用户名: 密码: 验证码:
中温固体氧化物燃料电池新型阳极材料的制备和性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效的电化学能源转化器件。在商业化进程不断推进的情况下,传统的SOFC在运行中还存在着许多材料和技术方面的问题,其中两个主要的问题便是高催化活性材料的选择和材料使用过程中的稳定性。本文主要目的是在提高阳极在中温操作下的催化活性的同时获得高的稳定性。本论文工作分为三个部分,一部分研究了中温下一种新型的不含离子导电性的镍基陶瓷阳极,第二部分是构建复合阳极,对钙钛矿型阳极的成分进行优化,第三部分则是开发了一种新型的高催化性和稳定性的双钙钛矿阳极。
     论文首先简单介绍了SOFC的操作原理和SOFC各关键材料,重点讨论了SOFC阳极材料的相关最新研究进展,在概述了SOFC的发展现状和趋势的基础上,确立了本论文的研究目标和研究内容。
     第二章研究了一种镍基-镧系氧化物Ni-LnOx(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Tb)中温阳极。传统的Ni-YSZ和Ni-SDC阳极不同的是,由于LnOx可忽略的离子导电性,这种阳极可认为是非离子导电的。这意味着该阳极的三相线界面(TPB)仅仅限于电解质/阳极的物理界面,从而导致阳极体内较低的TPB。即便如此,该阳极在中温下显示出了不低于Ni-SDC阳极的性能。在600℃湿氢气为燃料下Ni/LnOx(Sm, Eu, Ce, Gd, Dy, Ho, Er, Yb)阳极在SDC为电解质时对应的单电池的平均最高功率密度为600mW cm-2,高于Ni/SDC阳极对应的单电池的544mWcm-2。此外,以Ni-Sm2O3阳极为例,研究了这种阳极在ScSZ电解质下的电极性能。在700℃湿氢气为燃料时,Ni-Sm2O3阳极以ScSZ为电解质时对应的单电池最高功率密度为410mW cm-2,界面阻抗为0.7Ωcm2,文献报道同电解质下以Ni-SDC或Ni-YSZ为阳极的单电池的功率密度处于同一水平。通过分析我们推测阳极的高性能可能来自于LnOx独特的氧化催化能力。
     论文第三章本章接上一章,以Ni-LnOx (Ln=Dy, Ho, Er, Yb)阳极为例,较系统的研究了这种不含离子导电性的高性能阳极的催化机理。通过TPR的表征发现Ni粒子和镧系氧化物之间有很强的相互作用,Ni-LnOx相对纯Ni更多的耗氢量表明材料有多余的氢物种的吸附和迁移,而这种溢流效应可以增强阳极反应的速率,提高电极性能。通过测试电池在燃料不同氢分压时的阻抗谱比较进一步证实了Ni-LnOx阳极中氢物种溢流效应的存在。通过Ni-SDC阳极的对比,我们可以推断,在阳极中催化活性和三相线长度的意义同等重要。然而,关于这种镍基镧系氧化物阳极催化氧化机理需要更深入的理论和实验的研究。
     第四章采用机械混合法制备了SrFe1.5Mo0.5O6-δ-Sm0.8Ce0.2O1.9(SFM-SDC)复合阳极。采用氧渗透法测试了在氧化性和还原性气氛下SFM的氧离子电导率。基于SFM阳极较低的离子电导,向电极中添加了SDC第二相。考察了不同混合量的SDC对SFM基电极的电导率和微观结构的影响。采用电化学阻抗谱测量了以SFM-SDC为电极的对称电池,结果表明SFM-SDC电极的极化电阻(Rp)随SDC的加入而减小。单电池的测试表明,在30wt.%SDC时界面极化电阻得存在最小值(700℃时0.258Ωcm2)。阻抗谱的分析表明SDC提高电极性能的原因在于其高的离子电导率和高的催化活性。此外,SFM-SDC阳极在氧化还原循环测试和抗积碳测试中也表现出了良好的稳定性。
     第五章考察了SrTi0.5Ni0.25Mo0.25O3作为SOFC阳极材料的可行性。XRD结果表明通过向SrNi0.5Mo0.5O3的B位掺杂50mo1.%的Ti可以使得材料在还原性气氛下结构稳定,而继续增大掺杂量则会造成材料的电导率的降低。测试得到SrTi0.5Ni0.25Mo0.25O3在600-800℃的温度范围间的总电导率为14-20S cm-1,满足SOFC对阳极材料电导率的基本要求。STNM在高温(1200℃)电解质LSGM无明显的反应,且STNM的热膨胀系数约为12.8×10-6K-1,LSGM的热膨胀系数十分接近。电化学测试表明以STNM为阳极,LSGM电解质支撑的单电池在800℃的最大输出功率为335mWcm-2,对应的极化阻抗为0.305Ω cm2。其电池功率输出以(La0.75Sr0.25)0.9Cr0.5Mn0.5O3-δ为阳极的单电池处于同一水平。同时,STNM也表现出了对甲烷等碳氢化合物的良好的催化活性和稳定性。此外,采用第一性原理计算不同材料中的氧原子的P层电子中心,从中可以间接比较材料的氧催化活性的大小。基于上述研究结果,STNM是一种具有潜力的阳极材料,且通过成分的优化和微结构调整等工作还可以进一步提高电极性能。但此材料为阳极的电极反应机理还需要进一步研究。
Solid oxide fuel cells (SOFC) are electrochemical energy conversion devices with high efficiency. With the development of its commercialization implementation, there exist many issues for SOFCs so far that are material and technique problems, two of them are the choose of anode materials with high catalytic property as well as the stability of materials in use. The research of this thesis aims to improve the anode performance, mainly through:(1) developing a novel Ni based anode with negligible ionic conductivity,(2) improving the perovskite anode material by introducting an oxygen ion-conducting oxide,(3) developing new alternative double perovskite anode material.
     At first, the SOFC principle and the key component materials were briefly introduced at first. Based on highlighting the present development status and direction for SOFCs, proposal on the thesis work was thus presented in this chapter.
     In chapter2, Ni-LnOx (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Tb) composite anodes were developed for intermediate temperature SOFCs. Unlike the conventionalNi-YSZ and Ni-SDC anodes, this anode was considered to be non-ionic conductive due to the negligible ionic conductivity of LnOx. This meant TPB in the anode should be constricted to the physical interface between the electrolyte and anode so that the anode bulk possessed far small TPB. Even so, when the porosity was high enough to eliminate concentration polarization, the Ni-LnOx (Ln=Sm, Eu, Ce, Gd, Dy, Ho, Er and Yb) anodes exhibit very high performance; power density over600mW cm-2is achieved at600℃, comparable to, if not higher than those with the Ni-SDC anodes when the same cathodes and electrolytes were applied. In addition, Ni-Siri2O3cermets were investigated as the anodes with scandia-stabilized zirconia (ScSZ) electrolytes. Single cells with a Ni-SDC interlayer generated peak power density of410mW cm-2at700℃, and the interfacial polarization is about0.7Ω cm2. The high anode performance with both doped ceria electrolytes and stabilized zirconia electrolytes suggested that the high performance in Ni-LnOx (Ln=Sm, Eu, Ce, Gd, Dy, Ho, Er and Yb) anode was possibly due to the catalytic property of LnOx
     In chapter3, taken Ni-LnOx (Ln=Dy, Ho, Er and Yb) cermet anodes as example, more systematic study had been carried out for this anode with negligible ionic conductivity. Temperature programmed reduction of NiO mixed with LnOx has shown that the surface properties of Ni in cermets are affected by the neighboring oxide panicles and that the interaction of NiO with LnOx is strong. High H2consumption implied that LnOx possessed high hydrogen adsoiption capability which might enhance spill-over process, thus promoting the surface diffusion with charge transfer through spillover reactions. The hydrogen spillover effect is further shown with impedance spectroscopy. It is reasonable to conclude that the catalytic behavior of LnOx with the promoting effect through nickel and LnOx coupling via the spillover reactions at the TPB is comparable to that of SDC by the extension of the three-phase boundary regions through oxide ion conduction. A continued concerted effort of theory and experiments is proposed in order to unambiguously elucidate the mechanism of the hydrogen oxidation reaction at these novel anodes.
     In chapter4, Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite was carefully investigated by modifying and optimizing the electrode microstructure. Its ionic conductivity under cathodic and anodic atmosphere was determined with oxygen permeation measurement. Sm0.8Ce0.2O1.9(SDC) was incorporated into SFM electrode to improve the anodic performance. A strong relation was observed between SDC addition and polarization losses, suggesting that the internal SFM-SDC contacts are active for H2oxidation. The best electrode performance was achieved for the composite with30wt.%SDC addition, resulting in an interfacial polarization resistance of0.258D cm2at700℃for La0.8Sr0.2Ga0.8Mg0.2O3-δ supported single cells. Electrochemical impedance spectroscopy analysis indicated that the high performance of SFM-SDC composite anodes was likely due to the high ionic conductivity and electro-catalytic activity of SDC by promoting the ionic exchange processes. Furthermore, this study had demonstrated that the SFM-SDC composite anodes were highly tolerant against redox cycling and carbon deposition.
     In chapter5, SrTi0.5Ni0.25Mo0.25O3(STNM) was verified as a potential anode materials. STNM was comprehensively studied in terms of its chemical stability and thermal compatibility with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolytes, the electronic conductivity and electrochemical performance. The XRD results indicated that SrNi0.5Mo0.5O3was chemically stability with50mol%Ti doped. At600-S00℃the total conductivity of SrTi0.5Ni0.25Mo0.25O3(STNM) was14-20S cm-1, fulfilling the conductivity requirement of anode materials. The thermal expansion coefficient of STNM was closed to that of LSGM. The single cell with STNM anode, SLGM electrolyte and SSC cathode at800℃generated peak power density of335mW cm-2and the interfacial polarization resistance was0.305Ω cm2. It showed the performance not lower than that of the (La0.75Sr0.25)0.9Cr0.5Mn0.5O3-δ anode. Besides, STNM anode exhibited stability for directly use of hydrocarbons as the fuel to some extent. In addition, the bulk oxygen p-band center was calculated with first-principles-based in order to indirectly demonstrate the catalytic activity of oxygen reduced. The performance of STNM cathode is expected to be improved by optimizing the electrode microstructure. The electrode reaction mechanism of STNM needs be further investigated.
引文
[1]Park S, Gorte RJ, Vohs JM,2001. Tape cast solid oxide fuel cells for the direct oxidation of hydrocarbons. Journal of the Electrochemical Society,148(5):A443-A447.
    [2]EG&G Technical Services,2004. Fuel Cell Handbook (Seventh Edition), US Department of Energy, Morgantown, WV.
    [3]Singhal SC, Kendall K.2003. High-temperature Solid Oxide Fuel Cells:Fundamentals, Design and Applications.:Elevier, ISBN 1856173879.
    [4]Wagner C,1933. Z. Phys. Chem, B41:42.
    [5]Zha SW, Xia CR, Meng GY,2001. Calculation of the e.m.f. of solid oxide fuel cells. Journal of Applied Electrochemistry,31:93-98.
    [6]高建峰,中温固体氧化物燃料电池阴极材料及电极过程研究,博士学位论文(2003).
    [7]Singhal SC, Kendall K, High Temperature Solid Oxide Fuel Cells:Fundamentals, Design and Applications, Elesvier,2003.
    [8]Larminie J, Dicks A.2003. Fuel Cell Systems Explained. Fuel Cell Systems Explained, Wiley
    [9]Xia CR, Liu ML.2001. Low-temperature SOFCs based on Gd0.1Ce0.901.95 fabricated by dry pressing. Solid State Ionics.144(3-4):249-255.
    [10]Wincewicz KC, Cooper JS,2005. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources,140:280-296.
    [11]Kharton VV, Marques FMB, Atkinson A.2004. Transport properties of solid oxide electrolyte ceramics:a brief review. Solid State Ionics 174:135-149.
    [12]Molenda J, Swierczek K, Zajac W,2007. Functional materials for the IT-SOFC. Journal of Power Sources,173:657-670.
    [13]Xin XS, Lu Z, Huang XQ, et al.,2006. Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process. Journal of Power Sources,160:1221-1224.
    [14]DeSouza S, Visco SJ, DeJonghe LC.1997. Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte. Journal of the Electrochemical Society,144:L35-L37.
    [15]Bao WT, Chang QB, Yan RQ, et al.,2005. The novel combination of electrostatic powder coating with suspension coating for fabricating the dense YSZ thin film on porous anode substrate. Journal of Membrane Science,252:175-181.
    [16]Arachi Y, Sakai H, Yamamoto O, et al.,1999. Electrical conductivity of the ZrOi-LniOj (Ln = lanthanides) system. Solid State Ionics,121:133-139.
    [17]Kharton VV, Marques FMB, Atkinson A,2004. Transport properties of solid oxide electrolyte ceramics:a brief review. Solid State Ionics.174:135-149.
    [18]Fergus JW.2006. Electrolytes for solid oxide fuel cells. Journal of Power Sources,162: 30-40.
    [19]Inaba H, Tagawa H.1996. Ceria-based solid electrolytes-Review. Solid State Ionics,83:1-16.
    [20]Mogensen M, Sammes NM, Tompsett GA.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [21]Kharton VV, Figueiredo FM, Navarro L, et al,2001. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,36:1105-1117.
    [22]Steele BCH,1994. Oxygen-Transport and Exchange in Oxide Ceramics. Journal of Power Sources,49:1-14.
    [23]Eguchi K, Setoguchi T, Inoue T, Arai H.1992. Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ionics,52:165-172.
    [24]Zha SW, Xia CR, Meng GY,2003. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. Journal of Power Sources,115:44-48.
    [25]Wang FY, Chen S, Wang Q, et al.,2004. Study on Gd and Mg CO-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Catalysis Today,97:189-194.
    [26]Kim N, Kim BH, Lee D,2000. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. Journal of Power sources,90:139-143.
    [27]Matsui T, Minoru I, Mineshige A, et al.,2005. Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. Solid State Ionics,176:647-654.
    [28]Godickerneier M, Gauckler LJ,1998. Engineering of solid oxide fuel cells with ceria-based electrolytes. Journal of the Electrochemical Society,145:414-421.
    [29]Liu QL, Khor KA, Chan SH,2006. High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. Journal of Power Sources,161:123-128.
    [30]B. Dalslet, P. Blennow, P.V. Hendriksen,, et al.,2006. Assessment of doped ceria as electrolyte. Journal of Solid State Electrochemistry 10 (2006)547-561.
    [31]Shao ZP, Haile SM,2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature,431:170-173.
    [32]Sakai N, Kishimoto H, Yamaji K, et al.,2007. Interface stability of perovskite cathodes and rare-earth doped ceria interlayer in SOFCs. Journal of the Electrochemical Society, 1331-1337.
    [33]Uchida H, Arisaka S, Watanabe M,1999. High performance electrode for medium-temperature solid oxide fuel cells-La(Sr)CoO3 cathode with ceria interlayer on [zirconia electrolyte. Electrochemical and Solid State Letters,2:428-430.
    [34]Ishihara T, Matsuda H, Takita Y,1994. Doped LaGaO3 Perovskite-Type Oxide as a New Oxide Ionic Conductor. Journal of the American Chemical Society,116:3801-3803.
    [35]Feng M, Goodenough JB,1994. A superior oxide ion electrolyte. European Journal of Solid State and Inorganic Chemistry,31:663-672.
    [36]Majewski P, Rozumek M, Aldinger F,2001. Phase diagram studies in the systems La2O3-SrO-MgO-Ga2O3 at 1350-1400℃ in air with emphasis on Sr and Mg substituted LaGaO3. Journal of Alloys and Compounds,329:253-258.
    [37]Tsipis EV, ICharton W,2008. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review. Journal of Solid State Electrochemistry,12:1039-1060.
    [38]Huang KQ, Tichy R, Goodenough JB,1998. Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO3:Ⅲ, Performance tests of single ceramic fuel cells. Journal of the American Ceramic Society,81:2581-2585.
    [39]Stevenson JW, Hasinska K, Canfield NL, et al.,2000. Influence of Cobalt and Iron Additions on the Electrical and Thermal Properties of (La,Sr)(Ga,Mg)O3. Journal of the Electrochemical Society,147:3213-3218.
    [40]Ishihara T, Ishikawa S, Hosoi K, et al.,2004. Oxide ionic and electronic conduction in Ni-doped LaGaO3-based oxide. Solid State Ionics,175:319-322.
    [41]Khorkounov BA, Nafe H, Aldinger F,2006. Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity. Journal of Solid State Electrochemistry,10:479-487.
    [42]Matraszek A, Singheiser L, Kobertz D, et al.,2004. Phase diagram study in the La2O3-Ga2O3-MgO-SrO system in air. Solid State Ionics,166:343-350.
    [43]Yamaji K, Horita T, Ishikawa M, et al.,1999. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics,121: 217-224.
    [44]Zhang XG, Ohara S, Marie R, et al.,2000. Interface reactions in the NiO-SDC-LSGM system. Solid State Ionics,133:153-160.
    [45]Marie R, Ohara S, Fukui T, et al.,1999. Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-Doped Ceria Cermet Anode. Journal of the Electrochemical Society,146:2006-2010.
    [46]Huang KQ, Wan JH, Goodenough JB,2001. Increasing power density of LSGM-based solid oxide fuel cells using new anode materials. Journal of the Electrochemical Society,148: A788-A794.
    [47]Xiao GL, Chen FL,2011. Ni modified ceramic anodes for direct-methane solid oxide fuel cells. Electrochemistry Communications,13:57-59.
    [48]Yan JW, Lu ZG, Jiang Y, et al.,2002. Fabrication and testing of a doped lanthanum gallate electrolyte thin-film solid oxide fuel cell. Journal of the Electrochemical Society,149: A1132-A1135.
    [49]Ju YW, Eto H, Inagaki T, et al.,2010. Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO3 based electrolyte film with high power density. Journal of Power Sources,195:6294-6300.
    [50]Wang WB, Yang ZJ, Wang HT,2011. Desirable performance of intermediate-temperature solid oxide fuel cell with an anode-supported La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte membrane. Journal of Power Sources,196:3539-3543.
    [51]Atkinson A, Barnett S, Gorte RJ, et al.,2004. Advanced anodes for high-temperature fuel cells. Nature Materials,3:17-27.
    [52]Yokokawa H, Tu HY, Iwanschitz B, et al.,2008. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources,182:400-412.
    [53]Guillodo M, Fouletier J, Dessemond L, et al.,2002. Redox stability of BIMEVOX.10 materials (ME=Co, Cu). Electrochim.Acta,47:2809-2815.
    [54]Zha S, Tsang P, Cheng Z, et al.,2005. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions. Journal of Solid State Chemistry,178: 1844-1850.
    [55]Gong M, Bierschenk D, Haag J, et al.,2010. Degradation of LaSr2Fe2Cr09.5 solid oxide fuel cell anodes in phosphine-containing fuels. Journal of Power Sources,195:4013-4021.
    [56]Rostrup-Nielsen JR, Sehested J, Norskov JK,2002. Hydrogen and synthesis gas by steam-and CO2 reforming. Advances in Catalysis,47:65-139.
    [57]Wang JB, Jang JC, Huang TJ,2003. Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells. Journal of Power Sources,122:122-131.
    [58]Hibino T, Hashimoto A, Yano M, et al.,2003. Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochimca Acta,48:2531-2537.
    [59]Spacil HS,1970. Electrical device including Nickel-con-taining stabilized zirconia electrode. US Patent.
    [60]Wang K, Ran R, Shao Z,2007. Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer. Journal of Power Sources,170:251-258.
    [61]Wang Z, Weng W. Cheng K, et al..2008. Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells. Journal of Power Sources,179:541-546.
    [62]Lashtabeg A, Skinner SJ,2006. Solid oxide fuel cells-a challenge for materials chemists. Journal of Materials Chemistry,16:3161-3170.
    [63]Ingram DB, Linic S,2009. First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions. Journal of the Electrochemical Society,156:B1457-1465.
    [64]Sin A, Kopnin E, Dubitsky Y, et al.,2007. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs. Journal of Power Sources 164:300-305.
    [65]Kan H, Lee H,2010. Enhanced stability of Ni-Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catalysis Communications,12:36-39.
    [66]Wang FY, Cheng S, Wan BZ,2008. Porous Ag-CGO cermets as anode materials for IT-SOFC using CO fuel. Fuel Cells Bulletin,2008:12-16.
    [67]Ding D, Li L, Feng K, et al.,2009. High performance Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,187:400-402.
    [68]He BB, Ding D, Xia CR,2010. Ni-LnOx (Ln= La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,195: 1359-1364.
    [69]丁冬,以碳氢化合物为燃料的中温固体氧化物燃料电池阳极和电解质的制备和性能表征。中国科学技术大学博士论文,2008.
    [70]Zhang Y, Huang X, Lu Z, et al.,2007. Ni-Sm0.2Ce0.8O1.9 anode-supported YSZ electrolyte film and its application in solid oxide fuel cells. Journal of Alloys and Compounds,428: 302-306.
    [71]Suzuki T, Funahashi Y, Yamaguchi T, et al.,2009. Impact of Anode Microstructure on Solid Oxide Fuel Cells. Science,325:852-855.
    [72]Fu C, Chan SH, Liu Q, et al.,2010. Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell.International Journal of Hydrogen Energy,35:301-307.
    [73]Ye XF, Wang SR, Hu Q, et al.,2009. Improvement of multi-layer anode for direct ethanol Solid Oxide Fuel Cells. Electrochemistry Communications,11:823-826.
    [74]Huang B, Ye XF, Wang SR,2007. Performance of Ni'ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC. Materials research bulletin Bull,42:1705-1714.
    [75]Yin Y, Li S. Xia C. et al..2007. Electrochemical performance of IT-SOFCs with a double-layer anode. Journal of Power Sources,167:90-93.
    [76]Bi ZH, Zhu JH,2010. Cu1-xPdx/CeO2-impregnated cermet anodes for direct oxidation of methane in LaGa03-electroIyte solid oxide fuel cells. Journal of Power Sources,195: 3097-3104.
    [77]Qiao J, Sun K, Zhang N, et al.,2007. Ni/YSZ and Ni-CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells J. Power Sources,169:253-258.
    [78]Bozza F, Polini R, Traversa E,2009. High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte films prepared by electrophoretic deposition. Electrochemistry Communications,11:1680-1683.
    [79]Cimenti M, Hill JM,2010. Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu-Co(Ru)/Zr0.35Ce0.65O2-δ anodes. Journal of Power Sources,195:3996-4001.
    [80]Y. Nabae, I. Yamanaka,2009. Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells. Applied Catalysis A:General,369:119-124.
    [81]Zhan Z, Lee SI,2010. Thin film solid oxide fuel cells with copper cermet anodes. Journal of Power Sources,195:3494-3497.
    [82]J. Ding, J. Liu, W. Guo,2009. Fabrication and study on Ni1-xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells. Journal of Alloys and Compounds,480:286-290.
    [83]宋世栋,唐致远,潘丽珠,2005La1-xSrxN1-yyFeyO3型钙钛矿双功能氧电极的电化学性能研究。化学学报,63(5):363-371
    [84]Minh NQ,1993. Ceramic fuel cells. Journal of the American Ceramic Society,76:563-588.
    [85]Hui SQ, Petric A,2002. Electrical properties of yttrium-doped strontium titanate under reducing conditions. Journal of the Electrochemical Society,149:J1-J10.
    [86]Vemoux P, Guillodo M, Fouletier J, et al.,2000. Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics,135:425-431.
    [87]Tao SW, Irvine JTS,2003. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials,2:320-323.
    [88]Ruiz-Morales JC, Canales-Vazquez J, Pena-Martinez J, et al.2006. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells, Electrochimical Acta,52:278-284.
    [89]Bastidas DM, Tao SW, Irvine JTS,2006. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. Journal of Materials Chemistry,16:1603-1605.
    [90]Wan J, Zhu JH, Goodenough JB,2006. La0.75Si0.25Cr0.5Mn0.5O3-δ +Cu composite anode running on H? and CH4 fuels. Solid State Ionics,177:1211-1217.
    [91]Marina OA, Canfield NL, Stevenson JW,2002. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics,149:21-28.
    [92]Canales-Vazquez J, Tao SW, Irvine JTS,2003. Electrical properties in La2Sr4Ti6O19-δ:a potential anode for high temperature fuel cells. Solid State Ionics,159:159-165.
    [93]Canales-Vazquez J, Ruiz-Morales JC, Irvine JTS, et al.,2005. Sc-substituted oxygen excess titanates as fuel electrodes for SOFC. Journal of Electrochemical Society,152:1458-1465.
    [94]Fu QX, Tietz F, Stover D,2006. La0.4Sr0.6Ti1-xMnxO3-δPerovskites as Anode Materials for Solid Oxide Fuel Cells. Journal of Electrochemical Society,153:D74-D83.
    [95]Ovalle A, Ruiz-Morales JC, Canales-Vazquez J, et al.,2006. Mn-substituted titanates as efficient anodes for direct methane SOFCs. Solid State Ionics,177:1997-2003.
    [96]Ruiz-Morales JC, Canales-Vazquez J, Savaniu C,2006. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature,439:568-571.
    [97]Huang YH, Dass RI, Xing ZL, et al.,2006. Double perovskites as anode materials for solid-oxide fuel cells. Science,312:254-257.
    [98]Huang YH, Liang G, Croft M, et al.,2009. Double-perovskite anode materials Sr2MMoO6 (M= CO, Ni) for solid oxide fuel cells. Chemistry of Materials,21:2319-2326.
    [99]Graves C, Sudireddy BR, Mogensen M,2010. Molybdate Based Ceramic Negative Electrode Materials for Solid Oxide Cells. ECS Transactions,28:173-192.
    [100]Liu Q, Dong XH, Xiao GL, et al.,2010. A Novel Electrode Material for Symmetrical SOFCs. Advance Materials,22:5478-5482.
    [101]Xiao GL, Liu Q, Zhao F, et al.,2011. Sr2Fe1.5Mo0.5O6 as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells with La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte. Journal of Electrochemical Society,158:B455-B460.
    [102]Liu Q, Yang CH, Dong XH, et al.,2010. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells International Journal of Hydrogen Energy,35: 10039-10044.
    [103]Slater PR, Irvine JTS,1999. Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells:synthesis and electrical characterisation Solid State Ionics,120: 125-134.
    [104]Slater PR, Irvine JTS,1999. Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0.6MxNb1-xO3-δ (M=Mg, Ni, Mn. Cr, Fe, In, Sn): evaluation as potential anode materials for solid oxide fuel cells. Solid State Ionics,124: 61-72.
    [105]Porat O, Heremans C, Tuller HL.1997. Stability and mixed ionic electronic conduction in Gd2(Ti1-xMox)2O7 under anodic conditions. Solid State Ionics,94:75-83.
    [106]Sprague JJ, Tuller HL,1999. Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate. Journal of European Ceramic Society,19:803-806.
    [107]Deng ZQ, Niu HJ, Kuang XJ, et al.,2008. Highly Conducting Redox Stable Pyrochlore Oxides. Chemistry of Materials,20:6911-6916.
    [108]Lashtabeg A, Irvine JTS, Feighery A,2003. Thermomechanical and conductivity studies of doped niobium titanates as possible current collector material in the SOFC anode. Ionics,9: 220-226.
    [109]Reich CM, Kaiser A, Irvine JTS,2001. Niobia based rutile materials as SOFC anodes Fuel Cells.1:249-255.
    [110]Lashtabeg A, Canales-Vazquez J, Irvine JTS, et al.,2009. Structure, conductivity, and thermal expansion studies of redox stable rutile niobium chromium titanates in oxidizing and reducing conditions. Chemistry of Materials,21:3549-3561.
    [111]Petit CTG, Lan R, Cowin PI, et al.,2010. Structure and conductivity of strontium-doped cerium orthovanadates Ce1-xSrxVO4 (0≤x≤0.175). Journal of Solid State Chemistry,183: 1231-1238.
    [112]Petit CTG, Lan R, Cowin P, et al.,2011. Structure, conductivity and redox stability of solid solution Ce1-xCaxVO4 (0≤x≤0.4125). Journal of Materials Science,46:316-326.
    [113]Petit CTG, Lan R, Cowin PI, et al.,2011. Structure, conductivity and redox reversibility of Ca-doped cerium metavanadate. Journal of Materials Chemistry,21:8854-8861.
    [114]Jiang SP,2008. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells:a review. Journal of Materials Science,43:6799-6833.
    [115]Doshi R, Richards VL, Carter JD, et al.,1999. Development of solid-oxide fuel cells that operate at 500 degrees C. Journal of the Electrochemical Society,146:1273-1278.
    [116]Kim G, Wang S, Jacobson AJ, et al.,2007. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry,17:2500-2505.
    [117]Wang L, Merkle R, Maier J, et al.,2009. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. Applied Physics Letters,94:071908-1-071908-3.
    [118]Aruna ST, Muthuraman M, Patil KC,1997. Combustion synthesis and properties of strontium substituted lanthanum manganites La1-xSrxMnO3 (0<=x<=0.3). Journal of Materials Chemistry,7:2499-2503.
    [119]Endo A, Ihara M, Komiyama H, et al.,1996. Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes. Solid State Ionics,86-8:1191-1195.
    [120]Ullmann H, Trofimenko N, Tietz F, et al.,2000. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics,138:79-90.
    [121]Steele BCH,1995. Interfacial Reactions Associated with Ceramic Ion-Transport Membranes. Solid State Ionics,75:157-165.
    [122]Huang YY, Ahn K, Vohs JM, et al.,2004. Characterization of Sr-doped LaCoO3-YSZ composites prepared by impregnation methods. Journal of the Electrochemical Society,151: A1592-A1597.
    [123]Zhao F, Peng RR, Xia CR,2008. A La0.6Sr0.4CoO3-delta-based electrode wit high durability for intermediate temperature solid oxide fuel cells. Materials Research Bulletin,43: 370-376.
    [124]Tai LW, Nasrallah MM, Anderson HU, et al.,1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. I:The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics,76:259-271.
    [125]Tai LW, Nasrallah MM, Anderson HU, et al.,1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. I:The system La1-xSrxFe0.8O3. Solid State Ionics,76:273-283.
    [126]Steele BCH,1996. Survey of materials selection for ceramic fuel cells 2. Cathodes and anodes. Solid State Ionics,86-8:1223-1234.
    [127]Fukunaga H, Koyama M, Takahashi N, et al.,2000. Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics,132:279-285.
    [128]Xia CR, Rauch W, Chen FL, et al.,2002. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,149:11-19.
    [129]Shao ZP, Haile SM,2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature,431:170-173.
    [130]Wang L, Merkle R, Maier J, et al.,2009. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. Applied Physics Letters,94:071908-1-071908-3.
    [131]Svarcova S, Wiik K, Tolchard J, et al.,2008. Structural instability of cubic perovskite BaxSrxSrLxCo1-yFeyO3-delta. Solid State Ionics,178:1787-1791.
    [132]Yan A, Cheng M, Dong YL, et al.,2006. Investigation of a Ba(o.5)Sr(0.5)CO(0.8)Fe(0.2)O3-delta based cathode IT-SOFC-I. The effect of CO2 on the cell performance. Applied Catalysis B-Environmental,66:64-71.
    [133]Yan AY, Maragou V, Arico A, et al..2007. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-delta based cathode SOFCII. The effect of CO2 on the chemical stability. Applied Catalysis B-Environmental,76:320-327.
    [134]Taskin A A. Lavrov AN. Ando Y.2005. Achieving fast oxygen diffusion in perovskites by cation ordering. Applied Physics Letters,86:
    [135]Tarancon A, Skinner SJ, Chater RJ, et al.,2007. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry,17: 3175-3181.
    [136]Tarancon A, Pena-Martinez J, Marrero-Lopez D, et al.,2008. Stability, chemical compatibility and electrochemical performance of GdBaCo2O5+x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells. Solid State Ionics,179: 2372-2378.
    [137]Bae JM, Steele BCH,1999. Properties of pyrochlore ruthenate cathodes for intermediate temperature solid oxide fuel cells. Journal of Electroceramics,3:37-46.
    [138]Camaratta M, Wachsman E,2008. High-performance composite Bi2Ru2O7-Bi1.6Er0.4O3 cathodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society,155:B135-B142.
    [139]Xia CR, Zhang Y, Liu ML,2003. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells. Applied Physics Letters,82:901-903.
    [140]Li JL, Wang SR, Liu RZ, et al.,2008. Electrochemical performance of (Bi2O3)(1-X)(Er2O3)(x)-Ag composite material for intermediate temperature solid oxide fuel cell cathode. Solid State Ionics,179:1597-1601.
    [141]Mclachlan DS, Laszkiewicz MB, Newnham RE,1990. Electrical resistivity of composites. Journal of the American Ceramic Society,73:2187-2203.
    [142]Van der Pauw LJ,1958. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep,13:1-9.
    [143]Esquirol A, Brandon NP, Kilner JA, et al.,2004. Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs. Journal of the Electrochemical Society,151:A1847-A1855.
    [144]Jiang ZY, Lei ZW, Ding B, et al.,2010. Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones, International Journal of Hydrogen Energy,35:8322-8330.
    [145]Huang QA, Hui R, Wang BW, et al.,2007. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta,52:8144-8164.
    [146]曹楚南,张鉴清,(2002).电化学阻抗谱导论,北京:科学出版社.
    [147]Christie GM, vanBerkel FPF,1996. Micrestructure-Ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics,83:17-27.
    [148]Ding D. Liu BB. Gong MY et al.,2010. Microstructure and electrical properties of Ce0.8Sm0.2O1.9 Electrolyte derived from highly active powders via carbonate coprecipitation. Electrochimica Acta,55:4529-4535.
    [149]Patterson JW, Bogren EC, Rapp RA,1967. Mixed conduction in Zr0.85Ca0.15O1.85 and Th0.85Y0.15O1.925 solid electrolytes. Journal of the Electrochemical Society,7:752-758
    [150]王常珍,固体电解质和化学传感器,2000.北京:冶金工业出版社.
    [151]Xiong YP, Yamaji K, Sakai N, et al,2001. Electronic Conductivity of ZrO2-CeO2-YO1.5 Solid Solutions. Journal of the Electrochemical Society,148:E489-E492.
    [152]Shimonosono T, Hirata Y, Ehira Y, et al.,2004. Electronic conductivity measurement of Sm-and La-doped ceria ceramics by Hebb-Wagner method. Solid State Ionics,174:27-33.
    [153]Ehira Y, Sameshima S, Hirata Y, Proceedings of the 19th Korea-Japan International Seminar on Ceramics, November 2002, Seoul, The Organizing Committee of the 19th Korea-Japan International Seminar on Ceramics, Seoul, Korea, p.26.
    [154]Zhu W, Xia CR, Ding D, et al.,2006. Electrical propeties of ceria-carbonate composite electrolyte for SOFCs, Materials Research Bulletin,41:2057-2064.
    [155]Yamamoto O, Takeda Y, Kanno R, et al.,1987. Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics,22:241-246.
    [156]Teraoka Y, Zhang HM, Okamoto K, et al.,1988. Mixed ionic-electronic conductivity of La0.6Sr0.4Co0.8Fe0.2O3-δ perovskite-type oxides. Materials Research Bulletin,23:51-58.
    [157]Teraoka Y, Nobunaga T, Okamoto K, et al.,1991. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics,48: 207-212
    [158]Li X, Zhao HL, Gao F, et al.,2008. Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3-δ as a potential SOFC anode. Solid State Ionics,179:1588-1592.
    [159]甄强,王会娟,应风晔等,2010Ba0.5Sr0.5Co0.8Fe0.2O3-δ混合导体导电性能的研究。功能材料,11:1914-1918.
    [160]G.L. Xiao, Q. Liu, F. Zhao, et al.,2011. Sr1Fe1.5Mo0.5O6 as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells with La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte. Journal of the Electrochemical Society,158:B455-460.
    [161]Chen CC, Nasrallah MM, Anderson HU, et al.,1995. Immittance Response of La0.6Sr0.4Co0.2Fe0.8O3 Based Electrochemical Cells. Journal of the Electrochemical Society, 142:491-495.
    [162]Teraoka Y, Zhuang HM, Funrukawa S,1985. Oxygen permeation through perovskite-type oxides. Chemistry and Letters,167:1743-1746.
    [163]Bouwmeester, H.J.M., Burggraaf AJ. Dense ceramic membranes for oxygen separation. CRC Handbook of Solid State Electrochemistry, ed. P.J.G.a.H.J.M. Bouwmeester.1997, Boca Raton:CRC.
    [164]Nigara Y, Mizusaki J, Ishigame M,1995. Measurement of oxygen permeability in CeO2 doped CSZ. Solid State Ionics,79:208-214.
    [165]Ullmann H, Trofimenko N, Tietz F, et al.,2000. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics,138:79-90.
    [166]Ullmann H, Trofimenko N,1999. Composition, structure and transport properties of perovskite-type oxides. Solid State Ionics,119:1-8.
    [167]Kharton W, Naumovich EN, Vecher AA, et al.,1995. Oxide ion conduction in solid solutions Lr1-xSrxCo3-δ (Ln=La, Pr, Nd). Journal of solid state chemistry,120:128-136.
    [168]左艳波,致密陶瓷透氧膜和固体氧化物燃料电池电极材料研究。中国科学技术大学博士学位论文,2007.
    [169]Vemanx P, Guimiet J, Kleitz M,1998. Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells. Journal of the Electrochemical Society, 145:3487-3492.
    [170]Svenuon AM, Nisancioglu K. Current distribution at porous electrode solid oxide electrolyte interface,1998. Journal of the Electrochemical Society,145:3130-3134.
    [171]Liu ML, Hu HX,1996. Effect of interfacial resistance on determination of transport properties of mixed-conducting electrolytes. Journal of the Electrochemical Society,143: L109-112.
    [172]Fleig J, Maier J,1998. A finite element study on the grain boundary impedance of different microstructures. Journal of the Electrochemical Society,145:2081-2089.
    [173]Chen CS, Burggraaf AJ,1999. Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes. Journal of Applied Electrochemistry,29:355-360.
    [174]Ishigaki T, Yamauchi S, Kishio K, et al.,1988. Diffusion of oxide ion vacancies in perovskite-type oxides. Journal of Solid State Chemistry,73:179-187.
    [175]Kilner JA, Steele BCH, Ilkov L,1984. Oxygen Self-Diffusion Studies Using Negative-Ion Secondary Ion Mass-Spectrometry (Sims). Solid State Ionics,12:89-97.
    [176]Elshof ten JE, Lankhorst MHR, Bouwmeester HJM,1997. Oxygen Exchange and Diffusion Coefficients of Strontium-Doped Lanthanum Ferrites by Electrical Conductivity Relaxation. Journal of the Electrochemical Society,144:1060-1067.
    [177]Preis W, Bucher E, Sitte W,2004. Oxygen exchange kinetics of La0.4Sr0.6FeO3-delta by simultaneous application of conductivity relaxation and carrier gas coulometry. Solid State Ionics,175:393-397.
    [178]Boreskov GK,1964. The Catalysis of Isotopic Exchange in Molecular Oxygen. Advances In Catalysis,15:285-339.
    [179]Yasuda I, Ogasawara K, Hishinuma M,1996. Oxygen tracer diffusion coefficient of (La, Sr)MnO3-δ. Solid State Ionics,86-88:1197-1201.
    [1]Singha SC, Kendall K,2003. High Temperature Solid Oxide Fuel Cells:Fundamentals, Design and Applications, Elsevier.
    [2]Minh NQ,1993. Ceramic fuel cells. Journal of the American Ceramic Society,76:563-588.
    [3]Aaberg RJ, Tunold R, Mogensen M, et.al.,1998. Morphological changes at the interface of the nickel-yttria stabilized zirconia point electrode. Journal of the Electrochemical Society,145: 2244-2252.
    [4]Brown M, Primdahl S, Mogensen M,2000. Structure/performance relations for Ni/Yttria-stabilized zirconia anodes for solid oxide fuel cells. Journal of the Electrochemical Society,147:475-485.
    [5]Hauch A, Jensen SH, Bilde-Sorensen JB, et al.,2007. Silica Segregation in the Ni/YSZ Electrode. Journal of the Electrochemical Society,154:A619-A626.
    [6]Holtappels P, De Haart LGJ, Stimming U, et al.,1999. Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrodes. Journal of Applied Electrochemistry,29:561-568.
    [7]Primdahl S, Mogensen M,1997. Oxidation of Hydrogen on Ni/yttria-stabilized zirconia cermet Anodes. Journal of the Electrochemical Society,144:3409-3419.
    [8]Primdahl S, Mogensen M,2002. Mixed conductor anodes:Ni as electrocatalyst for hydrogen conversion. Solid State Ionics 152:597-608.
    [9]Vels Jensen K, Primdahl S, Chorkendorff I, et al.,2001. Microstructural and chemical changes at the Ni/YSZ interface. Solid State Ionics 144:197-209.
    [10]Mogensen M, Skaarup S,1996. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86-8:1151-1160.
    [11]Wang XG, Nakagawa N, Kato K,2002. Active role of SDC interlayer in multi-layer anode of SOFCs. Electrochemistry,70:252-257.
    [12]Mizusaki J, Tagawa H, Tsuneyoshi K, et al.,1991. ChemInform Abstract:Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3/YSZ. Journal of the Electrochemical Society,138:1867-1873.
    [13]Dehaart LGJ, Kuipers RA, Devries KJ, et al.,1991. Deposition and electrical properties of thin porous ceramic electrode layers for solid oxide fuel cell application. Journal of the Electrochemical Society,138:1970-1975.
    [14]Fukunaga H, Ihara M, Sakaki K, et al.,1996. The relationship between overpotential and the three phase boundary length. Solid State Ionics,86-8:1179-1185.
    [15]Tanner CW, Fung KZ, Virkar AV,1997. The effect of porous composite electrode structure on solid oxide fuel cell performance. Journal of the Electrochemical Society,144:21-30.
    [16]Kawada T, Anzai I, Sakai N, et al.,1991. In Proc. of Sym. On High Temperature Electrode Materials and Characterization, edited by D. Macdonald and A.C. Khandkar (Electrochem.Soc.,Pennington, NJ) 97-40,228.
    [17]Wang SZ, Tatsumi I,2003. Improvement of the Performance of Fuel Cells Anodes with Sm3-Doped CeO2. Acta Physico-Chimica Sinica,19:844-848.
    [18]Eguchi K, Setoguchi T, K. Okamoto K, et al,1992. In Proc. of the International Fuel Cell Conf. (Makihari, Japan) 530.
    [19]Joerger MB, Gauckler LJ, in "SOFC-VII," edited by H. Yokokawa and S.C. Singhal (Electrochem.Soc., Pennington, NJ) 2001-16 (2001)662.
    [20]Wen CJ, Masuyama T, Yoshikawa T, et al., in "SOFC-VII," edited by H. Yokokawa and S.C. Singhal (Electrochem.Soc.,Pennington, NJ) 2001-16 (2001)671.
    [21]Ishihara T, Shibayama T, Nishiguchi H, et al,2000. Nickel-Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaOj-based perovskite electrolyte. Solid State Ionics,132:209-216.
    [22]Tsipis EV, KJiarton W,2008. Electrode Materials and Reaction Mechanisms in Solid Oxide Fuel Cells:A Brief Review. Journal of Solid State Electrochemistry,12:1039-1060.
    [23]Ding D, Li L, Feng K, et al,2009. High performance Ni-Sm2O3 cermet anodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources,187:400-402.
    [24]Zhu W, Xia CR, Fan J, et al,2006. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. Journal of Power Sources,160:897-902.
    [25]Xia CR, Rauch W, Chen FL, et al, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,149:11-19.
    [26]Xia CR, Liu ML,2001. A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. Journal of the American Ceramic Society,84:1903-1905.
    [27]Zha SW, Rauch W, Liu ML,2004. Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs. Solid State Ionics,166:241-250.
    [28]Doshi R, Richards VL, Carter JD, et al,1999. Development of solid oxide fuel cells that operated at 500℃. Journal of the Electrochemical Society,146:1273-1278.
    [29]Mclntosh S, Vohs JM, Gone RJ,2002. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochim. Acta,47,3815-3821.
    [30]Zhao S, Goite RJ,2003. The effect of oxide dopants in ceria on n-butane oxidation. Appl. Catal. A,248:9-18.
    [31]Skorodumova NV, Simak SI. Lundqvist BI. et al..2002. Quantum origin of the oxygen storage capability of ceria. Physical Review Letters,89:.166601-4.
    [32]Zhang X, Robertson M, Yick S, et al.,2006. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600℃. Journal of Power Sources 160:1211-1216.
    [33]Liu ML, Hu HX,1996. Effect of Interfacial Resistance on Determination of Transport Properties of Mixed-Conducting Electrolytes. Journal of the Electrochemical Society 143: L109-L112.
    [34]Choudhary VR, Rane VH, Rajput AM,1993. Selective oxidation of methane to CO and H2 over unreduced NiO-rare earth oxide catalysts. Catalysis Letters,22:289-297.
    [35]Dedov AG, Loktev AS, Moiseev Ⅱ, et al.,2003. Oxidative coupling of methane catalyzed by rare earth oxides:Unexpected synergistic effect of the oxide mixtures. Applied Catalysis A: General,245:209-220.
    [36]Bouvard D, Lange FF,1991. Relation between percolation and particle coordination in binary powder mixtures. Acta Metallurgica Et Materialia,39:3083-3090.
    [37]Suzuki M, Oshima T,1983. Estimation of the co-ordination number in a multi-component mixture of spheres. Powder Technology,35:159-166.
    [38]Suzuki M, Makino K, Yamada M, et al.,1981. A study on the coordination number in a system of ran-domly packing, uniform-sized spherical particles. International Chemical Engineering,21:482-488.
    [39]Yamahara K, Jacobson CP, Visco SJ, et al.,2005. Thin film SOFCs with cobalt-infiltrated cathodes. Solid State Ionic,176:275-279.
    [40]Andrievskaya ER, Lopato LM,1995. Influence of composition on the T-]M transformation in the systems ZrO2-Ln(2)O(3) (Ln=La, Nd, Sm, Eu). J. Mater. Sci.,30:2591-2596.
    [41]Tsoga A, Gupta A, Naoumidis A, et.al.,2000. Gadolinia-doped ceria and yttria stabilized zirconia interfaces:Regarding their application for SOFC technology. Acta Mater.,48: 4709-4714.
    [42]Eguchi K, Akasaka N, Mitsuyasu H, et al.,2000. Process of solid state reaction between doped ceria and zirconia. Solid State Ionics,135:589-594.
    [43]Price M, Dong JH, Gu XH, et al.,2005. Formation of YSZ-SDC solid solution in a nanocrystalline heterophase system and its effect on the electrical conductivity. Journal of American Ceramic Society,88:1812-1818.
    [44]Hibino T, Hashimoto A, Inoue T, et al.,2000. Single-chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon-air mixtures. Journal of the Electrochemical Society,147:2888-2892.
    [45]Shiono M, Kobayashi K, Nguyen TL, et al.,2004. Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)Co03 cathode for low-temperature SOFCs, Solid State Ionics,170:1-7.
    [46]Kenjo T, Kanehira Y,2002. Influence of the local variation of the polarization resistance on SOFC cathodes. Solid State Ionics,148:1-14.
    [1]易宪武黄春辉王慰,1998.无机化学丛书第七卷 钪、稀土元素。北京:科学出版社,216-217.
    [2]Mantzouris X, Zouvelou N, Skarmoutsos D, et al.,2005. Interfacial properties and stricture stability of Ni/Y2O3-ZrO2-TiO2 cermet anodes for solid oxide fuel cells. Journal of Materials Science,40:2471-2475.
    [3]Rieck JS, Bell AT,1986. Studies of the interactions of H2 and CO with PdPSiO2 promoted with La2O3, CeO2, Pr6O11, Nd2O3, and Sm2O3. Journal of Catalysis,99:278-292.
    [4]Tsoga A, Naoumidis A, Nikolopoulos P,1996. Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ. Acta Materialia,44 (9):3679-3692
    [5]Luo JZ, Yu ZL, Ng CF, et al.,2000. CO2/CH4 reforming over Ni/La2O3/5A:an investigation on carbon deposition and reaction steps. Journal of Catalysis,194:198-210.
    [6]Church JS, Cant NW, Trimm DL,1993. Stabilisation of aluminasby rare earth and alkaline earth ions. Applied Catalysis,101:105-116
    [7]Tu B, Dong Y, Liu B, et al.,2007. Highly active lanthanum doped nickel anode for solid oxide fuel cells directly fuelled with methane. Journal of Power Sources,165:120-124.
    [8]Kim H, da Rosa C, Boaro M, et al.,2002. Fabrication of Highly Porous Yttria-Stabilized Zirconia by Acid Leaching Nickel from a Nickel-Yttria-Stabilized Zirconia Cermet. Journal of American Ceramic Society 85:1473-1476.
    [9]Xia CR, Liu ML,2001. A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. Journal of American Ceramic Society,84:1903-1905.
    [10]Zha SW, Rauch W, Liu ML,2004. Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs. Solid State Ionics,166:241-250.
    [11]Doshi R, Richards VL, Carter JD, et.al.1999. Development of Solid-Oxide Fuel Cells That Operate at 500 ℃. Journal of The Electrochemical Society,146:1273-1278.
    [12]Xia CR, Liu ML,2001. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics,144:249-255.
    [13]He BB, Ding D, Xia CR,2010. Ni-LnOx (Ln= La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,195: 1359-1364.
    [14]Suzuki T, Hasan Z, Funahashi Y, et al.,2009. Impact of anode microstructure on solid oxide fuel cells. Science,325:852-855.
    [15]Shkerin H. Primdal S, Mogensen M,2003. Polarisation resistance of O2, Au/O2 and H2-H2O, Au/O2 electrode systems. Ionics,9:140-150.
    [16]Duncan H, Lasia A.2005. Influence of the electrode nature on conductivity measurements of gadolinia-doped ceria. Solid State Ionics,176:1429-1437.
    [17]Mclntosh S, Vohs JM, Gorte RJ,2002. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochimica Acta,47:3815-3821.
    [18]Zhao S, Gorte RJ,2003. The effect of oxide dopants in ceria on n-butane oxidation. Applied Catalysis A:General,248:9-18.
    [19]Lu C, Worrell WL, Gorte RJ, et al.,2003. SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. Journal of Electrochemcal Society,150:A354-A358.
    [20]Finnerty CM, Coe NJ, Cunningham RH,1998. Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane. Catalysis Today, 46:137-145.
    [21]Mori H, Wen C, Otomo J, et al.,2003. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Applied Catalysis A:General,245:79-85.
    [22]Utigard TA, Wu M, Plascencia G, et al.,2005. Reduction kinetics of Goro nickel oxide using hydrogen. Chemical Engineering Science,60:2061-2068.
    [23]Richardson JT, Scates RM, Twigg MV,2004. X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts. Applied catalysis A:Genaral, 267:35-46.
    [24]Campbell CT, Peden CHF,2005. Chemistry:oxygen vacancies and catalysis on ceria surfaces. Science,309:713-714
    [25]Robell AJ, Ballou EV, Boudart M,1964. Surface diffusion of hydrogen on carbon. The Journal of Physical Chemistry,68:2748-2753.
    [26]Ostermaier JJ, Katzer JR, Manogue WH,1976. Platinum catalyst deactivation in low-temperature ammonia oxidation reactions:I. Oxidation of ammonia by molecular oxygen. Journal of Catalysis,41:277-292..
    [27]Robell AJ, Ballou EV, Boudart M,1964. Surface Diffusion of Hydrogen on Carbon. The Journal of Physical Chemistry,68:2748-2753.
    [28]Fujimoto K, Masam izu K, Asaoka S, et al.,1976. Catalysis by carbon.4. dehydrogenation of isopentane with active-carbon catalysis in presence of several hydrogen acceptors. Journal of Chemical Society Japanese,7:1062-1067.
    [29]Costa CN, Christou SY, Georgiou G, et al.,2003. Mathematical modeling of the oxygen storage capacity phenomenon studied by CO pulse transient experiments over Pd/Pd/CeOi catalyst. Journal of Catalysis,219:259-272.
    [30]Christou SY, Costa CN, Efstathiou AM,2004. A two-step reaction mechanism of oxygen release from Pd/CeO2:Mathematical Modelling Based on Step Gas Concentration Experiments. Topics in Catalysis,30-31:325-331.
    [31]Babaei A, Jiang SP, Li J,2009. Electrocatalytic promotion of Palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover. Journal of The Electrochemical Society,56(9):B1022-B1029.
    [32]Jiang SP, Badwal SPS,1997. Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria-Tetragonal Zirconia Electrolyte. Journal of The Electrochemical Society,144 (1997) 3777-3784.
    [33]Jiang SP, Badwal SPS,1999. An electrode kinetics study of H2 oxidation on Ni/Y2O3-ZrO2 cermet electrode of the solid oxide fuel cell. Solid State Ionics,123:209-224.
    [34]Ihara M, Kusano T, Yokoyama C,2001. Competitive Adsorption Reaction Mechanism of Ni/Yttria-Stabilized Zirconia Cermet Anodes in H2-H2O Solid Oxide Fuel Cells. Journal of The Electrochemical Society,148:A209-A219.
    [35]Holtappels P, de Haart LGJ, Stimming U,1999. Reaction of Hydrogen/Water Mixtures on Nickel-Zirconia Cermet Electrodes:I. DC Polarization Characteristics. Journal of The Electrochemical Society,146:1620-1625.
    [36]Mogensen M, Skaarup S,1996. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics,86-88:1151-1160.
    [37]Holtappels P, de Haart LGJ, Stimming U,1999. Reaction of Hydrogen/Water Mixtures on Nickel-Zirconia Cermet Electrodes:Ⅱ. AC Polarization Characteristics. Journal of The Electrochemical Society,146:2976-2982.
    [38]Curtis-Conner W, Jr., Pajonk GM, Teichner SJ,1986. Advances in Catalysis, p.1, Academic, Orlando.
    [39]Conner WC, Falconer JL,1995. Spillover in Heterogeneous Catalysis. Chemical Reviews,95: 759-788.
    [1]Huang YH, Dass RI, Denyszyn JC, et al.,2006. Synthesis and Characterization of Sr2 MgMoO6-δ. Journal of The Electrochemical Society,153:A1266-A1272.
    [2]Huang YH, Dass RI, Xing ZL, et al.,2006. Double perovskites as anode materials for solid-oxide fuel cells. Science,312:254-257.
    [3]Huang YH, Liang G, Croft M, et al.,2009. Double-perovskite anode materials Sr2MMoOg (M= CO, Ni) for solid oxide fuel cells. Chemistry of Materials,21:2319-2326.
    [4]Graves C, Sudireddy BR, Mogensen M,2010. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells. ECS Trans.,28:173-192.
    [5]Colis S, Stoeffier D, Meny C, et al.,2005. Structural defects in SrFeMoO double perovskite: Experimental versus theoretical approach. Journal of Applied physics,98:033905-033916.
    [6]Z.M. Wang, Y. Tian, YD. Li,2011. Direct CH4 fuel cell using Sr2FeMo06 as an anode material. Journal of Power Sources,196:6104-6109.
    [7]Liu Q, Dong X, Xiao G, et al.,2010. A Novel Electrode Material for Symmetrical SOFCs. Advanced Materials,22:5478-5482.
    [8]Xiao G, Liu Q, Zhao F, et al.,2011. Sr2Fe1.5Mo0.5O6 as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells with Lao.sSro.2Ga0.87Mg0.13O3 Electrolyte. Journal of The Electrochemical Society,158:B455-B460.
    [9]Zhang L, Liu YQ, Zhang YX, et al.,2011. Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles. Electrochern. Commun.,13:711-713.
    [10]Xiao GL, Chen FL,2011. Ni modified ceramic anodes for direct-methane solid oxide fuel cells. Electrochemistryl Communications,13:57-59.
    [11]Adler SB,1998. Mechanism and kinetics of oxygen reduction on porous La1-xSTxCoO3-δ electrodes. Solid State Ionics,111:125-134.
    [12]Kenjo T, Nishiya M,1992. LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High-Temperature Solid Oxide Fuel-Cells. Solid State Ionics,57:295-302.
    [13]Kenjo T, Osawa S, Fujikawa K,1991. High-Temperature Air Cathodes Containing Ion Conductive Oxides. Journal of the Electrochemical Society,138:349-355.
    [14]Murray EP, Bamett SA,2001. (La,Sr) MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics,143:265-273.
    [15]Liu ML,1998. Equivalent Circuit Approximation to Porous Mixed-Conducting Oxygen Electrodes in Solid-State Cells. Journal of The Electrochemical Society,145:142-154.
    [16]Fleig J, Maier J,2004. The polarization of mixed conducting SOFC cathodes:Effects of surface reaction coefficient, ionic conductivity and geometry. Journal of the European Ceramic Society,24,1343-1347.
    [17]Van der Pauw LJ,1958. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports,13:1-9.
    [18]Chen CS,1994. Fine grained zirconia_metal dual phase composites. [Ph D thesis]. The Netherlands:University of Twente.
    [19]Zhang LL, Zhou Q, He Q, et al.,2010. Double-perovskites A2FeMoO6-δ(A=Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources,195:6356-6365.
    [20]Atkinson A, Barnett S, Gorte RJ, et al.,2004. Advanced anodes for high-temperature fuel cells. Nature Materials,3:17-27.
    [21]Kim G, Corre G, Irvine JTS, et al.,2008. Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochemical and Solid State Letters,11, B16-B19.
    [22]Marrero-Lo'pez D, Pena-Martnez J, Ruiz-Morales JC, et al.,2008. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6-,s anode. Materials Research Bulletin,43, 2441-2450.
    [23]Hui SQ, Petric A,2002. Electrical properties of yttrium-doped strontium titanate under reducing conditions. Journal of The Electrochemical Society,149, J1-J10.
    [24]Marina OA, Canfield NL, Stevenson JW,2002. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics,149; 21-28.
    [25]Tsipis EV, Kharton W,2008. Electrode materials and reaction mechanisms in solid oxide fuel cells:A brief review:I Performance-determining factors. Journal of Solid State Electrochemistry,12:1039-1060.
    [26]Yahiro H, Eguchi K, Arai H,1989. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics,36:71-75.
    [27]Inaba H, Tagawa H,1996. Ceria-based solid electrolytes. Solid State Ionics,83; 1-16.
    [28]Ding D, Liu BB, Zhu ZN, et al.,2008. High reactive CeO.8SmO.201.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179:896-899.
    [29]Jiang ZY, Xia CR, Zhao F, et al.,2009. La0.85Sr0.15MnO3-δ Infiltrated Y0.5Bi1.5O3 Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Electrochemical and Solid State Letters.12:B91-B93.
    [30]Adler SB, Lane JA, Steele BCH,1996. Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. Journal of The Electrochemical Society.143:3554-3364.
    [31]Alder SB,2000. Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics,135:603-612.
    [32]Tao S, Irvine JTS,2004. Investigation of the mixed conducting oxide ScYZT as a potential SOFC anode material. Journal of The Electrochemical Society,151:A497-A503.
    [33]Jiang SP, Chen XJ, Chan SH, et al,2006. GDC-Impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells. Journal of The Electrochemical Society,153:A850-A856.
    [34]Chiba R, Komatsu T, Orui H, et al.,2009. SOFC Cathodes Composed of LaNi0.6Fe0.4O3 and Pr-Doped CeO2. Electrochemical and Solid State Letters,12:B69-B72.
    [35]Jiang ZY, Zhang L, Feng K, et al.,2008. Nanoscale bismuth oxide impregnated (La,Sr)MnO3 cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,185: 40-48.
    [36]Chen XJ, Chan SH, Khor KA,2004. Simulation of a composite cathode in solid oxide fuel cells. Electrochimica Acta,49:1851-1861.
    [37]Brown M, Primdahl S, Mogensen M,2000. Structure/perfonnance relations for Ni/yttria-stabilized zirconia anodes for solid oxide fuel cells. Journal of The Electrochemical Society,147; 475-485.
    [38]Suzuki T, Hasan Z, Funahashi Y, et al.,2009. Impact of anode microstructure on solid oxide fuel cells. Science,325,852-855.
    [39]Mclntosh S, Vohs JM, Gorte RJ,2002. An examination of Ianthanide additives on the performance of Cu-YSZ cermet anodes. Electrochimica Acta,47:3815-3821.
    [40]Zhao S, Gorte RJ,2003. The effect of oxide dopants in ceria on n-butane oxidation. Applied Catalysis A:Genaral,248:9-18.
    [41]Haile SM,2003. Fuel cell materials and components. Acta Materialia,51:5981-6000.
    [42]Dalslet B, Blennow P, Hendriksen PV, et al.,2006. Assessment of doped ceria as electrolyte. Journal of Solid State Electrochemistry,10:547-561.
    [43]Kharton W, Figueiredo FM, Navarro L, et al.,2001. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,36:1105-1117.
    [44]Jiang SP, Duan YY, Love JG,2002. Fabrication of High-Performance Ni/Y2O3-ZrO2 Cermet Anodes of Solid Oxide Fuel Cells by Ion Impregnation. Journal of The Electrochemical Society,149: A1175-A1183.
    [45]Kim G, Lee S, Shin JY, et al.,2009. Investigation of the Structural and Catalytic Requirements for High-Performance SOFC Anodes Formed by Infiltration of LSCM. Electrochemical and Solid State Letters,12:B48-B52.
    [46]Jiang SP, Love JG,2001. Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells. Solid State Ionics,138:183-190.
    [47]Hammouche A, Siebert E, Hammou A, et al.,1991. Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1-xSrxMnO3. Journal of The Electrochemical Society,138:1212-1216.
    [48]Siebert E,1994. Electrocatalysis and morphology at cathode materials for the oxygen reaction on solid oxide ionic conductors. Electrochimica Acta,39,1621-1625.
    [49]Wang W, Jiang SP,2004. Effect of polarization on the electrode behavior and microstructure of (La, Sr)MnO3 electrodes of solid oxide fuel cells. Journal of Solid State Electrochemistry, 8:914-922.
    [1]Tao SW, Irvine JTS,2004. Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ,a Redox-Stable, Efficient Perovskite Anode for SOFCs. Journal of The Electrochemical Society, 151:A252-A259.
    [2]Huang YH, Dass RI, Denyszyn JC, et al,2006. Synthesis and Characterization of Sr2MgMoO6-δ. Journal of The Electrochemical Society,153:A1266-A1272.
    [3]Huang YH, Liang G, Croft M, et al.,2009. Double-perovskite anode materials Sr2MMoO6 (M= CO, Ni) for solid oxide fuel cells. Chemistry of Materials,21:2319-2326.
    [4]Liu Q, Dong X, Xiao G, et al.,2010. A Novel Electrode Material for Symmetrical SOFCs. Advanced Materials,22:5478-5482.
    [5]Lee YL, Kleis J, Rossmeisl J, et al.,2011, Prediction of solid oxide fuel cell cathode activity with first-principles descriptors, Energy Environ. Sci.,4,3966-3971.
    [6]Graves C, Sudireddy BR, Mogensen M,2010. Molybdate Based Ceramic Negative Electrode Materials for Solid Oxide Cells. ECS Transactions,28:173-192.
    [7]Dambies L, Guimon C, Yiacoumi S, et al.,2001. Colloids and Surfaces A:Physicochemical and Engineering Aspects,177:203-214.
    [8]Kim D, Kagwade SV, Clayton CR,1998. Identification of Mo(V) commonly observed in passive films formed on stainless steels. Surf. Interface Anal.,26:155-159.
    [9]Kim KS, Winograd N,1974. X-RAY PHOTOELECTRON SPECTROSCOPIC STUDIES OF NICKEL-OXYGEN SURFACES USING OXYGEN AND ARGON ION-BOMBARDMENT Surface Science,43:625-643.
    [10]Kim KS, Davis RE,1972/73. Electron spectroscopy of the nickel-oxygen system. J. Electron Spectrosc. ReLPhenom.1,251-258.
    [11]Xiao G, Liu Q, Zhao F, et al.,2011. Sr2Fe1.5Mo0.5O5 as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells with La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte. Journal of The Electrochemical Society,158:B455-B460.
    [12]Hayashi H, Kanoh M, Quan CJ, Inaba H, Wang SR, Dokiya M, Tagawa H. Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics 2000; 132:227-233.
    [13]Lee D, Han J, Chun Y, et al.,2007. Preparation and characterization of strontium and magnesium doped lanthanum gallates as the electrolyte for IT-SOFC. Journal of Power Sources 166 (2007)35-40.
    [14]Beckel D, Mutter AB, Harvey A, et al.,2007. Thin films for micro solid oxide fuel cells. Journal of Power Sources.173:325-345.
    [15]Raj ES. Kilner JA. Irvine JTS,2006. Oxygen diffusion and surface exchange studies on (La0.7sSr0.25)o.95Cr0.5Mn0.5O3-δ. Solid State Ionics,177:1747-1752.
    [16]Tao SW, Irvine JTS,2003. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials,2:320-323.
    [17]Kim MS, Park CH,2010, GW Calculation of the Electronic Structure of Cubic Perovskite SrTiO3, Journal of the Korean Physical Society,56,490-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700