用户名: 密码: 验证码:
樟树叶片氮同位素指示城市大气氮沉降
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于长期暴露在人为污染环境下,城市及其周边区域的生态环境相对脆弱,因而大气高N沉降的影响可能尤为显著。为了探讨维管束植物监测大气氮沉降的可行性,研究南昌市大气氮沉降的空间分布以及追溯其大气氮源,本论文测定了南昌市五个功能区的10个采样点155个樟叶样和22个根际土样品的氮含量和氮同位素值以及51个樟树叶片比叶面积和24个樟树叶片叶片面积。通过对不同功能区樟树叶氮含量和氮同位素的对比研究,揭示樟叶氮含量和氮同位素对环境因子和氮沉降变化的响应机制。进而运用不同影响条件下樟叶氮元素含量和氮同位素,并结合樟树叶年龄、樟树叶生长树冠条件以及生长土壤状况,对南昌地区的大气氮沉降进行了详细研究,探讨了樟树叶同位素方法在环境监测和大气氮沉降研究中应用的影响条件,并为城市氮污染的防治提供了地球化学依据,得到了一些有意义的发现和创新点。
     (1)不同功能区樟树叶氮含量和氮同位素的比较
     通过对比各个功能区中樟树叶的氮含量,我们发现居民区樟树叶氮含量是各功能区中最低的;除了高速路,其它公路附近樟树叶的氮含量都低于工业区。该结果显示樟树叶氮含量与所在功能区的氮沉降强度变化情况基本一致,维管束植物可以作为大气氮沉降的指示生物。分析各功能区樟树叶的氮同位素值发现,火电厂(-2.59‰-3.57‰)、公路(-4.42‰-3.04‰)、市区居民区(-0.79-2.52‰)等采样点樟树叶的δ15N随叶龄增大而增大,且整体偏正;氨厂采样点樟树叶的δ15N随叶龄增大而降低,且整体偏负(-9.85±0.62‰);梅岭、前湖采样点樟树叶的δ15N基本不随叶龄发生变化。这可能说明前三者的大气氮沉降主要是燃料燃烧所产生的,与氨厂氮沉降源有本质区别,同时表明利用不同叶龄樟树叶氮同位素间变化规律可以定性分析氮沉降来源。对所有樟树叶样品的δ15N和N%拟合发现无相关性,表明南昌市大气氮沉降来源复杂多样。
     (2)距污染源不同距离上樟树叶氮含量和氮同位素的空间分布
     通过对南昌市两典型氮点源(江西氨厂和昌樟高速路)附近樟树叶氮素分析发现,樟树叶氮含量与距排放源距离关系密切,樟树叶氮含量随距离的增大而降低。氨厂附近樟树叶的δ15N整体偏负,而且其樟树叶的δ15N随距离增大而增大,随树叶年龄的增大而降低,且树底叶片的δ15N要高于树顶。这些结果都表明氨厂附近樟树叶吸收了大气中来自氨厂的大量δ15N偏负的氨。高速路附近樟树叶的δ15N整体偏正(-4.60-3.04%o),且距离公路最近的樟树叶δ15N最偏正,在离公路最远的160m处樟树叶δ15N最偏负,这反映了离公路近的樟树叶吸收了大量的来自公路的偏正的含氮化合物。
     (3)其它影响因素
     叶片面积、土壤环境、季节等是影响樟树叶监测大气氮沉降的内因或外因,也可以根据这些影响因子分别了解大气氮沉降情况。分析部分樟树叶面积和比叶面积(SLA)发现:居民区樟树叶样品的SLA低于工业区,平均低6%;梅岭的叶片面积是所有功能区中最高的。表明高污染区植物叶片的SLA要高于低污染区或无污染区;低污染区较高污染区植物叶片面积大。通过分析污染区和非污染区樟树叶与根际土的N%和δ15N,发现各区的N%的相关性显著,而只有非污染区的樟树叶和根际土δ15N相关性显著,这表明污染区氮沉降对樟树叶的生长影响巨大。对梅岭狮子峰脚下春秋季节的樟树叶样品进行分析,分析结果表明,除嫩叶外春季樟树叶氮含量(2.36%)略低于秋季(2.49%),但并没有显著差异(p>0.05)。春季(-0.34±0.23‰)樟树叶氮同位素值显著低于秋季(0.31±0.23‰)(p<0.05),这可能是樟树叶在春季和秋季吸收了不同大气δ15N氮沉降所导致的。关于季节对樟树叶示踪大气氮沉降的影响有待进一步的研究。
With the industry economic and other human activities development, atmospheric nitrogen deposition which has caused people's attention caused a series of ecological damage at city area. In order to discuss the reliability of vascular plants used as biological indicator to monitor atmospheric nitrogen pollution,the spatial distribution of atmospheric nitrogen deposition of Nanchang city and trace atmospheric nitrogen source, this paper packed 155 camphor tree leaves and 22 soil samples in 10 sampling sites of five functional zones in Nanchang city,and measured their nitrogen contents,nitrogen isotope values, specific leaf area and leaf area.By combining plant bionidicator method with isotopic technique, this paper was mainly contrast theirδ15N in camphor tree leaves of different functional zones for indicating environmental conditions and atmospheric N deposition. By investigating factors affecting leaves isotopic signatures, the mechanisms of leaves isotopic responses to environmental factors and N deposition were disccussed. By using elemental contents and isotopes in camphor tree leaves, and combining with other factors,N deposition at Nanchang area was systematically studied.This paper has deepened the application of leaves isotopes for monitoring environment and N deposition, and it has provided geochemical references for the prevention and control of N pollutants at city area. Some significant innovations have been obtained.
     To contrast N% andδ15N in camphor tree leaves of different functional zones:The tissue nitrogen content of residential area was higher than other functional zones and besides motorway,the tissue N% of traffic zones was less than that of industrial zones.It appeared that where atmospheric nitrogen concentration is high, tissue nitogen content of leaves was also high, indicating vascular plants can be used as bio-indicator to monitor atmospheric nitrogen pollution.The older leaves had moreδ15N than the younger leaves of coal-based power plant (-2.59%o-3.57%o), highway (-4.42%o-3.04%o) and residential area (-0.79-2.52%o). However, Ammonia Plant(-9.85±0.62‰)had the most negativeδ15N, reflecting that vascular plants can be used as bio-indicator to monitor atmospheric nitrogen pollution source. Tissue nitrogen isotope and nitrogen content of leaves showed no correlation in Nanchang city,which also reflected the complexity of nitrogen sources in Nanchang city.
     To contrast N% andδ15N in camphor tree leaves of points in different distances from nitrogen point source:In Ammonia Plant and motorway area,The tissue nitrogen content in the nearer point to emission source was more than the further points,indicating that the nearer to the emission source,the more serious nitrogen deposition.In Ammonia Plant,the nearer to emission source,the more negativeδ15N in the leaves, and more negativeδ15N in leaves in the tree tops than that in the tree bottoms.It reflected that the negativeδ15N of ammonia were from Ammonia Plant. However, in the motorway area, the nearer to motorway, the more positiveδ15N in the leaves, and the more positveδ15N in leaves in the tree tops than the bottoms,indicating the positiveδ15N of nitrogen-containing compound from vehicles.
     Some influencing factors of using camphor tree leaves to monitor nitrogen deposition:some influencing factors such as the leaf area,the soil environment and the season were studied to get more information about using camphor tree leaves to monitor nitrogen deposition.It was found that there were larger specific leaf area(LSA) of leaves in industrial areas than that in residential area and the largest area(S) of leaves in Meiling,infecting that leaves in pollution area had larger LSA and smaller S.Tissue nitrogen and soil nitrogen showed a linear correlation y=0.27+5.60 x (R2=0.621,p<0.01)in Nanchang city. However,onlyδ15N of leaves and soil had linear correlation in no-pollution area, insteading of pollution area.It could be due to influence of the pollution atmosphere coming from the pollution area on the leaves.This study analysed leaves of Meiling packed in spring and fall. The analysis showed that there was no significantly difference in tissuse nitrogen content between two seasons,andδ15N of leaves in spring(-0.34±0.23%o) was significantly lower (p<0.05) than that in fall (0.31±0.23%o),possibly owing to the different sources in two seasons,which also needs more evidence.
引文
[1]朱兆良,邢光熹.氮循环:维系地球生命生生不息的一个自然过程[M].北京:清华大学出版社,2002.
    [2]Matson P, Lohse KA, Hall SJ.The globalization of nitrogen deposition:consequences for terrestrial ecosystems[J]. Ambio,2002,31(2):113-119.
    [3]Vitousek P M, Aber J D, Howarth R W, Likens G E, Matson P A, Schindler D W, Schlesinger W H, Tilman D G.Human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological Applications,1997,7:737-750.
    [4]Galloway JN,Zhao DW, Xiong, J L, Likens, G E.Acid rain:China, United States, and a remote area[J].Science,1987,236:1559-1562.
    [5]潘丽娜.乐清市酸雨成因分析与控制对策研究[D].杭州:浙江大学,2009.
    [6]中国电力投资集团公司.中国燃煤电站脱硫和脱硝技术现状与发展[A].见:中国科协2004年学术年会电力分会场暨中国电机工程学2004年学术年会论文集.2004.260-264.
    [7]Klaassen G.Past and future emissions of ammonia in Europe.Part 1 of a report to ministry for Public Housing, Physiscal Planning and Environment, Project No.64.19.23.01 March 1991. International Institute for Applied Systems Analsysis, A22361 Laxenburg, Austria.
    [8]黄建国.植物营养学[M].中国林业出版社.北京.2003.
    [9]肖红伟,肖化云,唐从国,等.贵阳地区氨排放量估算[J].地球与环境,2010,38(1):21-25.
    [10]Van Breemen N.Nitrogen cycle:natural organic tendency[J].Nature,2002,415:381-382.
    [11]Brunner I, Brodbeck S.Response of mycorrhizal Norway spruce seedlings to various nitrogen loads and sources[J].Environmental Pollution,2001,114:223-233.
    [12]Schulze, E.-D.Air pollution and forest decline in a spruce (Picea abies) forest[J].Science,1989, 244:776-783.
    [13]Holland EA, Braswell BH, Sulzman J, Lamarque JF.Nitrogen deposition onto the United States and Western Europe:Synthesis of observations and models[J].Ecol Appl,2005,15:38-57.
    [14]Imogen SK.Pearce RW.Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath[J].Biological Conservation,2002,104(1):83-89.
    [15]Kochy M, Wilson S D.Nitrogen deposition and forest expansion in the northern great plains[J]. Journal of Ecology,2001,89:807-817.
    [16]Fields S.Cycling out of Control Environmental Health Perspectives[J].Global nitrogen,2004, 112:A556-A563.
    [17]李思亮,刘丛强,胡健,等.贵阳雨水无机氮沉降的氮、氧同位素特征[J].地球化学,2006(25)增刊:57-59.
    [18]郑淑蕙.稳定同位素地球化学分析[M].北京大学出版社,北京:1986.
    [19]Schulz S, Gehre M, hofmann D, et al.Nitrogen isotope ratios in pine bark as an indicator of N emission from an anthropogenic sources[J].Environmental Monitoring and Assessment,2001,69: 283-297.
    [20]Heaton THE.Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review[J].Chemical Geology,1986,59:87-102.
    [21]Galloway J N,Cowling E B.Reactive nitrogen and the world:200 years of change[J].Ambio, 2002,31:64-71.
    [22]刘学炎.苔藓碳氮稳定同位素对环境条件和大气氮沉降的指示研究[D].北京:中国科学院,2008.
    [23]洪业汤,张鸿斌,朱咏煊,等.中国煤的硫同位素组成特征及燃煤过程硫同位素分馏[J].中国科学(B辑),1992,(8):868-873.
    [24]倪建宇.贵州晚二叠世煤中硫及微量元素的组成特征[D].贵阳:中国科学院地球化学研究所博士学位论文.1997.
    [25]肖化云,刘学炎,李有谊,等.中国煤炭和城市苔藓的氮同位素组成特征[J].矿物岩石地球化学通报,2007,(z1):427.
    [26]Rigby, D., Batts, B.D.The isotopic composition of nitrogen in Australia coals and shales[J]. Chemical Geology,1986,58:273-282.
    [27]陈传平,梅博文,朱翠山.塔里木天然气氮同位素组成与分布[J].地质地球化学,2001,29(4):46-49.
    [28]陈传平,梅博文,曹亚澄.中国部分盆地原油氮同位素地球化学特征[J].中国科学(D辑),2004,34(82):721-727.
    [29]何家雄,陈伟煌,李明兴.莺—琼盆地天然气成因类型及气源剖析[J].中国海上油气(地质),2000,14(6):398-405.
    [30]肖化云,刘丛强.大气环境氮同位素示踪及生物监测[J].地学前缘.2010,17(2):417-424
    [31]Hoering TC, Moore, H.E.The isotopic composition of the nitrogen in natural gases and associated crude oils[J].Geochimica et Cosmochimica Acta,1958,13:225-232.
    [32]Xiao HY, Liu CQ.The elemental and isotopic composition of sulfur and nitrogen in Chinese coals[J].Organic geochemistry,2010,(in press)
    [33]Freyer HD.Seasonal trends of NH4+ and NO3-nitrogen isotope composition in rain collected at Julich, Germany[J].Tellus,1978,30:83-92.
    [34]Heaton, T.H.E.15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa[J]. Atmospheric Environment,1987,21:843-852.
    [35]Moore.H.The isotopic composition of ammonia, nitrogen dioxide, and nitrate in the atmosphere [J]. Atmospheric Environment,1977,11:1239-1243.
    [36]Ammann M,Siegwolf R,Pichlmayer F,et al.Brunold.Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles[J].Oecologia,1999,118(2):124-131
    [37]Heaton, THE.Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review[J].Chemical Geology,1986,59:87-102.
    [38]Heaton, T.H.E.15N/14N ratios of NOx from vehicle engines and coal-fired power stations[J]. Tellus,1990,42B:305-307.
    [39]Kendall C.Tracing nitrogen sources and cycling in catchments hydrology[M].Elsevier Science B.V, Amsterdam,1998.
    [40]Viney P A,Paul A R,George C M, et al.Atmospheric nitrogen compounds II:emissions, transport, transformation,deposition and assessment[J].Atmospheric Environment,2001,35, 1903-1911.
    [41]Russell KM, James NG, Stephen AM, Jennie L,et al.Sources of nitrogen in wet deposition to the Chesapeake Bay region[J].atmospheric environment,1998,32(14-15):2453-2465.
    [42]肖化云,刘丛强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征[J].地球化学,2003,32(3):248-254.
    [43]Evans R D.Physiological mechanisms influencing plant nitrogen isotope composition[J].Trends in Plant Science,2001,6:121-126.
    [44]刘学炎,肖化云,刘丛强.植物叶片氮同位素(δ15N)指示大气氮沉降的探讨.矿物岩石地球化学通报,2007,26(4):405-409.
    [45]Hogberg P,Hogberg MN,Quist ME,et al. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris[J].New Phytologist,1999, New Phytol.,142:569-576.
    [46]Cheng HH,Bremner JM;Edwards AP.Variations of Nitrogen-15 Abundance in Soils[J].Science, 1964,146(3651):1574-1575.
    [47]Lajtha K, Michener H R.Stable isotopes in ecology and environmental science[M]. Wiley-Blackwell,1994.
    [48]Peiiuelas J, Filella I, Terradas J. Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain) characterized by leaf δ13C and δ15N[J]. Acta Oecologicn,1999,20 (2):119-123.
    [49]Garten C T J.Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed.Ecology,1993,74:2098-2113.
    [50]Mariotti A.Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements [J]. Nature,1983,303:685-687.
    [51]Hubner H.Isotope effects of nitrogen in the soil and biosphere[M].In:Fritz P and Fontes J C (eds.).Handbook of environmental isotope geochemistry, The terrestrial environment, Elsevier, 1986,2b:361-425.
    [52]Gebauer G, Giesemann A, Schulze ED,et al.Isotope ratios and concentrations of sulfur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulfur and nitrogen compounds[J].Plant and Soil,1994.164:267-281.
    [53]Guerrieri M R,Siegwolf T W, Saurer M.Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach[J].Atmospheric Environment, 2009,43:410-418.
    [54]Lindberg S E, Lovett G.M, Richter D D, Johnson D W.Atmospheric deposition and canopy interactions of major ions in a forest[J].Science,1986,231:141-145.
    [55]Gebauer G, Schulze E D.Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria[J]. oecologia, 1991,87(2):198-207.
    [56]刘学炎,肖化云,刘从强,等.碳氮稳定同位素指示苔藓生境特征以及树冠对大气氮沉降的吸收[J].地球化学,2007.36(3):286-294.
    [57]Heaton THE, Spiro B, Robertson SMC.Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition[J].Oecologia,1997,109:600-607.
    [58]Garten C T Jr, Schwab A B, Shirshac T L.Foliar retention of 15N tracers:implications for net canopy exchange in low-and high-elevation forest ecosystems[J].Forest Ecology and Management,1998,103:211-216.
    [59]Del Arco JM,Esbudeto A,Gattido M B.Effects of site characteristic on nitrogen retranslocation from senescing leaves[J].Ecology,1991,72(2):701-708.
    [60]Pugnaire F I,Chapin Ⅲ F S,Controls over nutrient resorption from leaves of evergreen Mediterranean species[J].Ecology,1993,74(1):124-129.
    [61]Garten C T. Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed[J].Ecology,1993,74(7):2098-2113
    [62]刘学炎,肖化云,刘从强,等.苔鲜新老组织及其根际土壤的碳氮元素含量和同位素组成(δ13C和δ15N)对比[J].植物生态学报,2007,31(6):1168-1173
    [63]Kuang YW,Wen DZ, Lia J,et al.Homogeneity of δ15N in needles of Masson pine (Pinus massoniana L.) was altered by air pollution[J].Environmental Pollution,2010,158:1963-1967.
    [64]Stewart G.R., Aidar M.P.,Joly C.A..Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil [J].Oecologia,2002,3:468-472.
    [65]Cape JN,Tang YS, Dijk NV, et al.Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition[J].Environmental Pollution,2004,132: 469-478.
    [66]Sutton MA,Milford C,Dragosits U, Place CJ.Dispersion, deposition and impacts of atmospheric ammonia:quantifying local budgets and spatial variability[J].Environmental Pollution,1998. 102:349-361.
    [67]Raunemaa T., Hari P., Kukkonen J.Analysis of the bark of scots pine as a method of studying environmental changes[J].Water, Air or Soil Pollution,1987,32:445-453.
    [68]Stocker G.Elementgehalte von Kiefern-und Fichtenborke-Indikation der Immissions-belastungvon Nadelwald-Okosystemen[J].Arch.fur Nat.-Lands,1993,32,183-207.
    [69]Jung K, Gebaue G,Gehre M,et al.Anthropogenic impacts on natural nitrogen isotope variations on pinus sylvestris stands on an industrially area[J].Environmental Pollution,1997,97:175-181.
    [70]Power SA,Collins CM.Use of Calluna vulgaris to detect signals of nitrogen deposition across an urban-rural gradient[J].atmospheric environment,2010,44:1772-1780.
    [71]刘学炎,肖化云,刘从强,等.石生苔藓氮含量和氮同位素指示贵阳地区大气氮沉降的空间变化和来源[J].环境科学,2008,29(7):1785-1790.
    [72]陈茂铨,陈兵红,王东明.工业污染对樟树生理特性的影响[J].浙江农业学,2009,(3):590-592
    [73]Yoneyama T, Handley L L, Scrimgeour C M, Fisher D B, Raven J A.Variations of the natural abundances of nitrogen and carbon isotopes in Triticum aestivum, with special reference to phloem and xylem exudates[J].New Phytologist,1997,137:205-213.
    [74]Robinson D, Handley L L, Scrimgeour C M.A theory for 15N/14N fractionation in nitrate-grown vascular plants[J].Planta,1998,205:397-406.
    [75]胡春燕,黄喜根,李春莲,等.南昌市酸雨污染特征及变化规律[J].江西农业大学学报(自然科学版),2002,24(5):689-691.
    [76]曾凯,居为民,涂良瑛,等.2006-2007年南昌市城郊地带的酸雨特征[J],农业环境科学学报2010,29(3):609-612.
    [77]李桂玲,石碧清.南昌市环境空气质量分析和控制[J].中国环境管理干部学院学报,2004,14(4):79-81.
    [78]朱仁果.苔藓组织硫含量和硫同位素指示江西省大气硫沉降规律及大气硫源[D],南昌大学,2010.
    [79]王文兴.中国酸雨成因研究[M].中国环境科学,1994,14(5):323-329.
    [80]林碧娜.南昌市酸性降水的污染特征研究[D].南昌大学,2008.
    [81]李祚泳.我国部分城市降水中离子浓度与pH值的关系研究[J].环境科学学报,1999,19(3):303-306
    [82]张龚.湖南省城市城市大气湿沉降化学与典型污染物特征研究[D].长沙:湖南大学,2004.
    [83]Migliavacca D, Teixeira EC, W iegand F,et al.Atmospheric Precipitation and Chemical Composition of an Urban Site, Guaiba Hydrographic Basin, Brazil[J].Atmospheric Environment, 2005,39:1829-1844.
    [84]Ito M, Mitchell M, Driscoll C T.Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York[J].Atmospheric Environment,2002, 36:1051-1062.
    [85]Okuda T, Iwase T, Uedaa H, et al.Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002[J].Science of the Total Environment,2005, 339:127-141.
    [86]Topcu S, Incecik S, Atimtay A.Chemical composition of rainwater at EMEP station in Ankara, Turkey[J].Atmospheric Research,2002,65:77-92.
    [87]Lee BK, Hong HS, Lee DS.Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J].Atmospheric Environment,2000,34:563-575.
    [88]Hu GP, Balasubramanian R, Wu CD.Chemical characterization of rainwater at Singapore[J].Chemosphere,2003,51:747-755.
    [89]Baez A, Belmont R, Garcia R, et al.Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico[J].Atmospheric Environment,2007,86:61-75.
    [90]Tu J, Wang H, Zhang Z, et al.Trends in chemical composition of precipitation in Nanjing, China, during 1992-2003 [J].Atmospheric Research,2005,73:283-298.
    [91]Wenche A, Shao M, Lei J, et al.Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003 [J].Atmospheric Environment,2007,41:1706-1716.
    [92]张苗云,王世杰,洪冰,等.大气降水化学的统计学分析—以浙江省金华市为例[J].环境化学, 2007,26(5):699-703.
    [93]杨复沫,贺克斌,雷雨.2001-2003年间北京大气降水的化学特征[J].中国环境科学2004,24(5):538-541.
    [94]牛或文,何凌燕,胡敏.深圳大气降水的化学组成特征[J].环境科2008,29(4):1014-1019.
    [95]Li CL, Kang SC, Zhang QG, et al.Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau[J].Atmospheric Research,2007,85:351-360.
    [96]何纪力,龙刚,黄云.江西省酸雨时空分布规律研究[M].中国环境科学出版社,2007:175-176.
    [97]Kolb KJ, Evans RD.Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous planttissues[J].New Phytologist,2002,156:57-64.
    [98]Johnny LB,Steven GM,Linda HP.Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US[J].Environmental Pollution,2007,149(3):303-314.
    [99]Perry E,Hickman GW.a survey to determine the leaf nitrogen concentrations of 25 landscape tree species[J] Journal of Arboriculture,2001,27(3):152-159.
    [100]Pardo LH, McNulty SG, Boggs JL,et al.Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US[J].Environmental Pollution,2007,149:293-302.
    [101]陶豫萍,吴宁,罗鹏,等.森林植被截留对大气污染物湿沉降的影响[J].中国生态农业学报.2007,15(4):9-12.
    [102]Schroder W, Holy M, Pesch R, et al.First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses [J].Atmospheric environment,2010,44: 3485-3491.
    [103]Raymond BA,Bassingthwaighte T,Shaw DP.Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss[J].Lichen and moss tissue chemistry, 2010,69:22-32.
    [104]Nikula S, Vapaavuori E,Manninen S.Urbanization-related changes in European aspen (Populus tremula L.):Leaf traits and litter decomposition[J].Environmental Pollution,2010,158: 2132-2142.
    [105]Saurer M, Cherubini P, Ammann M, Cinti BD, et al.First detection of nitrogen from NOx in tree rings:515N/14N study near a motorway[J].atomospheric environment,2004,38:2779-2787.
    [106]艾瑶,秦鸣,王淑芳,等.南昌市八一广场改造后交通流变化研究[J].交通安全,2005,(142):141-143.
    [107]Viskari EL, Kossi S and Holopaninen JK.Norway spruce and spruce shoot aphid as indicators of traffic pollution[J].Environmental Pollution,2000,107:301-314.
    [108]Chen Z, Chen Y, Du G, Wu X,et al.Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings[J].Journal of Zhejiang University,2010,11:190-191.
    [109]Siegwolf RTW,Matyssek R, Saurer M,et al.Stable isotopeanalysis reveals differential effects of soil nitrogenand nitrogendioxide on the water use efficiency in hybrid poplar leaves[J].New Phytolog,2001,149:233-246.
    [110]Buchmann N, Schulze ED and Gebauer.15N-ammonium and 15N-nitrate uptake of a 15-year-old Picea abies plantation N[J].Oecologia,1995,102:361-370.
    [111]Xiao HY, Tang CG, et al.Tissue S/N ratios and stable isotopes (delta(34)S and delta(15)N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China[J].Environ Pollut,2010,158(5):1726-1732.
    [112]Watanabe Y, Tobita H, Kitao M,et al.Effects of elevated CO2 and nitrogenon wood structure related to water transport in seedlings of two deciduous broad-leaved tree species[J].Trees-Structure and Function,2008,22:403-411.
    [113]Manninen S.Response of needle sulphur and nitrogenconcentrations of Scots pine versus Norway spruce to SO2 and NO2[J].Environmental Pollution,2000,107:421-436.
    [114]Warneck P, Chemistry of the Natural Atmosphere[M].New York:Academic Press.1988:429-515.
    [115]Dentener FJ, Crutzen PJA.three-dimensional model of the global ammonia cycle[J].J. Atmospheric Chemistry,1994,19:331-169.
    [116]Asman WAH., Jaarsveld J A A.variable-resolution transport model applied for NH3 in Europe[J]. Atmospheric Environment 26A,1992:445-464.
    [117]Pitcaim CER,Fowler D,Leith I,et al. Diagnostic indicators of elevated nitrogen deposition[J].Environmental Pollution,2006,144:941-950.
    [118]Pitcairn CER, Leith I D, Sheppard L J,et al.The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms.Environmental Pollution,1998,102:41-48.
    [119]Sally R.Gadsdon, Sally A.Power.Quantifying local traffic contributions to NO2 and NH3 concentrations in natural habitats[J].Environmental Pollution,2009,157:2845-2852.
    [120]Yang R, Hayashi K, Zhu B,et al.Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China[J].Science of The Total Environment, 2010,408:4624-4632.
    [121]Yu XL, Tang J, Li XS, Liang BS.Observation and analysis of SO2 and NO2 in clean air of western China.Quarterly Journal of Applied Meteorology 1997;8:62-8 in Chinese.
    [122]A Rondon, L Granat,, Studies on the dry deposition of NO2 to coniferous species at low NO2 concentrations[J].Tellus B,1994,46(5):339-352.
    [123]Lovett G M, Lindberg S E.Atmospheric deposition and canopy interactions of nitrogen in forests [J].Canadian Journal of Forest Research,1993,23:1603-1616.
    [124]Aherne J and Shaw DP.Impacts of sulphur and nitrogen depositionin western Canada [J].Journal of Limnology,2010,69:1-3.
    [125]袁静.浅析赣江滁槎断面水质状况[J].江西能源,2007,(4):19-25
    [126]Hogberg.Forests losing large quantities of nitrogen have elevated 15N:14N ratios [J]. Oecologia. 1990,84(2):229-231.
    [127]Hogberg P.15N natural abundance in soil-plant systems [J].New Phytologist,1997,137(2): 179-203.Sutton M A, Schjorring J K, Wyers G.et al.Plant-atmosphere exchange of ammonia. Philosophical Transactions:Physical Sciences and Engineering [J].The Exchange of Trace Gases between Land and Atmosphere,1995,351(1696):261-278.
    [128]M.Bernhardt-Romermann, M.Kirchne, T.Kudernatsch, et.al.Changed vegetation composition in coniferous forests near to motorways in Southern Germany:The effects of traffic-born pollution [J].Environmental Pollution.2006.143(3):572-581.
    [129]J Limpens.Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration[J].Oecologia,2003,135:339-345.
    [130]Stewart BA and Porter Lk.Ntrigen-sulfur relationships in wheat (Triticum aestivum L.), corn(Zea mays), and beans(Phaseolus vulgaris)[J].Agronomy Journal,1969,61:267-271.
    [131]Gratani L, Crescente MF and Petruzzi M.Relationship between leaflife-span and photosynthetic activity of Quercus ilex in polluted urban areas (Rome)[J].Environmental pollution,2000,110: 19-28.
    [132]Moraes RM, Klumpp A, Furlan CM, et al.Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil[J].Environment international,2002,28:367-374.
    [133]Balasooriya B,Samson R,Mbikwa F.Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics[J].Environmental and Experimental Botany,2009,65:386-394.
    [134]Kardel F, Wuyts K, Babanezhad M.Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L[J].Environmental,2010.
    [135]Carreras HA,Canas MS.Differences in responses to urban air pollutants by Ligustrumlucidum Ait.and Ligustrumlucidum Ait.f.tricolor (Rehd.) Rehd[J].Environmental Pollution,1996, 93:211-218.
    [136]Verma A and Singh SN.Biochemical and ultrastructural changes in plant foliage exposed to auto-pollution[J].Environmental monitoring and assessment,2006,120:585-602.
    [137]王磊,自由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学,2005,38(11):2268-2276.
    [138]刘艳菊,朱永官,丁辉,等不同氮肥水平下SPAD读数与菠菜硝态氮含量关系的初步研究[J].农业环境科学学报,2004,23(3):484-487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700