用户名: 密码: 验证码:
CVD金刚石/铜复合材料的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石的热导率为铜的4-5倍,密度比传统的金属封装材料小,具优良的高温性能、抗辐射性能和化学稳定性。铜具良好的导电性,有良好的延展性和可塑性,易焊接。金刚石/铜基复合材料由于其高导热性在大功率电真空器件中有广泛的应用。
     对于金刚石/铜基复合材料来说,充分发挥金刚石导热性能的前提是使金刚石在铜基中沿导热方向形成并联式结构。化学气相沉积(CVD)能生长出连续的金刚石膜,是实现这种并联结构复合材料的理想方法。但是,铜是既不溶碳也不能形成碳化物基体,且与金刚石热膨胀系数差异很大,严重影响CVD金刚石/铜基复合材料的制备。为此,本文就改善CVD金刚石在铜基体上形核生长、增强CVD金刚石与铜结合等进行了基础研究,并首次提出了两种制备CVD金刚石并联结构/铜复合材料的方法。
     1根据水溶液体系中纳米金刚石颗粒与铜基体间相互作用,通过热处理调控纳米金刚石(Nanodiamond)表面的含氧官能团,使其在水溶液中与铜基体产生强静电作用。在静电作用下,纳米金刚石颗粒可均匀吸附于铜基表面。这种纳米金刚石在铜基体的静电吸附可使CVD金刚石形核密度达1011cm-2,比一般热丝CVD金刚石的形核率提高近2个数量级。
     2提出一种Nanodiamond/n-Pt复合层增强形核并改善金刚石/铜结合状态的方法。在静电吸附的纳米金刚石层表面蒸镀一层约40nm厚的Pt,然后在此Nanodiamond/n-Pt复合层上沉积金刚石。该方法可使金刚石膜牢固结合于铜基体,SEM显示金刚石膜与铜基体间无明显的过渡层;Raman光谱的峰偏移计算金刚石膜的应力为-7.56GPa,与热应力的理论数值接近,表明金刚石/铜间结合良好。
     3考察了Ti、W(可形成碳化物型)与Ni(碳溶解型)过渡层对金刚石膜生长、结合性能的影响。Ti过渡层既能与金刚石形成碳化物,又能与铜基体形成扩散,能显著提高金刚石膜的结合;与Ti过渡层相比,W过渡层上沉积的金刚石膜与铜基体结合较差;因C原子在Ti中的固溶度远大于W,同等沉积条件下,Ti过渡层上生长的金刚石膜中非金刚石相比W过渡层上的多。Ni过渡层上可沉积出晶体颗粒接近热力学形态的高质量金刚石膜,其中非金刚石相的含量小于5.56%,但结合不佳。
     4研究了铜模板通道内CVD金刚石的生长行为。当沉积气压为2.OkPa时,可生长出连续的金刚石膜。而金刚石晶粒尺寸随模板通道长径比的增加而大体呈线性降低,当通道的长径比为2.0时,金刚石膜表面光滑,晶粒完全细化,变成典型的球形纳米晶金刚石膜;通过气源强制输送可明显改善模板通道内金刚石的质量,约在600μm通道深度处的CVD金刚石的结晶完整性仍较好。气源强制输送主要改善了金刚石沉积过程中的[CH3]加成速率,进而提高了通道内金刚石生长的均匀性;模板法原位生长可获得金刚石/铜微通道复合材料,采用纳米金刚石增强形核与过渡层增强结合,铜微通道基片表面可生长出连续、光滑的金刚石膜,CVD金刚石膜与基片结合牢固。微通道的直径为0.236mm,通道间的距离为2mm。
     5采用钨丝((?)1mm)为芯材沉积出高质量金刚石/W预制棒,溅射钛过渡层后,将金刚石/W预制棒纵向排成阵列,铜粉填充于预制棒之间,经真空热压烧结制备成致密的金刚石并联结构/铜基复合材料。通过热模拟讨论了该复合材料的导热性能,热源远端表面的热流量分布显示,金刚石膜层的热流量显然高于其它部分。随着金刚石/W预制棒数量的增加,复合材料热源远端表面上的温度开始均匀,单个金刚石/W预制棒的影响范围开始耦接在一起,复合材料上表面的热流量分布趋于均匀。图89幅,表
The thermal conductivity of diamond is4or5times of Cu and its density is lower than traditional metal packing materials. At the same time, diamond has exceptional high temperature performance, radiation resistant property and chemical stability. Copper has excellent electrical conductivity, malleable and plastic properties which make it easy to weld. Diamond/Cu composite material is widely used in the field of high power Electron Device due to its high thermal conductivity.
     For Diamond/Cu composite material, to make the most of diamond's thermal conductivity performance is based on forming its paralleling structure along the heating conduction direction in copper substrate. The chemical vapor deposition (CVD) technique is an ideal solution to fabricate such composite material since continuous diamond film can be deposited during this process. However, it is a difficult endeavor to deposit diamond film on Cu substrate using chemical vapor deposition (CVD) technique, namely:①Copper has a cubic crystal structure. It is immiscible with carbon, and does not form any carbide, which results in low nucleation density and poor quality of diamond film;②the high thermal stress originated from the large mismatch of thermal expansion coefficients damages the bonding property between diamond film and Cu substrate. In order to improve the nucleation and growth of diamond on Cu substrate and enhance its cohesion between CVD diamond and copper, we have done some fundamental researches and come up with two ways to fabricating CVD diamond with paralleling structure/Cu composite material for the first time.
     1Based on the interaction between nanoparticles and substrate surfaces in solvent system, modified nanodiamond was homogeneously charged on the Cu substrate by electrostatic self-assembly, which acted as pre-existing sp3seeds. The nucleation density is greater than1011cm-2, which is2times higher than other reports.
     2A novel method of enhancing diamond nucleation and binding property through forming a Nanodiamond/n-Pt composite layer was proposed. After coating a platinum layer of40nm thickness to the copper substrate seeded with nanodiamond particles, adherent diamond film was then deposited on Cu substrate. As can be seen from the SEM images, there is no distinctly metallic interlayer between diamond film and Cu substrate. The residual stress in diamond film calculated from the shift of Raman spectrum is-7.56GPa, which is comparable with the thermal stress.
     3The influence of those interlayers like Ti, W and Ni on diamond growth and binding property has been discussed in details. Ti can not only form a relatively strong carbide bond with diamond film but also has reasonable diffusion ability in Cu substrates, so it can distinguishably improve the binding property of diamond/Cu. Compared with Ti, W shows poor binding property. However, the dissolution of carbon in Ti is higher than W, so the sp2carbon content of diamond film deposited on Ti interlayer is distinctly higher than diamond film on W interlayer under the same CVD conditions. High-quality diamond film with its crystalline grains close to the thermal equilibrium shape was deposited on Ni interlayer. The sp2carbon content is less than5.56%, but poor in cohesion performance.
     4The growth behaviors of diamond film in the holes (or channels) of a Cu template were investigated. Under the pressure of2.0kPa, continuous diamond film was obtained. Increasing the aspect ratio of the holes, the diamond grain size linearly decreases. When the aspect ratio is2.0, the deposited diamond film was smooth and quasi-spherical nanocrystalline. Forced transportation of gas source can improve the quality of diamond deposited in the hole. Even at the depth of about600μm, diamond grains still show perfect crystallinity. Forced transportation of gas source is able to enhance the addition rate of [CH3] during the diamond deposition, and then the quality of diamond in the holes pores can be improved. CVD diamond/Cu micro-channel composite material was directly deposited by Cu template. By nanoseeding and forming an interlayer, continuous and smooth diamond film was obtained, which has a excellent cohesion performace with the Cu substrate. The diameter of micro-channels is0.236mm, and the distance between channels is2mm.
     5High quality columnar diamond bar was deposited by using W wire as core substrate. After sputtering a Ti interlayer, diamond bars were longitudinally arranged in order with copper powder filling in the prepared paralleling structure diamond/Cu composite by vacuum hot-press sintering method. The thermal conductivity performance of CVD diamond/Cu composite material for directional thermal conductivity was discussed by thermal simulation. Heat flow distribution of the far end surface of composite material shows that heat transfer rate of diamond film layer is obviously higher than other parts. With the increase of the diamond rod, the surface temperature distribution becomes uniform, and the influence range of a single diamond rod begins to couple with each other, while the heat flow distribution of composite material on the far end surface also tends to be uniform.
引文
[1]X.C. Tong, Advanced Materials for Thermal Management of Electronic Packaging [MJ, Springer,2011
    [2]S. Canumalla, P. Viswanadham, Portable Consumer Electronics:Packaging, Materials, and Reliability [M], PennWell,2010
    [3]Y. Liu, Power Electronic Packaging [M], Springer,2012
    [4]邓安强,樊静波,谭占秋,范根莲,李志强,张.荻,金刚石/铜复合材料在电子封装材料领域的研究进展[J],金刚石与磨料磨具工程,2010,30(179):56-61.
    [5]T.M. Tritt, Thermal Conductivity:Theory, Properties, and Applications [M], Springer, 2004
    [6]D.F. Edwards, R.H. White, Beryllium Oxide (BeO), in:D.P. Edward (Ed.) Handbook of Optical Constants of Solids, Academic Press, Burlington,1997, pp.805-814.
    [7]C. Zweben, Metal-matrix composites for electronic packaging [J], JOM Journal of the Minerals, Metals and Materials Society,1992,44 (7):15-23.
    [8]Y. Shen, A. Needleman, S. Suresh, Coefficients of thermal expansion of metal-matrix composites for electronic packaging [J], Metallurgical and Materials Transactions A,1994,25 (4):839-850.
    [9]K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian, H. Guo, Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles [J], Journal of Alloys and Compounds,2010,490 (1-2):453-458.
    [10]J.A. Kerns, N.J. Colella, D. Makowiecki, H.L. Davidson, Dymalloy:A composite substrate for high power density electronic components [M],1995
    [11]O.A. Williams, Nanocrystalline diamond [J], Diamond and Related Materials,2011,20 (5-6):621-640.
    [12]J. Buhler, Y. Prior, Study of morphological behavior of single diamond crystals [J], Journal of Crystal Growth,2000,209 (4):779-788.
    [13]D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films [J], International Materials Reviews,2007,52 (1):29-64.
    [14]Z. Yu, A. Flodstrom, Orientation of (1×1)-surface free energies of crystals [J], Surface Science,1998,401 (2):236-247.
    [15]Q. Wei, M.N.R. Ashfold, Y.A. Mankelevich, Z.M. Yu, P.Z. Liu, L. Ma, Diamond growth on WC-Co substrates by hot filament chemical vapor deposition:Effect of filament-substrate separation [J], Diamond and Related Materials,2011,20 (5-6): 641-650.
    [16]J.W. Baldwin, M.K. Zalalutdinov, T. Feygelson, B.B. Pate, J.E. Butler, B.H. Houston, Nanocrystalline diamond resonator array for R-F signal processing [J], Diamond and Related Materials,2006,15 (11-12):2061-2067.
    [17]P.W. May, The New Diamond Age? [J], Science,2008,319 (5869):1490-1491.
    [18]A.M. Zaitsev, Optical Properties of Diamond:A Data Handbook [M], Springer,2001
    [19]T. Sharda, T. Soga, T. Jimbo, Optical properties of nanocrystalline diamond films by prism coupling technique [J], Journal of Applied Physics,2003,93 (1):101-105.
    [20]A. Kriele, O.A. Williams, M. Wolfer, D. Brink, W. Muller-Sebert, C.E. Nebel, Tuneable optical lenses from diamond thin films [M], AIP,2009
    [21]J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials [J], Chemical Vapor Deposition,2008,14 (7-8):145-160.
    [22]H. Sumiya, S. Satoh, High-pressure synthesis of high-purity diamond crystal [J], Diamond and Related Materials,1996,5 (11):1359-1365.
    [23]Sumiya H, T. N., Development of high-quality large-size synthetic diamond crystals [J], SEI Tech. Rev.,2005,6010-15.
    [24]P. Chen, F. Huang, S. Yun, Structural analysis of dynamically synthesized diamonds [J], Materials Research Bulletin,2004,39 (11):1589-1597.
    [25]O. Shenderova, I. Petrov, J. Walsh, V. Grichko, V. Grishko, T. Tyler, G. Cunningham, Modification of detonation nanodiamonds by heat treatment in air [J], Diamond and Related Materials,2006,15 (11-12):1799-1803.
    [26]O. Shenderova, S. Hens, G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO [J], Diamond and Related Materials,2010,19 (2-3):260-267.
    [27]S.T. Lee, Z. Lin, X. Jiang, CVD diamond films:nucleation and growth [J], Materials Science and Engineering:R:Reports,1999,25 (4):123-154.
    [28]S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka, Growth of diamond particles from methane-hydrogen gas [J], Journal of Materials Science,1982,17 (11):3106-3112.
    [29]Y. Xia, Y.-q. Song, C.-g. Lin, S. Cui, Z.-z. Fang, Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials [J], Transactions of Nonferrous Metals Society of China,2009,19 (5): 1161-1166.
    [30]S. Ren, X. Shen, C. Guo, N. Liu, J. Zang, X. He, X. Qu, Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy [J], Composites Science and Technology,2011,71 (13):1550-1555.
    [31]K. Chu, C. Jia, X. Liang, H. Chen, W. Gao, Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering [J], Rare Metals,2009,28 (6):646-650.
    [32]Q. Su, J. Liu, L. Wang, W. Shi, Y. Xia, Efficient CVD diamond film/alumina composite substrate for high density electronic packaging application [J], Diamond and Related Materials,2006,15 (10):1550-1554.
    [33]Q. Sun, O.T. Inal, Fabrication and characterization of diamond/copper composites for thermal management substrate applications [J], Materials Science and Engineering: B,1996,41 (2):261-266.
    [34]T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. WeiBgarber, B. Kieback, Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications [J], Scripta Materialia,2008,58 (4):263-266.
    [35]X. Zhang, H. Guo, F. Tin, Y. Fan, Y. Zhang, Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications [J], Rare Metals,2011,30(1):94-98.
    [36]K. Yoshida, H. Morigami, Thermal properties of diamond/copper composite material [J], Microelectronics Reliability,2004,44 (2):303-308.
    [37]K. Hanada, K. Matsuzaki, T. Sano, Thermal properties of diamond particle-dispersed Cu composites [J], Journal of Materials Processing Technology,2004,153-154 (0): 514-518.
    [38]E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko, Thermal conductivity of diamond composites sintered under high pressures [J], Diamond and Related Materials,2008,17 (4-5):838-843.
    [39]L. Weber, R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites [J], Scripta Materialia,2007,57 (11):988-991.
    [40]尚青亮,陶静梅,徐孟春,李才巨,朱心昆,电子封装材料用金刚石/铜复合材料的研究进展[J],电子工艺技术,2009,30(1):5-8.
    [41]方针正,林晨光,张小勇,金刚石/Cu复合材料的烧结致密化研究[J],稀有金属,2008,32(3):306-310.
    [42]马双彦,王恩泽,鲁伟员,金刚石/铜复合材料热导率研究[J],材料热处理技术,2008,37(4):36-38.
    [43]Y. Agari, A. Ueda, S. Nagai, Thermal conductivity of a polymer composite [J], Journal of Applied Polymer Science,1993,49 (9):1625-1634.
    [44]Y. TaiFa, Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device [J], Surface and Coatings Technology,2007,202 (4-7):1208-1213.
    [45]S.D. Wolter, D.A. Borca-Tasciuc, G Chen, N. Govindaraju, R. Collazo, F. Okuzumi, J.T. Prater, Z. Sitar, Thermal conductivity of epitaxially textured diamond films [J], Diamond and Related Materials,2003,12 (1):61-64.
    [46]L. Constant, C. Speisser, F. Le Normand, HFCVD diamond growth on Cu(lll). Evidence for carbon phase transformations by in situ AES and XPS [J], Surface Science,1997,387 (1-3):28-43.
    [47]N. Jiang, L.C. Wang, J.H. Won, M.H. Jeon, Y. Mori, A. Hatta, T. Ito, T. Sasaki, A. Hiraki, Interfacial analysis of CVD diamond on copper substrates [J], Diamond and Related Materials,1997,6 (5-7):743-746.
    [48]L. Constant, F. Le Normand, HFCVD diamond nucleation and growth on polycrystalline copper:A kinetic study [J], Thin Solid Films,2008,516 (5):691-695.
    [49]程春晓,姚宁,马丙现,采用钛,铝,钼过渡层在铜基底上沉积金刚石薄膜的研究[J],真空与低温,2005,11(1):46-49.
    [50]Q.H. Fan, E. Pereira, J. Gracio, Diamond deposition on copper:studies on nucleation, growth, and adhesion behaviours [J], Journal of Materials Science,1999,34 (6): 1353-1365.
    [51]Q.H. Fan, J. Gracio, N. Ali, E. Pereira, Comparison of the adhesion of diamond films deposited on different materials [J], Diamond and Related Materials,2001,10 (3-7): 797-802.
    [52]Q.H. Fan, A. Fernandes, E. Pereira, J. Gracio, Adhesion of diamond coatings on steel and copper with a titanium interlayer [J], Diamond and Related Materials,1999,8 (8-9):1549-1554.
    [53]Q.H. Fan, A. Fernandes, E. Pereira, J. Gracio, Evaluation of adherence of diamond coating by indentation method [J], Vacuum,1999,52 (1-2):163-167.
    [54]Q.H. Fan, A. Fernandes, E. Pereira, J. Gracio, Adherent diamond coating on copper using an interlayer [J], Vacuum,l 999,52 (1-2):193-198.
    [55]M. Vedawyas, G. Sivananthan, A. Kumar, Textured polycrystalline diamond films on Cu metal substrates by hot filament chemical vapor deposition [J], Materials Science and Engineering:B,2000,78 (1):16-21.
    [56]M. Zhibin, W. Jianhua, W. Qinchong, W. Chuanxin, Preparation of flat adherent diamond films on thin copper substrates using a nickel interlayer [J], Surface and Coatings Technology,2002,155 (1):96-101.
    [57]P.C. Jindal, D.T. Quinto, G.J. Wolfe, Adhesion measurements of chemically vapor deposited and physically vapor deposited hard coatings on WC Co substrates [J], Thin Solid Films,1987,154 (1-2):361-375.
    [58]O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond [J], Chemical Physics Letters,2007,445 (4-6):255-258.
    [59]J.G Buijnsters, L. Vazquez, GW.G. van Dreumel, J.J. ter Meulen, W.J.P. van Enckevort, J.P. Celis, Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers [J], Journal of Applied Physics,2010,108 (10):103514-103519.
    [60]Y.-C. Chen, Y. Tzeng, A.-J. Cheng, R. Dean, M. Park, B.M. Wilamowski, Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond structures and practical applications [J], Diamond and Related Materials,2009,18(2-3):146-150.
    [61]Y. Mitsuda, Y. Kojima, T. Yoshida, K. Akashi, The growth of diamond in microwave plasma under low pressure [J], Journal of Materials Science,1987,22 (5):1557-1562.
    [62]R. Erz, W. Dotter, K. Jung, H. Ehrhardt, Preparation of smooth and nanocrystalline diamond films [J], Diamond and Related Materials,1993,2 (2-4):449-453.
    [63]K. Higuchi, S. Noda, Selected area diamond deposition by control of the nucleation sites [J], Diamond and Related Materials,1992,1 (2-4):220-229.
    [64]M. Daenen, O.A. Williams, J. D'Haen, K. Haenen, M. Nesladek, Seeding, growth and characterization of nanocrystalline diamond films on various substrates [J], physica status solidi (a),2006,203 (12):3005-3010.
    [65]H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishima, Synthesis of Well-Aligned Diamond Nanocylinders [J], Advanced Materials,2001,13 (4):247-249.
    [66]J.H. Kim, S.K. Lee, O.M. Kwon, S.I. Hong, D.S. Lim, Thickness controlled and smooth polycrystalline CVD diamond film deposition on SiO2 with electrostatic self assembly seeding process [J], Diamond and Related Materials,2009,18 (10): 1218-1222.
    [67]A.V. Sumant, P.U.P.A. Gilbert, D.S. Grierson, A.R. Konicek, M. Abrecht, J.E. Butler, T. Feygelson, S.S. Rotter, R.W. Carpick, Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films [J], Diamond and Related Materials,2007,16 (4-7):718-724.
    [68]X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of the aqueous copper nano-suspensions [J], Journal of Colloid and Interface Science,2007,310 (2):456-463.
    [69]X. Liu, T. Yu, Q. Wei, Z. Yu, X. Xu, Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles [J], Colloids and Surfaces A:Physico-chemical and Engineering Aspects,2012,412 (0):82-89.
    [70]X.Y. Xu, Z.M. Yu, Y.W. Zhu, B.C. Wang, Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond [J], Journal of Solid State Chemistry,2005,178 (3):688-693.
    [71]X. Xu, Z. Yu, Y. Zhu, B. Wang, Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions [J], Diamond and Related Materials,2005,14 (2):206-212.
    [72]P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, Third Edition, Revised and Expanded [M], Taylor & Francis,1997
    [73]D.H. Everett, Basic principles of colloid science [M], Royal Society of Chemistry, 1988
    [74]R.J. Hunter, L.R. White, Foundations of colloid science [M], Clarendon Press,1987
    [75]E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, M.A. Yagovkina, A.Y. Vul, M. Takahashi, M. Inakuma, M. Ozawa, E. Osawa, A stable suspension of single ultrananocrystalline diamond particles [J], Diamond and Related Materials,2005,14 (11-12):1765-1769.
    [76]H.A. Girard, S. Perruchas, C.I. Gesset, M. Chaigneau, L. Vieille, J.-C. Arnault, P. Bergonzo, J.-P. Boilot, T. Gacoin, Electrostatic Grafting of Diamond Nanoparticles:A Versatile Route to Nanocrystalline Diamond Thin Films [J], ACS Applied Materials & Interfaces,2009,1 (12):2738-2746.
    [77]J.T. Drotar, Y.P. Zhao, T.M. Lu, G.C. Wang, Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 2+1 dimensions [J], Physical Review E,1999,59 (1):177-185.
    [78]M.N. Rahaman, Ceramic processing and sintering [M], Second Edition ed., New York, CRC Press,2003.875
    [79]J.C. Angus, H.A. Will, W.S. Stanko, Growth of Diamond Seed Crystals by Vapor Deposition [J], Journal of Applied Physics,1968,39 (6):2915-2922.
    [80]J.-Y. Raty, G Galli, Ultradispersity of diamond at the nanoscale [J], Nat Mater,2003,2 (12):792-795.
    [81]H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD:A new route toward organic functionalization [J], Diamond and Related Materials,2010,19 (7-9):1117-1123.
    [82]J.C. Arnault, S. Saada, M. Nesladek, O.A. Williams, K. Haenen, P. Bergonzo, E. Osawa, Diamond nanoseeding on silicon:Stability under H2 MPCVD exposures and early stages of growth [J], Diamond and Related Materials,2008,17 (7-10): 1143-1149.
    [83]K. Hirabayashi, Y. Taniguchi, O. Takamatsu, T. Ikeda, K. Ikoma, N. Iwasaki-Kurihara, Selective deposition of diamond crystals by chemical vapor deposition using a tungsten-filament method [J], Applied Physics Letters,1988,53 (19):1815-1817.
    [84]R.C. Mendes de Barros, E.J. Corat, N.G Fereira, T.M. de Souza, V.J. Trava-Airoldi, N.F. Leite, K. Iha, Dispersion liquid properties for efficient seeding in CVD diamond nucleation enhancement [J], Diamond and Related Materials,1996,5 (11):1323-1332.
    [85]侯涛.,徐仁扣,胶体颗粒表面双电层之间的相互作用研究进展[J],土壤,2008,40(3):377-381.
    [86]GM. Bell, GC. Peterson, Calculation of the electric double-layer force between unlike spheres [J], Journal of Colloid and Interface Science,1972,41 (3):542-566.
    [87]V. Nerapusri, J.L. Keddie, B. Vincent, I.A. Bushnak, Swelling and Deswelling of Adsorbed Microgel Monolayers Triggered by Changes in Temperature, pH, and Electrolyte Concentration [J], Langmuir,2006,22 (11):5036-5041.
    [88]D.Y.C. Chan, T.W. Healy, T. Supasiti, S. Usui, Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers [J], Journal of Colloid and Interface Science,2006,296 (1):150-158.
    [89]G.V. Lubarsky, S.A. Mitchell, M.R. Davidson, R.H. Bradley, van der Waals interaction in systems involving oxidised polystyrene surfaces [J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,279 (1-3):188-195.
    [90]G Michael, R. Stephane, Robotic Micro-Assembly [M], New Jersey, John Wiley & Sons,2010.306
    [91]S.-K. Lee, et al., Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles [J], Nanotechnology,2010,21 (50):505302.
    [92]W. Hongthani, N.A. Fox, D.J. Fermin, Electrochemical Properties of Two Dimensional Assemblies of Insulating Diamond Particles [J], Langmuir,2011,27 (8): 5112-5118.
    [93]G. Toikka, R.A. Hayes, Direct Measurement of Colloidal Forces between Mica and Silica in Aqueous Electrolyte [J], Journal of Colloid and Interface Science,1997,191 (1):102-109.
    [94]R.M. Pashley, DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+electrolyte solutions:A correlation of double-layer and hydration forces with surface cation exchange properties [J], Journal of Colloid and Interface Science,1981,83 (2):531-546.
    [95]G. Toikka, R.A. Hayes, J. Ralston, Surface forces between zinc sulfide and silica in aqueous electrolyte [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,141 (1):3-8.
    [96]R.F. Considine, C.J. Drummond, Surface Roughness and Surface Force Measurement:D A Comparison of Electrostatic Potentials Derived from Atomic Force Microscopy and Electrophoretic Mobility Measurements [J], Langmuir,2001,17 (25): 7777-7783.
    [97]M. Giesbers, J.M. Kleijn, M.A. Cohen Stuart, The Electrical Double Layer on Gold Probed by Electrokinetic and Surface Force Measurements [J], Journal of Colloid and Interface Science,2002,248 (1):88-95.
    [98]J.-Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds [J], Physical Review Letters,2003,90 (3):037401.
    [99]G. Frens, Particle size and sol stability in metal colloids [J], Colloid & Polymer Science,1972,250 (7):736-741.
    [100]N. AH, W. Ahmed, C.A. Rego, Q.H. Fan, Combined substrate polishing and biasing during hot-filament chemical vapor deposition of diamond on copper [J], Journal of Materials Research,2000,15 (3):593-595.
    [101]C. Li, K.C. Feng, Y.J. Fei, H.T. Yuan, Y. Xiong, K. Feng, The influence of C-60 as intermediate on the diamond nucleation on copper substrate in HFCVD [J], Applied Surface Science,2003,207 (1-4):169-175.
    [102]O. Malysheva, T. Tang, P. Schiavone, Adhesion between a charged particle in an electrolyte solution and a charged substrate:Electrostatic and van der Waals interactions [J], Journal of Colloid and Interface Science,2008,327 (1):251-260.
    [103]S. Iijima, Y. Aikawa, K. Baba, Early formation of chemical vapor deposition diamond films [J], Applied Physics Letters,1990,57 (25):2646-2648.
    [104]N. Ali, W. Ahmed, C.A. Rego, Q.H. Fan, Chromium interlayers as a tool for enhancing diamond adhesion on copper [J], Diamond and Related Materials,2000,9 (8):1464-1470.
    [105]A.C. Ferrari, J. Robertson, Raman Spectroscopy in Carbons:from Nanotubes to Diamond [M], The Royal Soc,2004.299
    [106]A.C. Ferrari, J. Robertson, Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond [J], Physical Review B,2001,63 (12):121405.
    [107]A.C. Ferrari, J. Robertson, Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond [J], Physical Review B,2001,63 (12):
    [108]H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther, The mystery of the 1140 cm(-l) Raman line in nanocrystalline diamond films [J], Carbon,2004,42 (5-6):911-917.
    [109]T. Okubo, S. Ikari, K. Kusakabe, S. Morooka, High-resolution scanning electron microscopy study on the early stage of diamond synthesis by microwave-plasma chemical vapour deposition [J], Journal of Materials Science Letters,1992,11 (8): 460-463.
    [110]H. Liu, D.S. Dandy, Diamond Chemical Vapor Deposition:Nucleation and Early Growth Stages [M], Noyes Publications,1995
    [111]B.S. Park, Y.J. Baik, Nucleation enhancement behavior of diamond on Si substrate according to surface treatment materials [J], Diamond and Related Materials,1997,6 (11):1716-1721.
    [112]M. Marchywka, P.E. Pehrsson, J. Daniel J. Vestyck, D. Moses, Low energy ion implantation and electrochemical separation of diamond films [J], Applied Physics Letters,1993,63 (25):3521-3523.
    [113]A.R. Kirkpatrick, B.W. Ward, N.P. Economou, Focused ion-beam crater arrays for induced nucleation of diamond film, in, AVS,1989, pp.1947-1949.
    [114]L. Guo, G. Chen, High-quality diamond film deposition on a titanium substrate using the hot-filament chemical vapor deposition method [J], Diamond and Related Materials,2007,16(8):1530-1540.
    [115]D.G Goodwin, Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry [J], Journal of Applied Physics,1993,74 (11):6888-6894.
    [116]X. Liu, Q. Wei, Z. Yu, D. Yin, CVD diamond film deposited on copper substrate enhanced by a thin platinum modification layer [J], physica status solidi (a),2012,209 (11):2217-2222.
    [117]M. Daenen, L. Zhang, R. Erni, O.A. Williams, A. Hardy, M.K. Van Bael, P. Wagner, K. Haenen, M. Nesladek, G. Van Tendeloo, Diamond Nucleation by Carbon Transport from Buried Nanodiamond TiO2 Sol-Gel Composites [J], Advanced Materials,2009,21 (6):670-673.
    [118]Y. Lifshitz, X.F. Duan, N.G. Shang, Q. Li, L. Wan, I. Bello, S.T. Lee, Nanostructure: Epitaxial diamond polytypes on silicon [J], Nature,2001,412 (6845):404-404.
    [119]B.J. Kang, J.H. Mun, C.Y. Hwang, B.J. Cho, Monolayer graphene growth on sputtered thin film platinum [J], Journal of Applied Physics,2009,106 (10):104309.
    [120]A.A. Smolin, V.G. Ralchenko, S.M. Pimenov, TV. Kononenko, E.N. Loubnin, Optical monitoring of nucleation and growth of diamond films [J], Applied Physics Letters,1993,62 (26):3449-3451.
    [121]H. Guo, Y. Qi, X. Li, Adhesion at diamond/metal interfaces:A density functional theory study [J], Journal of Applied Physics,2010,107 (3):033722.
    [122]I. Janowska, M.-S. Moldovan, O. Ersen, H. Bulou, K. Chizari, M. Ledoux, C. Pham-Huu, High temperature stability of platinum nanoparticles on few-layer graphene investigated by <i>In Situ&It;/i> high resolution transmission electron microscopy [J], Nano Research,2011,4 (5):511-521.
    [123]Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species:Application to diamond [J], Physical Review Letters,1989,62 (11):1290.
    [124]F. Le Normand, L. Constant, G Ehret, C. Speisser, Generation of carbon tripods on copper by chemical vapor deposition [J], Journal of Materials Research,1999,14 (2): 560-564.
    [125]F. Le Normand, L. Constant, G. Ehret, M. Romeo, A. Charai, W. Saikaly, C. Speisser, Investigation of carbon aggregates (onions) formed on copper under the conditions of diamond chemical vapour deposition [J], Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties,1999,79 (7): 1739-1756.
    [126]D. Bullard, D. Lynch, Reduction of titanium dioxide in a nonequilibrium hydrogen plasma [J], Metallurgical and Materials Transactions B,1997,28 (6):1069-1080.
    [127]B. Lux, R. Haubner, Diamond deposition on cutting tools [J], Ceramics International,1996,22 (4):347-351.
    [128]Z. Crljen, D. Sokcevic, R. Brako, P. Lazic, DFT calculations of (111) surfaces of Au, Cu, and Pt:stability and reconstruction [J], Vacuum,2003,71 (1-2):101-106.
    [129]T. Aizawa, Y. Hwang, W. Hayami, R. Souda, S. Otani, Y. Ishizawa, Phonon dispersion of monolayer graphite on Pt(111) and NbC surfaces:bond softening and interface structures [J], Surface Science,1992,260 (1-3):311-318.
    [130]D. Fujita, M. Schleberger, S. Tougaard, XPS study of the surface enrichment process of carbon on C-doped Ni(111) using inelastic background analysis [J], Surface Science,1995,331-333, Part A (0):343-348.
    [131]T. Tachibana, Y. Yokota, K. Miyata, T. Onishi, K. Kobashi, M. Tarutani, Y. Takai, R. Shimizu, Y. Shintani, Diamond films heteroepitaxially grown on platinum (111) [J], Physical Review B,1997,56 (24):15967.
    [132]S.-i. Ojika, S. Yamashita, K. Kataoka, T. Ishikura, Diamond Grain Growth on Cu Substrate [J], Japanese Journal of Applied Physics,1993,32 (Part 2, No.11B): 1681-1683.
    [133]L.E. Coy, J. Ventura, C. Ferrater, E. Langenberg, M.C. Polo, M.V. Garcia-Cuenca, M. Varela, Synthesis and characterization of platinum thin film as top electrodes for multifunctional layer devices by PLD [J], Thin Solid Films,2010,518 (16): 4705-4709.
    [134]A. Dolatshahi-Pirouz, M.B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, F. Besenbacher, Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition [J], Physical Review B,2008,77 (11):115427.
    [135]S.J. Harris, D.N. Belton, R.J. Blint, Thermochemistry on the hydrogenated diamond (111) surface [J], Journal of Applied Physics 1991,70 (5):2654-2659.
    [136]S.M. Leeds, T.J. Davis, P.W. May, C.D.O. Pickard, M.N.R. Ashfold, Use of different excitation wavelengths for the analysis of CVD diamond by laser Raman spectroscopy [J], Diamond and Related Materials,1998,7 (2-5):233-237.
    [137]D.S. Knight, Characterization of diamond films by Raman spectroscopy [J], Journal of Materials Research,1989,4385-393.
    [138]F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite [J], The Journal of Chemical Physics,1970,53 (3):1126-1130.
    [139]Y.S. Li, Y. Tang, Q. Yang, J. Maley, R. Sammynaiken, T. Regier, C. Xiao, A. Hirose, Ultrathin W-Al Dual Interlayer Approach to Depositing Smooth and Adherent Nanocrystalline Diamond Films on Stainless Steel [J], ACS Applied Materials & Interfaces,2010,2 (2):335-338.
    [140]V.G. Ralchenko, A. A. Smolin, V.G. Pereverzev, E.D. Obraztsova, K.G. Korotoushenko, V.I. Konov, Y.V. Lakhotkin, E.N. Loubnin, Diamond deposition on steel with CVD tungsten intermediate layer [J], Diamond and Related Materials,1995,4 (5-6):754-758.
    [141]A. Glaser, H.G Jentsch, S.M. Rosiwal, A. Ludtke, R.F. Singer, Deposition of uniform and well adhesive diamond layers on planar tungsten copper substrates for heat spreading applications [J], Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006,127 (2-3):186-192.
    [142]R.E. Shroder, R.J. Nemanich, J.T. Glass, Analysis of the composite structures in diamond thin films by Raman spectroscopy [J], Physical Review B,1990,41 (6): 3738-3745.
    [143]J.W. Ager, Ⅲ, M.D. Drory, Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition [J], Physical Review B,1993,48 (4):2601-2607.
    [144]S.A. Catledge, Y.K. Vohra, D.D. Jackson, S.T. Weir, Adhesion of nanostructured diamond film on a copper-beryllium alloy [J], Journal of Materials Research,2008,23 (9):2373-2381.
    [145]C.Y. Wang, Y.M. Zhou, F.L. Zhang, Z.C. Xu, Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy [J], Journal of Alloys and Compounds,2009,476 (1-2):884-888.
    [146]Y. Tai-Fa, Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device [J], Surface and Coatings Technology,2007,202 (4-7):1208-1213.
    [147]T.-S. Kim, H.-S. Kim, J.-K. Lee, Wettability of Cu-based amorphous phases to the diamond particles during consolidation [J], Journal of Alloys and Compounds,2009,483 (1-2):488-490.
    [148]S. Matsumoto, Y. Matsui, Electron microscopic observation of diamond particles grown from the vapour phase [J], Journal of Materials Science,1983,18 (6): 1785-1793.
    [149]J. Singh, Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition [J], Journal of Materials Science,1994,29 (10): 2761-2766.
    [150]W.R.L. Lambrecht, C.H. Lee, B. Segall, J.C. Angus, Z. Li, M. Sunkara, Diamond nucleation by hydrogenation of the edges of graphitic precursors [J], Nature,1993,364 (6438):607-610.
    [151]Q. Wei, M.N.R. Ashfold, Z.M. Yu, L. Ma, Fabrication of adherent porous diamond films on sintered WC-13Dwt.%Co substrates by bias enhanced hot filament chemical vapour deposition [J], physica status solidi (a),2011,208 (9):2033-2037.
    [152]Z. Sitar, W. Liu, P.C. Yang, C.A. Wolden, R. Schlesser, J.T. Prater, Heteroepitaxial nucleation of diamond on nickel [J], Diamond and Related Materials,1998,7 (2-5): 276-282.
    [153]邱东江,顾智企,吴惠桢,镍衬底上定向金刚石膜的成核与生长[J],真空科学与技术,2000,20(5):340-343.
    [154]Y.J. Fei, X. Wang, X. Wang, Y. Xiong, K. Feng, The effect of additional methane during the annealing process on diamond nucleation on polished polycrystalline nickel substrates [J], Applied Surface Science,2001,183 (3-1):173-181.
    [155]Q. Wei, Z.M. Yu, M.N.R. Ashfold, Z. Chen, L. Wang, L. Ma, Effects of thickness and cycle parameters on fretting wear behavior of CVD diamond coatings on steel substrates [J], Surface and Coatings Technology,2010,205 (1):158-167.
    [156]C. Arthur, N. Ellerington, T. Hubbard, M. Kujath, MEMS earthworm:a thermally actuated peristaltic linear micromotor [J], Journal of Micromechanics and Microengineering,2011,21 (3):
    [157]A. Bongrain, E. Scorsone, L. Rousseau, G. Lissorgues, P. Bergonzo, Realisation and characterisation of mass-based diamond micro-transducers working in dynamic mode [J], Sensors and Actuators B-Chemical,2011,154 (2):142-149.
    [158]M. Esashi, T. Ono, From MEMS to nanomachine [J], Journal of Physics D-Applied Physics,2005,38 (13):R223-R230.
    [159]J. Kusterer, P. Schmid, E. Kohn, Mechanical microactuators based on nanocrystalline diamond films [J], New Diamond and Frontier Carbon Technology,2006,16 (6): 295-321.
    [160]M.A. Lantz, D. Wiesmann, B. Gotsmann, Dynamic superlubricity and the elimination of wear on the nanoscale [J], Nat Nano,2009,4 (9):586-591.
    [161]C. Mihalcea, Fabrication of monolithic diamond probes for scanning probe microscopy applications [J], Appl. Phys. A,1998,66 S87-S90.
    [162]A. Malave, E. Oesterschulze, W. Kulisch, T. Trenkler, T. Hantschel, W. Vandervorst, Diamond tips and cantilevers for the characterization of semiconductor devices [J], Diamond and Related Materials,1999,8 (2-5):283-287.
    [163]M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E.P. Hofer, E. Kohn, Diamond micro system for bio-chemistry [J], Diamond and Related Materials,2001,10 (3-7):722-730.
    [164]X. Liang, L. Wang, H. Zhu, D. Yang, Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH(4)/H(2) gas mixture [J], Surface & Coatings Technology,2007,202 (2):261-267.
    [165]A.K. Dua, V.C. George, M. Friedrich, D.R.T. Zahn, Effect of deposition parameters on different stages of diamond deposition in HFCVD technique [J], Diamond and Related Materials,2004,13 (1):74-84.
    [166]S. Schwarz, S.M. Rosiwal, M. Frank, D. Breidt, R.F. Singer, Dependence of the growth rate, quality, and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant [J], Diamond and Related Materials,2002,11 (3-6):589-595.
    [167]S.C. Eaton, M.K. Sunkara, M. Ueno, K.M. Walsh, Modeling the effect of oxygen on vapor phase diamond deposition inside micro-trenches [J], Diamond and Related Materials,2001,10 (12):2212-2219.
    [168]Z. Li, L. Wang, T. Suzuki, A. Argoitia, P. Pirouz, J.C. Angus, Orientation relationship between chemical vapor deposited diamond and graphite substrates [J], Journal of Applied Physics 1993,73 (2):711-715.
    [169]O.R. Monteiro, H.B. Liu, Nucleation and growth of CVD diamond films on patterned substrates [J], Diamond and Related Materials,2003,12 (8):1357-1361.
    [170]K. Okada, H. Kanda, S. Komatsu, S. Matsumoto, Effect of the excitation wavelength on Raman scattering of microcrystalline diamond prepared in a low pressure inductively coupled plasma [J], Journal of Applied Physics,2000,88 (3):1674-1678.
    [171]D.W. Comerford, U.F.S. D'Haenens-Johansson, J.A. Smith, M.N.R. Ashfold, Y.A. Mankelevich, Filament seasoning and its effect on the chemistry prevailing in hot filament activated gas mixtures used in diamond chemical vapour deposition [J], Thin Solid Films,2008,516 (5):521-525.
    [172]J.E. Butler, Y.A. Mankelevich, A. Cheesman, J. Ma, M.N.R. Ashfold, Understanding the chemical vapor deposition of diamond:recent progress [J], Journal of Physics: Condensed Matter,2009,21 (36):364201.
    [173]J. Singh, M. Vellaikal, Nucleation of diamond during hot filament chemical vapor deposition [J], Journal of Applied Physics,1993,73 (6):2831-2834.
    [174]P.W. May, J.N. Harvey, N.L. Allan, J.C. Richley, Y.A. Mankelevich, Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model [J], Journal of Applied Physics,2010,108 (1):014905.
    [175]A. Glaser, S.M. Rosiwal, B. Freels, R.F. Singer, Chemical vapor infiltration (CVI)—Part I:a new technique to achieve diamond composites [J], Diamond and Related Materials,2004,13 (4-8):834-838.
    [176]D.B. Tuckerman, High-performance heat sinking for VLSI [J], Electron Device Letters, IEEE,1981,2 (5):126-129.
    [177]R.A. Riddle, R.J. Contolini, A.F. Bernhardt, Design calculations for the microchannel heat-sink, in:National Electronics Products Conference Anaheim CA,1991.
    [178]杨涛,何叶,刘婷婷,大功率激光二极管列阵的硅基微通道热沉研制[J],光学精密工程,2009,17(9):2170-2175.
    [179]Kenneth E. Goodson, Katsuo Kurabayashi, R.F.W. Pease, Improved Heat Sinking for Laser-Diode Arrays Using Microchannels in CVD Diamond [J], IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY—PART B,1997,20 (1):104-109.
    [180]M.L. Hartsell, L.S. Piano, Growth of diamond films on copper [J], Journal of Materials Research,1994,9921-926.
    [181]M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, L. Rohr, Heat transport across the metal-diamond interface [J], Diamond and Related Materials,2008,17 (7-10): 1438-1442.
    [182]B. Weidenfeller, M. Hofer, F.R. Schilling, Thermal conductivity, thermal difrusivity, and specific heat capacity of particle filled polypropylene [J], Composites Part A: Applied Science and Manufacturing,2004,35 (4):423-429.
    [183]K. Hisano, T. Sakamoto, S. Monma, Y. Fijimori, H. Iwasaki, M. Ishizuka, Development of sheet type thermal conductive compound using A1N, in: Electronic Manufacturing Technology Symposium,1995, Proceedings of 1995 Japan International,18th IEEE/CPMT International, Japan,1995, pp.236-239.
    [184]H.B. Chae, K.H. Park, D.J. Seong, J.C. Kim, Y.J. Baik, Thermal conductivity of CVD diamond films [J], International Journal of Thermophysics,1996,17 (3):695-703.
    [185]E. Jansen, E. Obermeier, Measurements of the Thermal Conductivity of CVD Diamond Films Using Micromechanical Devices [J], physica status solidi (a),1996,154(1):395-402.
    [186]E. Worner, C. Wild, W. Muller-Sebert, R. Locher, P. Koidl, Thermal conductivity of CVD diamond films:high-precision, temperature-resolved measurements [J], Diamond and Related Materials,1996,5 (6-8):688-692.
    [187]J.E. Graebner, M.E. Reiss, L. Seibles, T.M. Hartnett, R.P. Miller, C.J. Robinson, Phonon scattering in chemical-vapor-deposited diamond [J], Physical Review B,1994,50 (6):3702-3713.
    [188]E.T. Swartz, R.O. Pohl, Thermal boundary resistance [J], Reviews of Modern Physics,1989,61 (3):605-668.
    [189]R.S. Prasher, P.E. Phelan, A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance [J], Journal of Heat Transfer,2001,123 (1):105-112.
    [190]R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J], Physical Review B,1993,48 (22):16373-16387.
    [191]Q.P. Wei, Z.M. Yu, L. Ma, D.F. Yin, J. Ye, The effects of temperature on nanocrystalline diamond films deposited on WC-13 wt.%Co substrate with W-C gradient layer [J], Applied Surface Science,2009,256 (5):1322-1328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700