材料学报, 5(2):108-113.
    陈兵,吴科如,姚武.2003.碳纤维机敏水泥基复合材料温阻特性[J].建筑材料学报,6(3): 312-315.
    陈兵,张东. 2000.新型水泥基复合材料的研究与应用[J].新型建筑材料, 4(1):28-30.
    陈兵,姚武,吴科如.2004.掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J].建筑材料学报,7(3):261-268.
    程文瀼,颜德姮,王铁成,主编.2008.混凝土结构设计原理[M].北京:建筑工业出版社.
    董风芝.1997.粉煤灰分选利用研究[J].粉煤灰综合利用,11(1) :24-25.
    顾家琳.2005.材料科学与工程概论[M].北京:清华大学出版社.
    关振铎,张中太,焦金生.1992.无机材料物理性能[M].北京:清华大学出版社.
    关新春,欧进萍,韩宝国,等.2002.碳纤维机敏混凝土材料的研究与进展[J].哈尔滨建筑大学学报,35(6):55-59
    关新春,韩宝国,欧进萍,等.2003.表面氧化处理对碳纤维及其水泥石性能的影响[J].材料科学与工艺,11(4):343-346
    韩宝国,关新春,欧进萍.2004.导电掺和料形态与水泥基材料压敏性的相关性,复合材料学报, 21(3):137-141.
    韩宝国,关新春,欧进萍.2006.碳纤维水泥基材料导电性与压敏性的试验研究[J].材料科学与工艺,14(1):1-4.
    韩宝国,陈伟,欧进萍.2008.乙炔炭黑水泥基复合材料的压敏性[J].复合材料学报, 25(3):39-44.
    洪雷.2006.石墨水泥砂浆注浆钢纤维混凝土智能性质研究[D].大连:大连理工大学.
    侯作富,李卓球,唐祖全.2002.融雪化冰用碳纤维混凝土的导电性能研究[J].武汉理工大学学报,24(8):32-34.
    侯作富.2003.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].武汉:武汉理工大学.
    候作富,李卓球,胡胜良.2003.硅灰对碳纤维导电混凝土电阻率和强度的影响[J].混凝土, 25(2):26-28.
    侯作富,李卓球,王建军.2005.集料掺量对融雪化冰用碳纤维导电混凝土性能的影响[J].武汉理工大学学报(交通科学与工程版), 29(5):704-706.
    侯作富,李卓球,王建军.2007a.碳纤维水泥基复合材料电阻变化规律研究[J].武汉理工大学学报,29(7):30-32.
    侯作富,李卓球,王建军.2007b.裂纹对碳纤维水泥基复合材料性能的影响[J].华中科技大学学报(城市科学版),24(2):46-48
    蒋向东,张怀武,黄祥成.2002.透明导电半导体ZnO膜的研究[J].应用光学,23(2):35-38.
    李侃社,王琪,陈英红.2005.聚丙烯/石墨纳米复合材料的导电性能研究[J].高分子学报, 49(3):393-397.
    李仁福,戴成琴,于纪寿,等.1998.导电混凝土采暖地面[J].混凝土, 22(1):47-48.
    李卓球,宋显辉.2005.智能复合材料结构体系[M].武汉:武汉理工大学出版社.
    李克智,王闯,李贺军,等.2006.碳纤维增强水泥基复合材料的发展与研究[J].材料导报, 20(5):85-88.
    刘军,赵晓华,王玉林.2004.含水量对碳纤维水泥基复合材料电性能的影响[J].混凝土与水泥制品,12(6):35-38.
    毛起炤,赵斌元,李卓球,等.1996.水泥基碳纤维复合材料压敏性的研究[J].复合材料学报,13(4): 8-11.
    毛起炤,杨元霞,李卓球,等.1997.碳纤维增强水泥压敏性影响因素的研究[J].硅酸盐学报,25(6):734-738.
    磨练同.2004.导电沥青混凝土的制备与研究[D].武汉:武汉理工大学.
    欧进萍,关新春,李惠.2006.应力自感知水泥基复合材料及其传感器的研究进展[J].复合材料学报,23(4):1-8
    彭勃,陈志源,王立华.2002.CFRC中碳纤维长度分布对强度和电阻率的影响[J].建筑材料学报,5(3):235-239.
    潘钢华,秦鸿根,孙伟,等.2002.粉煤灰混凝土冻融破坏机理研究[J].建筑材料学报,5(1):37-41.
    钱觉时.2002.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社.
    邱虹华,坂田浩伸,平山达.1996.Fe2O3-SrO-TeO2系半导体玻璃电导的研究[J].硅酸盐学报,24(1):58-67.
    曲英.1994.炼钢学原理(第二版)[M].北京:冶金工业出版社.
    雀部博之.1989.导电高分子材料[M].北京:科学出版社.
    任文娥,于钦学,刘辅宜.1991.氧化锌半导电粉料的研究[J].电瓷避雷器, 34(1):40-44.
    史才军,元强,邓德华,等.2007.混凝土中氯离子迁移特征的表征[J].硅酸盐学报,35(4):522-530.
    司琼,董发勤.2005.掺短碳纤维和石墨混凝土的低频电磁屏蔽性能[J].硅酸盐学报, 33(7):916-920.
    沈刚,董发勤.2004.碳纤维导电混凝土的性能研究[J].公路,49(12):178-181.
    沈刚,董发勤,何登良.2004.钢纤维石墨复相导电混凝土的研究[J].硅酸盐通报,25(6):78-83.
    沈曾民.2003.新型碳材料[M].北京:化学工业出版社.
    
    孙明清,李卓球,毛起炤. 1997. CFRC电热特性的研究[J].武汉工业大学学报,19(2):72-74.
    孙明清,李卓球,沈大荣.1998a.炭纤维水泥基复合材料的Seebeck效应[J].材料研究学报,12(1):111-112.
    孙明清,李卓球,毛起炤,等.1998b.CFRC塞贝克效应的主要影响因素[J].材料研究学报, 12(3):329-331.
    孙明清.2002.碳纤维混凝土与素混凝土的力电机敏性及应用研究[D].武汉:武汉理工大学.
    唐明述,袁美栖,韩苏芬,等.1979.钢渣中MgO、FeO、MnO的结晶状态与钢渣的体积安定性[J].硅酸盐学报,7(1):35-46.
    唐祖全,李卓球,徐东亮.2001a.CFRC路面材料的温敏性研究[J].武汉理工大学学报,23(3):5-7.
    唐祖全,李卓球,张华.2001b.混凝土路面温度自诊断特性的实验研究[J].工程力学(增刊), 2001 (2):228-232.
    唐祖全.2002.碳纤维机敏混凝土路面结构融雪化冰性能研究[D].武汉:武汉理工大学.
    唐祖全,李卓球,徐东亮,等.2002.碳纤维导电混凝土电热升降温规律研究[J].华中科技大学学报(城市科学版),19(3):7-9.
    王闯,李克智,李贺军,等.2007.碳纤维的分散性与CFRC复合材料的导电性[J].功能材料,38(10):1641-1644.
    王立华,彭勃,陈志源.2002.水泥基导电复合材料的电热特性[J].建筑材料学报, 5(4): 307-310.
    王玉林,赵晓华.2005.碳纤维水泥基复合材料的正、负压敏性及其机理分析[J].复合材料学报,22(4):40-46.
    王小英,孙明清,侯作富,等.2006.纳米炭黑水泥砂浆的导电性及电热特性研究[J].功能材料, 37(11):1841-1843.
    王秀峰,王永兰,金志浩.1997.碳纤维增强水泥复合材料的制备与性能[J].西安交通大学学报,31(3): 108-113.
    王秀峰,王永兰,金志浩.1998.碳纤维增强水泥复合材料的电导性能及其应用[J].复合材料学报, 15(3):75-80.
    王秀峰,王永兰,金志浩.1998.碳纤维增强水泥复合材料的机敏性[J].硅酸盐学报, 26(2):253-257.
    韦文兵,谢慧才,张巍.2002.不同掺料的碳纤维水泥砂浆的压敏性研究[J].混凝土与水泥制品,29(6):44-45.
    吴科如,陈兵,姚武.2002.碳纤维机敏水泥基材料性能研究[J].同济大学学报, 30(4):456-463.
    肖琪仲.1996.钢渣的膨胀破坏与抑制[J].硅酸盐学报,24(6):635-640.
    徐俊丰,张朋革.1998.从粉煤灰中分选铁精矿粉的试验[J].粉煤灰综合利用, 22(2):32-33.
    徐毓龙.1991.氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社.
    姚武,陈兵,吴科如.2002.碳纤维水泥基材料的机敏特性研究[J].复合材料学报, 19(2):49-53.
    姚武,王瑞卿.2006.基于隧道效应的CFRC材料的导电模型[J].复合材料学报,23(5):121-125.
    姚武,王瑞卿.2008a.外加电场作用下碳纤维增强水泥基材料的输运特性[J].硅酸盐学报,36(1):73-76.
    姚武,钟文慧.2008b.CFRC梁在三点弯曲荷载作用下电阻与CMOD关系[J].同济大学学报(自然科学版) ,36(2):227-230.
    叶良修.1983.半导体物理学[M].北京:高等教育出版社.
    叶青,胡国君.1995a.水泥基复合功能材料的研究与开发[J].材料科学与工程, 13(2):62-65.
    叶青,胡国君,张泽南.1995b.掺石墨水泥基导电材料的物理性能研究[J].硅酸盐通报, 16(6):37-40.
    杨玉山,董发勤.2007.碳纤维导电混凝土的研究与发展前景[J].化工新型材料, 35(2):1-3.
    杨元霞,刘宝举,沈大荣.1997.不同填料对导电水泥基复合材料物理性能影响的研究[J].长沙铁道学院学报, 15(3) :21-25.
    赵铁军.2006.混凝土渗透性[M].北京:科学出版社.
    周浩,陈隆道.1992.导电混凝土及其应用[J].混凝土与水泥制品,19(4):12-13.
    张滇军.2005.碳纤维水泥基复合材料导电特性及其应用研究[D].大连:大连理工大学.
    张东兴,苏余晴,黄龙男,等.2005.CFRC抗弯试件的机敏性能试验研究[J].低温建筑技术,27(1):62-64
    张同生,刘福田,王建伟,等.2007.钢渣安定性与活性激发的研究进展[J].硅酸盐通报, 28(5):980-984.
    张跃,职任涛,朱逢吾,等.1992.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究[J].材料科学进展, 6(4):357-362.
    郑立霞.2003.机敏混凝土及其结构的压敏性研究[D].武汉:武汉理工大学.
    郑立霞,宋显辉,李卓球.2004.CFRC材料在准三向受压情况下的压敏性研究[J].硅酸盐通报,25(4):40-43.
    P.K.Mehta著.1991.混凝土的结构、性能与材料[M].祝永年,沈威,陈志源,译.上海:同济大学出版社.
    Dragos-Marian Bontea, D.D.L. Chung, G.C. Lee.2000.Damage in Carbon Fiber Reinforced Concrete, Monitored by Electrical Resistance Measurement[J]. Cement and Concrete Research, 30(4): 651-659.
    Bing Chen, Keru Wu, Wu Yao.2004.Conductivity of carbon fiber reinforced cement-based composites [J].Cement and Concrete Composites, 26(4): 291-297.
    Jingyao Cao, D.D.L. Chung.2002.Damage evolution during freeze-thaw cycling of cement mortar, studied by electrical resistivity measurement [J]. Cement and Concrete Research, 32(10): 1657-1661.
    Manuela Chiarello, Raffaele Zinno.2005.Electrical conductivity of self-monitoring CFRC [J].Cement and Concrete Composites, 27(4) 463-469.
    D.D.L.Chung.1995.Strain Sensors Based on the Electrical Resistance Change Accompanying the Reversible Pull-Out of Conducting Short Fibers in a Less Conducting Matrix [J]. Smart Material Structure, 4(1): 59-61.
    D.D.L.Chung.1998.Self-monitoring structural materials[R]. Materials Science and Engineering,22(2):57-78.
    D. D. L. Chung .2000.Cement reinforced with short carbon fibers: a multifunctional material [J].Composites Part B: Engineering, 31(6-7):511-526.
    D. D. L. Chung .2003.Damage in cement-based materials, studied by electrical resistance measurement [R].Materials Science and Engineering: R: Reports, 42(1):1-40.
    Pu-Woei Chen, D.D.L.Chung.1993. Carbon Fiber Reinforced Concrete as a Smart Material Capable of Non-Destructive Flaw Detection[J]. Smart Material Structure, 2(1):22-30.
    Pu-Woei Chen, D.D.L. Chung. 1995.Carbon Fiber Reinforced Concrete as an Intrinsically Smart Concrete for Damage Assessment During Dynamic Loading[J]. Journal America Ceramic Society, 78(3): 816-818.
    Pu-Woei Chen, D.D.L. Chung. 1996.Concrete as a New Strain/Stress Sensor[J]. Composites, Part B, 27(B): 11-23.
    Xuli Fu, D.D.L. Chung.1995. Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out[J]. Cement and Concrete Research, 25(7):1391-1396.
    Xuli Fu, D.D.L.Chung.1996a.Self-Monitoring of Fatigue Damage in Carbon Fiber Reinforced Cement[J]. Cement and Concrete Research, 26(1): 15-20.
    Xuli Fu, Weiming Lu, D.D.L. 1996b.Chung. Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix[J]. Cement and Concrete Research, 26(7): 1007-1012.
    Xuli Fu, Weiming Lu, D.D.L. 1996c.Chung. Improving the tensile properties of carbon fiber reinforced cement by ozone treatment of the fiber[J]. Cement and Concrete Research, 26(10):1485-1488.
    Xuli Fu, D.D.L. Chung.1997. Effect of Curing Age on the Self-Monitoring Behavior of Carbon Fiber Reinforced Mortar[J]. Cement and Concrete Research, 27(9): 1313-1318.
    Xuli Fu, W. Lu, D.D.L. Chung. 1998a. Improving the Strain Sensing Ability of Carbon Fiber Reinforced Cement by Ozone Treatment of the Fibers[J]. Cement and Concrete Research, 28(2): 183-187.
    Xuli Fu, D.D.L.Chung.1998b.Sensitivity of the bond strength to the structure of the interface between reinforcement and cement, and the variability of this structure[J]. Cement andConcrete Research, 28(6): 787-793.
    W.Lu, X.Fu, D.D.L. Chung. 1998.A comparative study of the wettability of steel, carbon, and polyethylene fibers by water[J]. Cement and Concrete Research, 28(6): 783-786.
    Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al.1998. Study on the hole conduction phenomena in carbon fiber reinforced concrete[J]. Cement and Concrete Research, 28(4): 549-553.
    Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al.1999. Study on thermal self-monitoring of carbon fiber reinforced concrete[J]. Cement and Concrete Research, 29(5): 769-771.
    Sun Mingqing, Li Zhuoqiu,Liu Qingping et al. 2000a.A study on thermal self-diagnostic and self-adaptive smart concrete structures[J].Cement and Concrete Research, 30(8): 1251-1253.
    Sun Mingqing, Liu Qingping, Li Zhuoqiu et al. 2000b.A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading[J]. Cement Concrete Research, 30(10): 1593-1595.
    Banthia N, Djeridane S, Pigeon M.1992. Electrical Resistivity of Carbon and Steel Micro-Fiber Reinforced Cements[J]. Cement and Concrete Research, 22(5): 804-814.
    K.Ogawa, D.M.Roy.1981.C4A3S hydration ettringite formation, and its expansion mechanism:I. expansion; Ettringite stability[J].Cement and Concrete Research, 11(5-6):741-750.
    K.Ogawa, D.M.Roy.1982a.C4A3S hydration, ettringite formation, and its expansion mechanism: II. Microstructural observation of expansion[J].Cement and Concrete Research, 12(1): 101-109.
    K.Ogawa, D.M.Roy.1982b.C4A3S hydration, ettringite formation, and its expansion mechanism: III. Effect of CaO, NaOH and NaCl; conclusions[J].Cement and Concrete Research, 12(2):247-256.
    Mao Qizhao, Zhao Binyuan, Sheng Darong, et al.1996.Resistance Changement Of Compression Sensible Cement Specimen Under Different Stresses [J]. Journal of Wuhan University of Technology, 11(3): 41-45.
    Mao Qizhao, Chen Pinhua, Zhao Binyuan et al.1997. A Study on the Compression Sensibility and Mechanical Model of Carbon Fiber Reinforced Cement Smart Material[J]. ACTA MECHANICA SOLIDA SINICA, 10(4): 338-344.
    Farhad Reza, Jerry A. Yamamuro, Gordon B. Batson.2004.Electrical resistance change in compact tension specimens of carbon fiber cement composites [J].Cement and Concrete Composites, 26(7): 873-881.
    Caijun Shi. 2004.Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results [J].Cement and Concrete Research, 34(3): 537-545.
    Zeng-Qiang Shi, D.D.L.Chung.1999.Carbon Fiber Reinforced Concrete for Traffic Monitoring and Weighing in Motion[J]. Cement and Concrete Research, 29(3): 435-439.
    Zuquan Tang, Zhuoqiu Li, Dongliang Xu.2002. Influence of carbon fiber contents on the temperature sensibility of CFRC road material[J]. Journal of Wuhan University of Technology (Materials Science Edition), 17(3): 75-77.
    Zuquan Tang, Zhuoqiu Li, Jueshi Qian,et al.2005.Experimental study on deicing performance of carbon fiber reinforced conductive concrete. Journal of Materials Science & Technology, February, 21(1):113-117.
    S.Wang, X.Shui, X.Fu, et al.1998. Early Fatigue Damage in Carbon Composites Observed by Electrical Resistance Measurement [J]. Journal of Materials Science, 14(3): 375-384.
    Shoukai Wang, D.D.L. Chung.2006.Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement [J].Carbon,44(13):2739-2751
    Sihai Wen, D.D.L. Chung. Carbon Fiber-Reinforced Cement as a Thermistor [J]. Cement and Concrete Research, 1999,29(6): 961-965.
    Sihai Wen, D.D.L. Chung.1999.Seebeck Effect in Carbon Fiber Reinforced Cement[J].Cement and Concrete Research, 29(12): 1989-1993.
    Sihai Wen, D.D.L. Chung.2000a. Seebeck Effect in Steel Fiber Reinforced Cement[J]. Cement and Concrete Research, 30(4): 661-664.
    Sihai Wen, D.D.L. Chung. 2000b.Enhancing the Seebeck Effect in Carbon Fiber Reinforced Cement by Using Intercalated Carbon Fibers[J]. Cement and Concrete Research, 30(8): 1295-1298.
    Sihai Wen, D.D.L.Chung.2000c.Damage Monitoring of Cement Paste by Electrical Resistance Measurement[J]. Cement and Concrete Research, 30(11):1979-1982.
    Sihai Wen, D.D.L. Chung.2000d.Uniaxial tension in carbon fiber reinforced cement, sensed by electricalresistivity measurement in longitudinal and transverse directions [J]. Cement and Concrete Research, 30(8): 1289-1294.
    Sihai Wen, D.D.L. Chung.2001a. Electrical behavior of cement-based junctions including the pn-junction[J]. Cement and Concrete Research, 31(1):129-133.
    Sihai Wen, D.D.L. Chung.2001b.Cement-based thermocouples [J]. Cement and Concrete Research, 31(3):507-510.
    Sihai Wen, D.D.L. Chung.2001c.Carbon Fiber Reinforced Cement As a Strain-Sensing Coating[J]. Cement and Concrete Research, 31(4): 665-667.
    Sihai Wen, D.D.L. Chung .2006.The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement [J].Carbon,44(11):2130-2138
    Sihai Wen, D.D.L.Chung.2007.Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix composites [J].Carbon, 45(3):505-513.
    Xie Ping, Gu Ping, Beaudoin J J.1996.Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibres[J].Journal of Materials Science, 31(15): 4093-4097.
    Yunsheng Xu, D.D.L.Chung.2001.Silane-treated carbon fiber for reinforcing cement[J]. Carbon, 39(13):1995-2001.
    Yunsheng Xu, D.D.L. Chung.1999a. Improving the workability and strength of silica fume concrete by using silane-treated silica fume[J]. Cement and Concrete Research, 29(3):451-453.
    Yunsheng Xu, D.D.L.Chung.1999b.Carbon fiber reinforced cement improved by using silane-treated carbon fibers[J]. Cement and Concrete Research, 29(5):773-776.
    Yunsheng Xu, D.D.L. Chung.2000a. Chung. Reducing the drying shrinkage of cement paste by admixture surface treatments[J]. Cement and Concrete Research, 30(2):241-245.
    Yunsheng Xu, D.D.L.Chung. 2000b.Cement-based materials improved by surface-treated admixtures[J].ACI Materials Journal, 97(3):333-342.
    Sherif Yehia, Christopher Y Tuan. 1999. Conductive Concrete Overlay for Bridge Deck Deicing [J]. ACI Materials Journal, 96(3): 382-390.
    Sherif Yehia, Christopher Y Tuan, David Ferdon et al. 2000.Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties [J]. ACI Materials Journal, 97(2): 172-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700