用户名: 密码: 验证码:
碳纤维智能束的功能特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题研究来源于国家自然科学基金项目“核安全壳应力监测的复合敏感层传感机理及其成像”,围绕着树脂基碳纤维复合材料的力阻效应,开展碳纤维智能束的研制工作,并对碳纤维智能束的功能特性进行了深入研究。具体研究内容包括碳纤维及其复合材料的力阻效应实验研究、碳纤维智能束的研制开发、碳纤维智能束的传感性能及其传感机理研究、开展基于碳纤维智能束的电阻模态的探讨、并进行了理论分析与实验验证。主要获得了以下几个方面的研究成果:
     (1)通过碳纤维单丝与碳纤维束的力阻效应研究,分析了无基体碳纤维材料电阻变化的规律与影响因素。通过实验分析发现碳纤维的应变-电阻灵敏度通常不超过2,纤维受外力作用时几何尺寸与电阻率的变化均导致电阻值发生改变,且尺寸变化导致电阻改变的权重高于电阻率变化。
     (2)以实验分析为突破口、通过研究不同碳纤维复合材料制作工艺、树脂改性添加剂使用量等对碳纤维智能复合材料力阻效应影响,在此基础上研制出一种高应变-电阻灵敏度的树脂基碳纤维智能束材料。
     (3)结合微观试验分析,发现碳纤维智能束中存在一定数量的纤维对接或者搭接而形成的“接触”节点,材料在受外载作用时,此类节点在小应变情况下就能脱离导电网络,导致电阻增大。综合考虑导致碳纤维智能束电阻变化的三方面因素,利用正态分布描述初始纤维接触点情况,采用Weibull模型描述后期纤维断裂情况等概率事件,结合(1)中结论,构建了碳纤维智能束的导电机理模型。
     (4)全面考察了碳纤维智能束的静、动态传感功能特性及其温度效应。结果表明其灵敏度高但离散性较大,总体的线性度较高、重复性较好、长期性能稳定、蠕变与零漂也较小,极限动态感应频率高。发现碳纤维智能束低于20℃时表现为NTC效应,高于20℃时则为PTC效应。
     (5)利用碳纤维智能束电阻-应变的关系,通过电阻分布来反映结构的动态特性,建立了以材料电阻为主要研究对象的模态分析方法。以悬臂梁为分析模型,计算出其位移模态、应变模态、电阻模态的理论解。在Ansys分析软件中通过将模态分析结果以约束的方式施加到结构上,再进行力电耦合场分析计算,实现电阻模态的有限元求解,为其进一步应用于复杂结构奠定了基础。
     (6)在理论分析基础上,从适用性方面开展了碳纤维智能束的结构模态实验研究。实验测得悬臂梁有无质量块两种工况下得到的位移模态、应变模态、电阻模态,结果表明电阻模态与应变模态对应力集中产生局部应变变化比位移模态更敏感。
The dissertation was supported by the project of National Science Foundation "The mechanism of compound sensitive surface and imaging method of stress monitoring for nuclear safety shells", around piezoresistivity of polymer-matrix carbon fiber composite material, carry out working on manufacture bundle of smart carbon fiber, to in-depth study the features of bundle of smart polymer-matrix carbon fiber bundle. Specific research includes the experimentals of piezoresistivity of carbon fiber and composite materials, research and development of smart carbon fiber bundle, the research of sensing performance and sensing mechanism of smart carbon fiber bundle, proposed the concept of resistance mode, and give the analysis theoretically and experimental verification. Mainly obtained in the following areas of research:
     Firstly, with analysis the law and factors affecting of variation resistance of carbon fiber without substrate, by the research about piezoresistivity of monofilament carbon fiber and carbon fiber bundle. Through experimental analysis discovered that strain-resistance sensitivity of carbon fiber is usually not more than 2, fibers by external force, the geometry and resistivity changes that are leading the resistance to change, and dimensional changes lead to resistance to change that much than the resistivity change.
     Secondly, in the experimental analysis as a breakthrough, through the study of piezoresistivity of carbon fiber composite used different carbon fiber composite material production process and resin modified additives, on the basis of this developed a high strain- resistance sensitivity of smart polymer-matrix carbon fiber composite materials, referred to as the smart carbon fiber bundle.
     Thirdly, combined with micro-test analysis, a certain amount of fiber overlap to form contact node, materials when subject to external loads, this node can be separated from the conductive network in the case of small strain, lead to resistance increased. Considering the three factors that caused changes in resistance of smart carbon fiber bundle, used a Normal distribution to describe the contact points situation of initial fiber, using Weibull model describes the events of probability of late such as fiber breakage, combined with the conclusion in (1), building conductive mechanism model of smart carbon fiber bundle.
     The fourth, comprehensive study of static and dynamic features of the temperature effect sensor of the smart carbon fiber bundle. The results showed high sensitivity but a large dispersion, high overall linearity, good reproducibility, long-term stable performance, creep and zero drift is less, high frequency of the limit dynamic sensor. Carbon fiber bundle is lower than 20℃smart for NTC effect, higher than 20℃for the PTC effect.
     The fifth, use the relationship of strain-resistance of smart carbon fiber bundle, reflect dynamic characteristics of the structure by resistance distribution, establish a modal analysis method that resistivity is the main object of study. Let cantilever for analysis model, calculate the displacement mode, strain mode, theoretical solution of resistance mode. To calculate the modal analysis results as the restrict way, applied to the electromechanical field in Ansys software package, achieve finite element analysis of resistance mode, for further applied to the complex structure laying a good foundation.
     Finally, on the basis of the theoretical analysis, carried out experimental study of structural mode of carbon fiber smart bundle from applicability. Experiment measured displacement mode, strain mode, resistance mode, under two kinds of conditions that while the cantilever working have mass or not, the results show that resistance modal and strain modal is more sensitive than the displacement mode, then stress concentration to produce local strain.
引文
[1]李卓球.智能复合材料及其结构体系.武汉:武汉理工大学出版社,2005
    [2]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究.建筑技术,2002.33(4):270~272
    [3]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展,2004,(02)
    [4]A.E.Aktan, M.Pervizpour, N.Catbas, et al. Information Technology Research for Health Monitoring of Bridge Systems, Proc.of the 3rd International Workshop on Structural Health Monitoring:The Demands and Challenges, Stanford, CA, USA,2001.1441-1465
    [5]欧进萍.重大工程结构智能传感网络与健康监测系统研究与应用.中国科学基金,2005.(1):8~12
    [6]Jinping Ou. Research and Practice of Intelligent health monitoring Systems for Civil Infrastructures in mainland China, Proc.of Third China-Japan-US Symposium on Structural Health Monitoring and Control, Dalian, China,2004.3-15
    [7]Ghoshal A, Sundaresan M J, Schulz M J and Pai P F.2000 Structural health monitoring techniques for wind turbine blades J. Wind Eng. Ind. Aerodyn.85:30-324
    [8]Kim H and Melhem H 2004 Damage detection of structures by wavelet analysis. Eng. Struct. 26:347-362
    [9]Caselitz P, Giebhardt J and Mevenkamp M.1994 On-line fault detection and prediction in wind energy converters. Proc. EWEC:623-627
    [10]Maeck J, De Roeck G., Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates. Journal of Sound and Vibration,1999.225(1):153-223
    [11]Maeck J, Abdel Wahab M, De Roeck G. Damage localization in reinforced concrete beams by dynamic stiffness determination. Proceedings of International Model Analysis Conference 17, Kissimmee, Florida, USA,1999.1289-1295
    [12]Maeck J, De Roeck G. Detection of damage in civil engineering structures by dynamic stiffness derivation. Proceedings of Eurodyn 99, Prague, Czech Republic,1999.485-490
    [13]Ohtsu M, Watanabe T. Stack imaging of spectral amplitudes based on impact-echo. NDT&E International,2002.35:189-196
    [14]Krause M, Mielentz F, Milman B, et al. Ultrasonic imaging of concrete members using an Array System. NDT&E International,2001.34:403-408
    [15]Salawu OS. Detection of structural damage through changes in frequency:a review. Engineering Structures,1997.19(9):718-741
    [16]Yih-Hsing Pao, Chao-Chow Mow弹性波的衍射与动应力集中.北京:科学出版社,1993.63-78
    [17]Chotard TJ, Pasquiet J, Benzeggagh ML. Impact response and residual performance of GRP pultruded shapes under static and fatigue loading. Composites Science and Technology, 2002.60:895-912
    [18]Ratcliffe CP. Damage detection using a modified laplacian operator on mode shape data. Journal of Sound and Vibration,1997.204(3):505-522
    [19]Ruotolo R, Surace C. Damage assessment of multiple cracked beams:Numerical results and experimental validation. Journal of Sound and Vibration,1997.206(4):567-88
    [20]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988.80-93
    [21]Carrasco CJ, Osegueda RA, Ferregut CM, Grygier M. Damage localization in a space truss model using modal strain energy. In:Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel,1997.1786-1792
    [22]Hyeung-Yun Kim, Woonbong Hwang. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams. Composite Structures,2002. 55:51-62
    [23]B.A.奥尔特.固体中的声场和波.北京:科学出版社,1982.45-63
    [24]李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002.101~153
    [25]翟伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法.地震工程与工程振动,2002.22(1):43~48
    [26]傅翔,宋人心,等.冲击回波法检测预应力预留孔灌浆质量.施工技术,2003.32(11):37-38
    [27]Crema LB, Castellani A, Romani A. Damage detection by eigenfrequency measurements in macroelement divided structures. In:Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801,1997.476-483
    [28]Carino JN, Sansalone M, Impact-echo:A new method for inspecting construction materials. Proc. Conf. NDT&E Manuf. Constr. University of Illinois at Urbana-Champaign,1988
    [29]Hidalgo PA, Jordan RM, Martinez MP. An analytical model to predict the inelastic seismic behavior of shear-wall, reinforced concrete structures. Engineering Structures,2002.24:85-98,
    [30]H.J.佩因著.振动与波动物理学.(陈难先,赫松安译).北京:人民教育出版社,1980.75-89
    [31]Kim DS, et al. Feasibility study of the IE-SASW ethod for nondestructive evaluation of containment building structures in nuclear power plants. Nuclear Engineering and Design, 2002.219:97-110
    [32]Doebling SW, Hemez FM, Peterson LD, Farhat C. Improved damage location accuracy using strain energy-based model selection criteria. AIAA J,1997.35(4):693-699
    [33]Akbar Darabi Xavier Maldague. Neural network based defect detection and depth estimation in TNDE. NDT&E International,2002.35:165-175
    [34]Wiggenhauser H.Active IR-applications in civil engineering. Infrared Physics & Technology,2002.43:233-238
    [35]Takahide Sakagami, Shiro Kubo. Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography. Infrared Physics & Technology,2002. 43:311-316
    [36]Takahide Sakagami, Keiji Ogura. Thermographic NDT based on transient temperature field under Joule effect heating. SPIE Proceedings,1994.2245:120-130
    [37]Nagataki S, Kamada T, Matsumoto A. Application of infrared thermography technique for evaluation of cracks in concrete structures. Journal of the Society of Materials Science, Japan,1997.46(2):198-203
    [38]Maierhofer Ch, Brink A, Rollig M, et al. Transient thermography for structural investigation of concrete and composites in the near surface region, Infrared Physics & Technology 2002. 43:271-278
    [39]Maierhofer C, Wiggenhauser, et al. Quantitative numerical analysis of transient IR-experiments on buildings. Infrared Physics and Technology,2004.46(1):173-180
    [40]黄莉.基于红外热像的碳纤维混凝土损伤分析与研究:[博士学位论文].武汉:武汉理工大学,2005
    [41]张荣成.红外热像法检测建筑物外墙饰面施工质量的试验研究.建筑科学,2002.18(1):40-44
    [42]杜红秀,张雄,乔俊莲.红外热像用于水泥砂浆火灾损伤的检测与评定.同济大学学报,2000.27(4):422~425
    [43]孙格靓,王厚亮,李建保.碳纤维增强混凝土构件的内部缺陷红外热像技术检测.炭素技术,2002.(4):47-49
    [44]梅林,陈自强,王裕文.脉冲加热红外热成像无损检测的有限元模拟及分析.西安交通大学学报,2000.(1):66~70
    [45]Shaw P, Bergstrom J, In-situ testing of reinforced concrete structures using stress waves and high-frequency ground penetrating radar. Non-Destructive Testing and Condition Monitoring,2000.42(7):454-457
    [46]Molyneaux TK, Millard SG, et al. Radar assessment of structural concrete using neural networks. NDT&E International,1995.28(5):281-288
    [47]Shaw MR, Molyneaux TCK, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks. Non~Destructive Testing and Condition Monitoring,2003.45(12):813-816
    [48]张季如,陈超敏,管昌生.路面水泥混凝土质量检测的X射线衍射分析.广西工学院学报,2001.12(4):29~32
    [49]詹炳根.尿素包装厂房结构混凝土损伤调查与损伤机理分析.土木工程学报,2006.39(7):52-60
    [50]徐超.基础底板的检测与处理.安徽建筑,2002.(7):62~62
    [51]韩宝国,关新春,欧进萍.基于炭纤维水泥基材料电阻率变化的水化进程监测.新型炭材料,2007,22(2):165~170
    [52]欧进萍,关新春,李惠.应力自感知水泥基复合材料及其传感器的研究进展.复合材料学报.2006,23(4):1~8
    [53]刘桂雄,吕艺行,周德光.基于应变测量的便携式汽车动态性能测试仪.传感器技术.2004,23(6):70-72
    [54]朱四荣,李卓球,宋显辉.混凝土结构层间力学性能的电学表征.华中科技大学学报.2007,35(4):103~105
    [55]邢化玲,马孝义.应变测试系统的设计.仪表技术与传感器,2009.(12):91~96
    [56]李湘洲,王伟.碳纤维增强混凝土的现状与趋势.混凝土,2000.(8):31-33,43.
    [57]Su MB, Fracture monitoring within concrete structure by Time Domain Reflectometry. International Conference on Fracture and Damage of Concrete and Rock, Vienna (Austria), 1990.35(1):313-320
    [58]Feng MQ, De Flaviis F, Kim YJ. Use of Microwaves for Damage Detection of Fiber Reinforced Polymer-Wrapped Concrete Structures. Journal of Engineering Mechanics, ASCE,2002.128(2):172-183
    [59]LaBrecque DJ, Sharpe R, Wood, et al. Small-scale electrical resistivity tomography of wet fractured rocks. Ground. Water,2004.42(1):111-118
    [60]Gao P, Collins L, Garber PM, et al. Classification of Landmine-Like Metal Targets Using Wideband Electromagnetic Induction. IEEE Transactions on eosciences and Remote Sensing,2000.38:1352-1361
    [61]Grellier S, Robain H, Bellier G, et al. Influence of temperature on the electrical conductivity of leachate from municipal solid waste.J. Hazard. Mater,2006.137(1):612-617
    [62]Aruliah DA, Ascher UM, Haber E, et al. A Method for the Forward Modelling of 3-D Electromagnetic Quasi-static Problems. Mathematical Models and Methods in the Applied Sciences,2001. (11):1-21
    [63]Constable, SC. Occams inversion:A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics,1987.52(3):289-300
    [64]Won IJ, Keiswetter DA,Novikova TAE. Electromagnetic Induction Spectroscopy. Journal of Environmental and Engineering Geophysics,1998.3:27-40
    [65]Pierri R, Brancaccio A, De Blasio F. Multifrequency Dielectric Profile Inversion for a Cylindrically Stratified Medium. IEEE Trans. Geoscience and Remote sensing,2000.38(4): 1716-1724
    [66]陆萍,吴海军.基于动力响应的大型桥梁健康监测的一些问题.重庆交通学院学报,2004.23(6):15~18,49
    [67]任勇生.智能材料在土木结构监测和振动控制中的应用.太原理工大学学报,2000.31(5):486~493.
    [68]王健,沈亚鹏.形状记忆合金作动器的设计及优化.力学学报,1998.30(4):450-460.
    [69]Thomson. Psuedoelastic hysteresis of shape memory wires for passive structural damping: Theory and experiments. In Smart Structures and Materials, SPIE,1993.2193:316-352.
    [70]徐宁光,孙良新.复合材料内部损伤的光纤图像显示方法.复合材料内部损伤的光纤图像显示方法.复合材料学报,1998.15(1):112~115.
    [71]向永江.具有光纤神经系统的新颖复合材料结构的发展及展望.南京航空学院学报,1993.25(1):82~91
    [72]Measures R M. Smart structures with nerves of glass. Pro Aerospace Sci,1989.26:289-351
    [73]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究.稀有金属材料与工程,2001.30(1):1-4
    [74]贾振元,王福吉,张永顺,郭东明.超磁致伸缩材料驱动微型马达的原理与应用,中国机械工程,2002.14(13):1161~1165
    [75]朱林剑,高文泉,包海涛,等.基于超磁致伸缩材料的谐波传动研究,磁性材料及器件,2009.40(3):35~37,52
    [76]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002.23(01):6-12
    [77]王琪民,徐国梁,金建峰.磁流变液的流变性能及其工程应用[J].中国机械工程,2002.13(03):267-370
    [78]邓志党,高峰,刘献栋,杜发荣.磁流变阻尼器力学模型的研究现状[J].振动与冲击,2006.25(03):121~126,211
    [79]Pu-Woei Chen, D.D.L.Chung. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J. American Ceramic Society,1995. 78(3):816-818
    [80]Sihai Wen, D.D.L.Chung. Effects of Stress on the electric polarization in cement. Cement and concrete research,2001.31:291-295
    [81]Sihai Wen, D.D.L.Chung. Electric polarization in carbon reinforced cement. Cement and concrete research,2001.31:141-147
    [82]Xu Ysh, D.D.L.Chung. Cement-based mateials improved by surface treated admixtures. ACI Mater.J,2000,97(3):333-342
    [83]Xuli Fu, D.D.L.Chung. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar. Cem. Concr. Res.1997.27(9):1313-1318
    [84]Xuli Fu, D.D.L.Chung. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cem. Concr. Res.,1996.26(1):15-20
    [85]Yunsheng Xu and D.D.L. Chung, Cement-Based Materials Improved by Surface Treated Admixtures. ACI Mater,2000.97(3):333-342
    [86]Zeng-Qiang Shi, D.D.L. Chung. Carbon Fiber Reinforced Concrete for Traffic Monitoring and Weighing in Motion. Cem. Concr. Res.,1999.29(3):435-439
    [87]Mingqing Sun, Zhuoqiu Li, Xianhui Song. Piezoelectric effect of hardened cement paste. Cement & Concrete Composites,2004.26:717-720
    [88]Xu Dong-liang, Li Zhuo-qiu, Song Xian-hui, Lv Yong. Detecting the Resistivity Distribution of Carbon Fiber Reinforced Concrete by Electrical Resistance Tomography Method. Journal of Southwest Jiaotong University,2006.14(4):228-335.
    [89]Zhu Sirong, Li Zhuoqiu, Song Xianhui. Electro-thermal effects and deformation response of carbon fiber mat cement beams. Acta Mechanica Solida Sinica,2003.16(4):359-365
    [90]Zuquan TANG, Zhuoqiu LI, Jueshi Qian, Kejin WANG. Experimental Study on Deicing Performance of Carbon Fiber Reinforced Conductive Concrete. J.Mater. Sci. Technol., 2005.21(1):113-117
    [91]宋显辉,张华,李卓球.碳纤维增强混凝土裂纹钝化后的弯曲强度评价.实验力学,2004.19(3):366~370
    [92]孙明清,李卓球,徐东亮.混凝土梁的力电效应研究.土木工程学报,2003.36(12):60-62
    [93]孙明清,赵开锐,王小英,等.水泥净浆梁通电时的变形效应.硅酸盐学报,2006.34(2):220~224
    [94]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究.建筑材料学报,2004.7(2):215~220
    [95]郑立霞,宋显辉,李卓球.CFRC材料在准三向受压情况下的压敏性研究.硅酸盐通报.2004,23(4):40~43
    [96]郑立霞,宋显辉,李卓球.利用CFRC压敏性监测钢筋锈蚀的模拟实验研究,实验力学.200,419(2):206~210
    [97]朱四荣,李卓球,宋显辉.日光直射下混凝土梁的力学响应.华中科技大学学报(自然科学版).2005,33(4):93~96
    [98]朱四荣,李卓球,宋显辉.碳纤维水泥砂浆梁变形调节的实验分析.建筑材料学报.2003,6(3):308~311
    [99]Sihai Wen, D.D.D.L. Chung. Carbon fiber-reinforced cement as a thermistor. Cement and Concrete Research,1999.29:961-965
    [100]P.-W. Chen, D.D.L. Chung. Concrete reinforced with up to 0.2 vol.% of short carbon fibers, Composites 1993.24 (1):33-52
    [101]X. Fu, W. Lu, D.D.L. Chung. Improving the strain sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers, Cem Concr Res,1998.28 (2):183-187
    [102]Sun Mingqing, Liu qingping, Li Zhuoqiu, Hu Yaozu. A study of piezoelectric properties of carbon fiber reinforced concerte and plain cement paste during dynamic loading. Cement Concrete Research,2000.30(8):1251-1253
    [103]Sun Mingqing, Li Zhuoqiu, Liu qingping. Electrical emission in mortar under low compressive loading. Cement Concrete Research,2002.32(1):47-50
    [104]Sun Mingqing, Liu qingping, Li Zhuoqiu. Mechanoelectric phenmenon of hardened cement paste during quasi-static loading. J. Wuhan University of Technology,2001.16(4):83-85
    [105]D.D.L. Chung. Damage Detection Using Self-Sensing Concepts. J. Aerospace Eng. (Proceedings of the Institution of Mechanical Engineers, Part G),2007.509-520
    [106]Dwayne A. Gordon, Shoukai Wang and D.D.L. Chung. Piezoresistivity in Unidirectional Continuous Carbon Fiber Polymer-Matrix Composites:Single-Lamina Composite Versus Two-Lamina Composite. Composite Interfaces,2004.11(1):95-103
    [107]Shoukai Wang, D.D.L. Chung. Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement. Carbon,2006. 44(13):2739-2751
    [108]Shoukai Wang, D.D.L. Chung, Jaycee Chung. Self-Sensing of Damage in Carbon Fiber Polymer-Matrix Composite by Measurement of the Electrical Resistance or Potential Away from the Damaged Region. J. Mater. Sci.,2005.40(24):6463-6472
    [109]Shoukai Wang, D.D.L. Chung, Jaycee Chung, "Self-Sensing of Damage in Carbon Fiber Polymer~Matrix Composite Cylinder by Electrical Resistance Measurement", J. Intelligent Material Systems and Structures,2006.17(1):57-62
    [110]Zhen Mei, Victor H. Guerrero, Daniel P. Kowalik and D.D.L. Chung, Reverse Piezoelectric Behavior of Carbon Fiber Thermoplastic~Matrix Composite", Polym. Compos.,2002.23(5):697-701
    [111]张小玉,李卓球,宋显辉.碳纤维智能层的传感功能特性研究.华中科技大学学报(城 市科学版),2008.25(2):36-38.
    [112]朱四荣,郑华升,李卓球.树脂基搭接碳纤维智能层的力阻特性.复合材料学报,2010.27(3):111~115
    [113]欧进萍,王勃,张新越,等.混凝土结构用CFRP筋的感知性能试验研究.复合材料学报,2003.20(6):47~51
    [114]王勃,欧进萍,张新越,等.CFRP筋及其加筋混凝土梁感知性能试验与分析.哈尔滨工业大学学报,2007.39(12):220-224
    [115]王翔,王钧,钟龄.碳纤维复合材料的电阻-应变传感特性研究.玻璃钢/复合材料,2004.(4):33~35.
    [116]王钧,刘东,张联盟.碳纤维增强聚合物基复合材料自诊断性能研究.武汉理工大学学报,2002.24(4):36~38
    [117]宋显辉,刘冬,吕泳,李卓球.碳纤维树脂基复合材料的传感特性研究.工程塑料应用,2007.35(2):48-51.
    [118]刘冬,李卓球,宋显辉,等.树脂基碳纤维复合材料应变传感稳定性研究.武汉理工大学学报,2008.30(12):8-10
    [119]沈烈,益小苏.一个单向碳纤维增强树脂基复合材料导电结构.复合材料学报,1998.15(3):66~70
    [120]Sirong Zhu, D.D.L. Chung. Analytical Model of Piezoresistivity for Strain Sensing in Carbon Fiber Polymer-Matrix Structural Composite under Flexure. Carbon,2007.45(8): 1606-1613.
    [121]J.B.Park, T.Okabe, N.Takeda, W.A. Curtin. Electromechanical modeling of unidirectional CFRP composites under tensile loading condition. Composites Part A:Applied Science and Manufacturing,2002.33(2):267-275.
    [122]Z. Xia, T.Okabe, J.B. Park, W.A. Curtin, N. Takeda. Quantitative damage detection in CFRP composites:coupled mechanical and electrical models. Composites Science and Technology,2003.63:1411-1422.
    [123]罗延龄.PTC特性的复合导电体系中炭粒子分布的逾渗模型与电阻率的计算.高分子通报,1998.4:23-3
    [124]贡长生.新型功能材料.化学工业出版社.2001
    [125]沈曾民.新型碳材料.化学工业出版社.2003
    [126]王宜,何慧,张锋等.黑/聚乙烯导电复合材料PTC特性的研究.华南理工大学学报,2002.30(6):69~7
    [127]李卓球,邓友生,方玺.碳纤维智能层及其场域诊断.公路,2007.(12):155~159
    [128]张小玉.碳纤维智能层的特性及其场域监测:[博士学位论文].武汉:武汉理工大学,2007
    [129]Pierreu, Ierreu. PVDF piezoelectric polymer. Sensor Review,2001.21(2):118-125
    [130]李焰,钟方平,刘乾,等.PVDF在动态应变测量中的应用[J].爆炸与冲击,2003.23(3):230~234.
    [131]黄沛,曹建林,宋宁.光纤布喇格光栅动态响应特性的计算和分析.激光技术,2008.32(6):651-654
    [132]姜明顺,冯德军,隋青美,刘波.新型光纤Bragg光栅振动传感系统.光电子激光.2010,21(1):34-37
    [133]吴琪琳,潘鼎.碳纤维强度的Weibull分析理论.高科技纤维与应用,1999.24(6):41~44
    [134]纪英露,吕春祥,周普查,等.用Weibull统计方法评价Ni-P镀层对炭纤维抗拉强度的影响.新型炭材料,2008.23(2):159-164
    [135]郭慧,黄玉东,刘丽,等.T300和国产碳纤维本体的力学性能对比及其分析.宇航学报,2009.30(5):2068~2072

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700