用户名: 密码: 验证码:
添加植物碳源对多级复合垂直流人工湿地氮、磷去除能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来我国农村经济的快速发展,农村面源污染已对受纳水体构成了严重的威胁。在江西省鄱阳湖区,农村面源污染对湖体水质造成的危害显然与鄱阳湖区的生态经济发展战略相悖。在鄱阳湖区农村面源污染控制方面,人工湿地技术是有效的控制手段,但人工湿地在运行中经常出现由于碳源不足而抑制湿地对污染物净化能力的现象,因此从节省运行费用角度从廉价易得、环境友好的植物秸秆(茭白和芦苇)中筛选最佳植物碳源向多级复合垂直流人工湿地中投加用来提高人工湿地污染物净化能力。本研究主要分为植物碳源的筛选和其对多级复合垂直流人工湿地净化污染物能力的影响。实验结果:
     (1)茭白秸秆中碳、氮元素的质量分数分别为18.09%和0.339%,芦苇秸秆中碳、氮元素的质量分数分别为33.13%和1.311%,两种秸秆中所含碳元素是可释放的并可作为人工湿地的有效碳源。
     (2)在80d植物秸秆静态释放实验中发现芦苇秸秆中碳元素释放曲线较平缓,是较好的持久植物碳源材料。
     (3)通过实验对比,芦苇秸秆相较茭白秸秆更适合用作人工湿地的植物碳源,且添加量为1.0kg/m2时最佳。
     (4)将1.0kg/m2的芦苇秸秆添加至多级复合垂直流人工湿地中,发现①系统出水COD浓度稳定,COD的去除率稳定在90%左右。②系统对N03--N的去除率从76.67%提高到了94.7%,植物碳源的添加有效地促进了系统内微生物的反硝化反应,提高了系统将N从湿地中彻底脱除的能力。③对系统净化NH3-N的能力影响较小,去除率仅从添加碳源前的81%提高到85.5%。④植物碳源添加后缓解了系统内NO2--N的积累状况,也促进了N素从湿地中的彻底去除。⑤植物碳源的添加有效的将TN去除率从66.85%提高到了86.13%,进一步验证了植物碳源在提高湿地脱氮能力的可行性及有效性。⑥对系统的除磷能力有正面促进作用,因系统里碳源量的增加促进微生物的生长,从而提高微生物对P素的吸收及转化,促进了PH3气体的释放。
With the rapid development of Chinese rural economy in recent years, the rural non-point source pollution (NPS pollution) gradually becomes a serious threat to the receiving water bodies. In Poyang Lake region in Jiangxi, the harm to the lake water quality which caused by the rural NPS pollution is against the ecological&economic development strategy in Poyang Lake region. The constructed wetland technology is effective means of controlling the rural NPS pollution in Poyang Lake region. In constructed wetlands, regularity the lake of carbon source restrains the ability of removal contaminates. To saving operating costs, a best carbon source is chose from the cheap and easy, environmentally friendly plant (water bamboo and reeds) straws. The best carbon source is added to the multi integrated vertical flow constructed wetland (MIVFCW) to improve its capacity of removal contaminates. This study has two parts, a choosing of plant carbon source and the effect on the ability of removal contaminates to the MIVFCW. These results are got:
     (1)The water bamboo straws C and N take18.09%and0.339%respectively in weight. The reeds straws C and N take33.13%and1.311%respectively in weight. And the C in these two straws can be released and used as availability carbon source in constructed wetland.
     (2)In the plant straws static release experimental for80days, we find that the C release curve of the reeds straws is relatively flat. And the reeds straws should be the better permanence plant carbon source materials.
     (3)By the comparison in small constructed wetlands, the better kind and adding weight are confirmed, that is the reeds straws at1.0kg/m2adding weight.
     (4)After adding the reeds straws at1.0kg/m2adding weight to the MIVFCW, we can find those:①COD of the effluent water from the MIVFCW is stable, and the removal rate of COD is maintained at about90%.②It improves the removal rate of NO3--N from76.67%to94.7%. It advances the microorganism's denitrification reaction, and enhances the capacity of removal N from MIVFCW radically.③It has less effect on the capacity of removal NH3-N from MIVFCW, only improves the removal rate of NH3-N from81%to85.5%.④It can remission accumulation of NO2--N, and enhances the capacity of removal N from MIVFCW radically too.⑤It has a positive role in promoting P removal capacity of the system. Because the carbon source amount promotes the growth of microorganisms, the absorption and transformation of the microorganisms of P is improved, then the release of PH3is promoted.
引文
[1]何华燕.规模化养猪废水新型生物脱氮除磷技术研究[D].南昌大学,2011.
    [2]职锦,郭太龙,廖义善,等.非点源污染对人类健康影响的研究进展[J].生态环境学报,2010,19(6):1459-1459.
    [3]NOVOTNY V. Diffuse pollution from agricultural:a worldwide outlook [J]. Water Science and Technology,1999,39(3):1-13
    [4]D.L. Anderson, E.G. Flaig. Agricultural best management practices and surface water improvement and management.Water Science and Technology.1995,31(8):109-121.
    [5]蒋茂贵,方芳,望志方.MCR技术在农业面源污染防治中的应用[J].环境科学与技术.2001.11,(增):4-5.
    [6]史志华,蔡崇法,丁树文,等.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报.2002.7,22(4):474-477.
    [7]曹秀玲.“三湖”农业面源污染现状、问题及防治对策[J].中国沼气.2003,21(2):48-50.
    [8]潘洁.山区农业面源污染对人体健康的影响[J].2003,(2):26-27.
    [9]Zhang WW, Shi MJ, Huang ZH. Controlling non-point-source pollution by rural resource recycling. Nitrogen runoff in Tai Lake valley, China, as an example[J]. Sustainability Science, 2006,1(1):83-89.
    [10]王燕子.鄱阳湖区社会经济和谐发展对策研究[D].南昌:南昌大学,2006,9-17.
    [11]向速林.鄱阳湖区域非点源污染控制技术研究[J].安徽农业科学,2009,37(3):1292-1293.
    [12]廖萍,黄国勤,黄秋萍.鄱阳湖区发展畜牧业造成的农业面源污染及其防治对策[J]江西农业大学学报,社会科学版,2006,5(1):76-78.
    [13]刘峰.多级跌水复合垂直流湿地控制农村面源污染研究[D].南昌大学.2011.
    [14]万金保,刘峰,汤爱萍,等.小流域典型面源污染最佳管理措施(BMPs)研究[J].水十保持学报.2010.12,24(6):181-184.
    [15]李伟华,袁仲,张慎举.农业面源污染现状与控制措施[J].安徽农业科学,2007,35(33):10785-10785.
    [16]杨淑静,张爱平,杨世绮,等.农业非点源污染现状分析及国内外研究进展[J].中国农业气象,2009,30(增1):83-84.
    [17]唐文魁,康彩霞,龙华丹.我国农业非点源污染现状研究[J].水科学与工程技术,2011,(1):33-35.
    [18]贾蕊,陆迁,何学松.我国农业污染现状的现状、原因及对策研究[J].中国农业科技导报,2006,8(1):62-62.
    [19]刘冬梅,管宏杰.美、日农业面源污染防治立法及对中国的启示与借鉴[J].世界农业,2008,(4):35-37.
    [20]裴永辉.农业面源污染控制的生态补偿机制研究[D].北京:中国农业科学院,2010.
    [21]张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学 报,2005,18(1):16-20.
    [22]孔繁翔.环境生物学[M].北京:高等教育出版社,2000:290-290.
    [23]边金钟,王建华,王洪起.于桥水库富营养化防治前置库对策可行性研究[J].城市环境与城市生态,1994,7(2):5-10.
    [24]冯孝杰.三峡库区农业面源污染环境经济分析[D].西南大学,2005.
    [25]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用[J].环境污染与防治,2006,28(4):279-282.
    [26]方志发,王飞儿,周根娣BMPs在千岛湖流域农业非点源污染控制中的应用[J].农业环境与发展,2009,(1):69-72.
    [27]李家科,李怀恩,李亚娇,等.基于Ann AGNPS模型的陕西黑河流域非点源污染模拟[J].水土保持学报,2008.12,22(6):81-88.
    [28]章茹.流域综合管理之面源污染控制措施(BMPs)研究[D].南昌大学,2008.
    [29]万金保,兰新怡,汤爱萍.多级表面流人工湿地在鄱阳湖区农村面源污染控制中的应用[J].水士保持通报.2010.10,30(5):118-121.
    [30]Office of Water, US EPA. Subsurface Flow Constructed Wetlands for Wastewater Treatment: A Technology Assessment.1993,832-R-93-008 (4204).
    [31]Vymazal J, Brix H, Cooper P F,et al. Removal mechanisms and types of constructed wetlands. In:Vymazal J, Brix H, Cooper P F,et aleds. constructed wetlands for wastewater treatment in Europe. Leiden:Backhuys Publishers,1998.17-66.
    [32]Dierberg F E, DeBusk TA, Jackson S D,et al. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff:response to hydraulic and nutrient loading. Water Research,2002,36(6):1409-1422.
    [33]Verhoeven J TA, Meuleman A FMWetlands for wastewater treatment:Opportunities and limitations. Ecological Engineering,1999,12(1-2):5-12.
    [34]USEPA. Guiding principles for constructed treatment wetlands:providing for water quality and wildlife habit[M].Washington DC:U S EPA, Office of Wetlands,O2 ceans and Watershed,2000.
    [35]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88-92.
    [36]吴亚英.人工湿地在新西兰的应用[J].江苏环境科技,2000,13(3):32-33.
    [37]Li Xianfa, Jiang Chuncai. Constructed Wetland Systems for Water Pollution Control in North China[J].Wat.Sci.Tech,1995,32(3):349-356.
    [38]潘科,杨顺生,陈钮.人工湿地污水处理技术在我国的发展研究[J].四川环境,2005,24(2):71-75.
    [39]丁廷华.芦苇湿地处理系统示范工程[J].环境科学,1992,13(2):8-13.
    [40]石雷,王宝贞.深圳沙田潜流式人工湿地的运行效能研究[J].哈尔滨商业大学学报,自然科学版,2004,20(6):696-700.
    [41]周兴伟.“生物絮凝+三级人工湿地”组合工艺处理小城镇高浓度生活污水[D].重庆大学,2008.
    [42]张迎颖,丁为民,陈豪.人工湿地填料的静态吸附特性和动态除磷能力研究[J].江苏农业科学,2009(3):416-418.
    [43]Defu Xu, Jianming Xu, JianjunWu. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems[J].Chemosphere 2006, (63):344-352.
    [44]Gabriel Maltais-Landry, Roxane Maranger, Jacques Brisson. Effect of artificial aeration and macrophyte species on nitrogen cycling and gas flux in constructe dwetlands[J]. ecologicalengineering,2009, (35):221-229.
    [45]F. Chazarenca. B, V. Gagnona, Y. Comeaub, J. Brissona, Effect of plant and artificial aeration on solids accumulation and biological activities in constructed wetlands[J]. ecological engineering 2009, (35):1005-1010.
    [46]Lie-yu Zhang, Lan Zhang, Yong-ding Liu, Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater[J].Desalination,2010, (250):915-920.
    [47]刘红玉.中国湿地资源及其保护研究.资源科学,1999,21(6):34-37
    [48]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [49]贺峰,吴振斌,陶菁,等.复合垂直人工湿地污水处理系统硝化和反硝化[J].环境科学,2005,26(1):47-50.
    [50]B.Batch biological denitrification using Arundodonax, Glycyrrhiza glallra. and Gracilaria vemieosa as carbon source[J]. Proeess Bioche mistry,2006,41:1289-1295.
    [51]方焰星,何池全,梁霞,等,曝气对人工湿地氮去除效果的影响[J].湿地科学,2011.9,9(3):270-276.
    [52]崔理华,郑离妮,楼倩,等.不同回流比对无植物垂直流人工湿地除氮效果的影响[J].环境工程学报,2009.7,3(7):1170-1174.
    [53]刘芬芬,王德建.垂直流人工湿地出水口位置与植物种类对农村生活污水净化效果的影响[J].中国生态农业学报2011.7,19(4):912-917.
    [54]崔理华,卢少勇.污水处理的人工湿地构件技术[M].北京:化学工业出版社,2009.
    [55]何成达,谈玲,葛丽英,等.波式潜流人工湿地处理生活污水的实验研究[J].农业环境科学学报,2004,23(4):766-769.
    [56]何成达,王惠民,钱小青,等.波式潜流人工湿地基质与污水磷素去除关系研究[J].农业环境科学学报,2006,25(1):175-178.
    [57]Mahlum T, Stalnacke P. Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater:effects of temperature, seasons, loading rates and input concentrations[J].Water Science Technol,1999,40(3):273-281.
    [58]Mitterer-Reichmann G M. Data evaluation of constructed wetlands for treatment of domestic wastewater:Proc 8th Internat Conf Wetland Systems for Water Pollution Control[C].IWA and University of Dar es Salaam,2002:40-46.
    [59]卢建.人工湿地有机物处理工艺设计关键与参数优化实验研究[D],暨南大学,2010.
    [60]尹振娟.人工湿地营养盐处理工艺设计关键与参数优化实验研究[D],暨南大学,2010.
    [61]吴振斌,詹德吴,张晟,等.复合垂直流构建湿地的设计方法及净化效果[J].武汉大学学 报(工学版),2003,36(1):12-16.
    [62]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1718-1723.
    [63]佘丽华,贺锋,徐栋,等.碳源调控下复合垂直流人工湿地脱氮研究[J].环境科学,2009.11,30(11):3300-3305.
    [64]王锐.提高垂直流人工湿地氨氮去除效果的技术研究[D].北京化工大学,2009.5.
    [65]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.
    [66]Spieles D J,Mitsch W J. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:A comparison of low-and high-nutrient riverine systems[J]. Ecological Engineering,2000,14:77-91.
    [67]黄娟,王世和.芦苇潜流人工湿地氮转移规律的定量分析[J].安全与环境工程,2008,15(3):41-44.
    [68]Stottmeister U, Wiebner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J].Biotechnology Advances,2003(22): 93-117.
    [69]莫凤鸾.高效垂直流人工湿地污水处理系统实践研究[D].中南林学院,2004.6.
    [70]Rutishauser B V, Bachofcn R. Phosphine formation from sewage sludge cutures[J]. Anaerobe,1999(5):525-531.
    [71]Roels J, VAIL L H, VERSTRAETE W. Determination ofphosphine in biogas and sludge at ppt-levels with gas chromamgraphy-thermionic specific detection[J].Journal of Chromatography A,2002,952:229-237
    [72]Roels J, VERSTRAETE W. Biological formation of volatile phosphorus compounds [J]. Bioresource Technology,2001,79:243-250
    [73]Roels J, VERSTRAETE W. Occurence and origin of phosphine in landfill gas[J].Sci Total Environ,2004,327:185-196.
    [74]张晟,贺锋,成水平,等.八种不同工艺组合人工湿地系统除磷效果研究[J].长江流域资源与环境,2008.317(2):295-300.
    [75]Wang Xiaoa,b, Han Bao-pingb, Shi Ying-zhengb, et al.Advanced wastewater treatment by integrated vertical flow constructed wetland with vetiveria zizanioides in north China[J].Procedia Earth and Planetary Science,2009(1):1258-1262.The 6th International Conference on Mining Science & Technology
    [76]袁林江,韩瑞瑞,韩玮.间歇进水复合垂直流人工湿地的净化特性研究[J].西安建筑科技大学学报(自然科学版),2008.8,40(4):521-526.
    [77]Yong Jun Zhao, Zhang Hui, Xu Chao et al. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater[J]. Ecological Engineering. 2011,(37):1546-1554.
    [78]张超兰,陈秀娟,韦必帽,等.改进型和传统型复合垂直流人工湿地的净化效果研究[J].农业环境科学学报2009,28(10):2161-2166.
    [79]Guenter Langergraber, Klaus Leroch, Alexander Pressl, Kirsten Sleytr, Roland Rohrhofer, Raimund Haberl. High-rate nitrogen removal in a two-stage subsurface vertical flow constructed wetland[J]. Desalination 2009 (246):55-68.
    [80]黄德锋,李田.复合垂直流湿地氨氧化菌种群结构及活性的空间分布[J].环境科学,2008.8,29(8):2160-2165.
    [81]雷志洪,戴知广,陈志诚.高效复合垂直流人工湿地系统处理效果与污水同用工程[J].给水排水,2002,28(9):22-24.
    [82]刘婧,邢奕,金相灿.复合垂直流湿地去除模拟河水中氮磷的研究[J].环境工程技术学报,2012.1,2(1):29-35.
    [83]吴振斌,徐光来,周培疆.复合垂直流人工湿地污水氮的去除效果研究[J].农业环境科学学报,2004,23(4):757-760.
    [84]徐光来.复合垂直流人工湿地对污水中氮去除效果研究[D].武汉大学,2004.5.
    [85]詹德吴,吴振斌,张晟,等.堵塞对复合垂直流湿地水力特征的影响[J].中国给水排水,2003,19(2):1-4.
    [86]Quan Z X, Jin Y S, Yin C R,et al. Hydrolyzed molasses as anexternal carbon source in biological nitrogen removal [J]. Bioresource Technology,2005,96(15):1690-1695.
    [87]Ovez B. Batch biological denitrification usingArundo donax, Glycyrrhiza glabra, and Gracilaria verrucosaas carbon source [J]. Process Biochemistry,2006,41(6):1289-1295.
    [88]Soares M, Abeliovich A. Wheat straw as substrate for water denitrification [J].Water Research,1998,32(12):3790-3794.
    [89]高景峰,彭永臻,王淑莹,等.不同碳源及投量对SBR法反硝化速率的影响[J].给水排水,2001,27(5):55-58.
    [90]章非娟,杨殿海,傅威.碳源对生物反硝化的影响[J].给水排水.1996,22(7):26-28.
    [91]秦麟源.废水生物处理[M].上海:同济大学出版社,1996
    [92]吴一平.初沉污泥水解产酸及其利用研究[D].西安建筑科技大学.
    [93]李基东.反硝化脱氮补充碳源选择与研究[D].同济大学,2007.8.
    [94]许文峰,李桂荣,汤洁.不同碳源对缺氧生物滤池生物脱氮的实验研究[J].吉林大学学报(地球科学版),2007.1,37(1):139-143.
    [95]谭洪新,刘艳红,周琪,等.添加碳源对潜流+表面流组合湿地脱氮除磷的影响[J].环境科学,2007.6,28(6):1209-1215
    [96]傅利剑.反硝化微生物生物学特性及其固定化细胞对硝态氮去除的研究[D].南京农业大学,2004.8.
    [97]Takahiro Yamashita, Ryoko Yamamoto-Ikemoto, Jianqing Zhu. Sulfate-reducing bacteria in a denitrification reactor packed with wood as a carbon source[J].Bioresource Technology, 2011 (102):2235-2241.
    [98]YiChen,YueWen,JingCheng. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass:Implications for denitrification in constructed wetlands[J].Bioresource Technology,2011(102):2433-2440.
    [99]soren Warnek, Louis A. Schipper, Denise A. Bruesewitz, Ian McDonald, Stewart Cameron. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed [J]. Ecological Engineering,2011.(37):511-522.
    [100]LU Songliu, HU Hongying, SUN Yingxue,et al. Effect of carbon source on the denitrification in constructed wetlands[J].Journal of Environmental Sciences 2009.(21): 1036-1043.
    [101]陈云峰,文辉,张彦辉.不同固态碳源用于反硝化去除污水处理厂尾水中硝态氮的研究[J].给水排水.2010,36(11):140-143.
    [102]徐锁洪,施巍.以稻壳为载体培养反硝化菌及硝酸盐氮的去除[J].大连铁道学院学报,2001.12,22(4):98-101.
    [103]陆松柳,胡洪营.人工湿地的反硝化能力研究[J].中国给水排水,2008,24(7):63-69.
    [104]Baker L.A.Design considerations and applications for wetland treatment of high-nitrate waters[J].Water Science and Technology,1998,38:389-395.
    [105]HuettDO, Morris SG, SmithGetal. Nitrogen and phosphorus removal from plantnursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research, 2005,39(14):3259-3272.
    [106]赵联芳,朱伟,赵建.人工湿地处理低碳氮比污染河水时的脱氮机理[J].环境科学学报,2006,26(11):1821-1827.
    [107]Lin YF, Jing SR, WangTWetal. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution. 2002,119(3):413-420.
    [108]杨思璐.潜流人工湿地启动器反硝化碳源补充技术研究[D].同济大学,2008.
    [109]Long M Nguyen.Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters[J]. Ecological Engineering. 2000,16(2):199-221.
    [110]王旭明,从二丁,罗文龙,等.固体碳源用于异养反硝化去除地下水中的硝酸盐[J].中国科学(B辑:化学).2008,38(9):824-828.
    [111]邵留,徐祖信,金伟,等.以稻草为碳源和生物载体去除水中的硝酸盐[J].环境科学.2009,30(5):1414-1419.
    [112]陈翔.固体碳源生物反硝化去除水源水中的硝酸盐[D].南京林业大学.2008.
    [113]蔡碧婧,谢丽,杨殿海.反硝化脱氮工艺补充碳源选择与优化研究进展[J].净水技术.2007,26(6):37-40.
    [114]魏星,朱伟,赵联芳,陈家伟.植物秸秆作补充碳源对人工湿地脱氮效果的影响[J].湖泊科学,2010,22(6):916-922.
    [115]Park JBK, C rags RJ, Sukias JPS. Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source[J]. Bioresource Technology, 2008,99(8):2711-2716.
    [116]赵联芳,朱伟,高青.补充植物碳源提高人工湿地脱氮效率[J].解放军理工大学学报(自然科学版).2009.12,10(6):644-649.
    [117]金赞芳,陈英旭,小仓纪雄.以棉花为碳源去除地下水硝酸盐的研究[J].农业环境科学 学报.2004,23(3):512-515.
    [118]姜应和,李超.树皮填料补充碳源人工湿地脱氮初步实验研究[J].环境科学.2001.1,32(1):158-164
    [119]国家环保局编委会.水和废水监测分析方法[M].第三版.北京:中国环境科学出版社,1997,96-120.
    [120]张朝升,张可方,韦伟,等.厌氧序批式工艺中磷化氢的释放规律[J].中国给水排水.2010.6,26(11):53-55
    [121]阎宁,金雪标,张俊清.甲醇与葡萄糖为碳源在反硝化过程中的比较.上海师范大学学报(自然科学版).2002,31(3):41-44
    [122]牛晓君.自然环境中磷化氢研究进展[J].中国沼气.2007,25(1):18-22.
    [123]袁东海,景丽洁,张孟群等,几种人工湿地基质净化磷素的机理[J],中国环境科学2004,24(5):614-617
    [124]Santee, US EPA."Design manual of constructed wetlands and aquatic plant systems for municipal wastewater treatment",1988, EPA 625/1-88/022:23-25.
    [125]Gersberg R M, Elkins B V, Goldman C R. Nitrogen removal in artificial wetlands[J]. Water Research,1983,17(9):1009-1014
    [126]Laber J, Perflex R, Haberl R. Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands[J]. Water Science and Technology,1997,35(5):71-77.
    [127]郑洁敏,牛天新.不同人工湿地填料对水体中磷素吸附能力的比较[J].杭州农业与科技,2009(2):32-34
    [128]徐和胜,付融冰,褚衍洋.芦苇人工湿地对农村生活污水磷素的去除及途径[J].生态环境2007,16(5):1372-1375.
    [129]王全金,李丽,李忠卫.四种植物潜流人工湿地脱氮除磷的研究[J].环境污染与防治.2008.2,30(2):33-36.
    [130]De vai I, FelfE ldy L, Wittner I, et al. Detection of phosphine:new aspects of the phosphorus cycle in the hydrosphere [J]. Nature,1988,333:343-345.
    [131]G lindemann D, Edwards M, Liu J A, et al. Phosphine in s oils,sludges, biogases and atmospheric implications2a review [J]. Ecol Eng,2005,24:457-463.
    [132]Han S H, Zhuang Y H, Liu J A, et al. Phosphorus cycling through phosphine in paddy fields [J]. Sci T otal Environ,2000,258:195-03.
    [133]1Feng Z H, S ong X X, Yu Z M. Seas onal and spatial distribution of matrix bound phosphine and its relationship with the environment in the Changjiang River Estuary, China [J].Mar P ollut Bull,2008,56:1630-1636.
    [134]耿金菊,王强,金相灿,等.太湖部分区域沉积物中磷化氢和微生物的分布[J].环境科学,2006,27(1):105-109.
    [135]Han S H, Wang Z J, Zhuang Y H, et al. Phosphine in various matrixes[J]. J Environ Sci, 2003,15:339-341
    [136]朱益新,丁丽丽,任洪强,等.结合态磷化氢在厌氧微生物产酸过程中的释放行为[J]环境科学.2005,26(4):139-142.
    [137]De vai I, Delaune R D. Evidence for phosphine production and emission from Louisiana and Florida marsh s oils [J]. Org G eochem,1995,23:277-279.
    [138]母清林,宋秀贤,俞志明.磷化氢在胶州湾沉积物中的分布特征[J].环境科学.2005,26(4):135-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700