用户名: 密码: 验证码:
离子辐照对材料中扩散行为的长程影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学的迅速发展使其成为众多学科的前沿课题之一,孤子作为非线性科学的一个分支,在许多工程领域有着重要应用。晶体点阵中,由于非线性原子间作用力和点阵离散性之间的耦合,在一定条件下,使得晶格振动发生局域化,振动模式能量的传输呈现长程传播而不衰减的孤子特性,这种振动模式称为晶格振动孤子。可以预测这一效应对材料的诸多行为如扩散、相变等产生影响。
     离子辐照损伤缺陷和晶格振动孤子效应都可能对扩散产生影响,其中辐照损伤缺陷只能在辐照损伤区影响扩散行为,而晶格振动孤子效应可以长程传播而能量不发生衰减,进而可能对辐照损伤区以外的扩散行为产生影响,据此本文设计了在远离辐照损伤区引入扩散偶这一试验方案,分离了辐照损伤缺陷与晶格振动孤子效应。本文研究了离子辐照诱发晶格振动孤子对材料间隙扩散、置换扩散和表面偏聚行为的长程作用,以及离子能量、束流密度、孤子传播距离、晶界在晶格振动孤子效应分别与间隙扩散、置换扩散和表面偏聚耦合过程中起到的作用。
     针对离子辐照诱发晶格振动孤子与材料间隙扩散行为的长程耦合效应,设计了Fe-C在铁素体—奥氏体双相区的反应扩散过程。预制200?m厚度脱碳层的45钢,在铁素体/奥氏体双相温度区保温,碳从基体向脱碳层中迁移,并诱发铁素体向奥氏体的转变。该过程由碳在远离表面的奥氏体中扩散所决定,因而分离了辐照损伤效应与晶格振动孤子效应。用定量金相法分析奥氏体含量的深度分布,进而评价碳的扩散。在这一过程中对材料表面施加离子辐照,研究离子辐照对碳在铁中间隙扩散的影响规律。试验结果表明,预制柱状晶脱碳层的45钢,在双相区温度保温时,碳沿晶界优先向表面扩散,使铁素体柱状晶晶界处碳含量升高,发生奥氏体转变,奥氏体从晶界向晶内长大;在保温过程中对表面施加氩离子辐照,会使碳向表面的扩散受到抑制;随着离子能量的升高和离子束流密度的增大,碳的扩散受到更加显著的抑制;碳的扩散发生在距辐照表面200?m深度内,由此可知离子辐照对辐照损伤区以外的碳扩散产生了抑制作用。预制等轴晶脱碳层的45钢,表面100?m内碳的扩散受到抑制,而100~200?m内碳的扩散未受影响,说明晶界对离子辐照诱发长程效应的衰减作用。碳在奥氏体中扩散的微观过程是碳在奥氏体晶格相邻八面体间隙之间的迁移;离子辐照诱发晶格振动孤子,导致奥氏体中八面体间隙畸变,因此碳的扩散激活能升高,扩散系数降低,碳向表面的扩散受到抑制。
     针对离子辐照诱发晶格振动孤子与材料置换扩散行为的长程耦合效应,设计了Cu-Ni互扩散体系。利用铜-镍体系无限固溶的特性,在定向凝固单晶和柱状晶铜,以及多晶铜片状样品正面,用磁控溅射方法沉积镍镀层,扩散时在远离样品扩散偶的一端即样品背面施加离子辐照,即分离了辐照损伤效应与晶格振动孤子效应。研究了样品厚度、离子能量和离子束流密度对铜-镍扩散行为的影响。试验中使用辉光放电光谱方法分析了镍的浓度分布;使用扫描电子显微分析了基体和镀层的组织结构;使用正电子寿命谱和慢正电子湮没多普勒展宽谱方法分析了单晶铜经过离子辐照后未辐照面的缺陷状态。试验结果表明,在以单晶或柱状晶铜为基体的铜-镍扩散偶中,离子辐照对铜镍之间的扩散产生了长程的加速作用,随着样品厚度的降低和离子能量的升高,扩散系数有所增加;而离子束流密度的增大对扩散系数不产生显著影响。离子辐照使镍在单晶铜中的扩散激活能由1.01eV降为0.94eV,频率因子由3.48×10~(-7)cm~2/s降为2.34×10-7cm~2/s。在以柱晶铜为基体的扩散偶中,离子辐照对铜的再结晶行为产生了显著的加速作用。在以多晶铜为基体扩散偶中,离子辐照对铜镍界面的扩散无显著影响,显示晶界对长程效应的阻碍特性。正电子分析显示,离子辐照导致未辐照次表面空位类缺陷含量降低。提出了离子辐照长程加速置换扩散的机制:扩散的长程加速不是由辐照损伤缺陷扩散至铜镍扩散偶位置所导致,而是由于离子辐照诱发的晶格振动孤子效应降低了扩散偶附近晶体的空位迁移能,使扩散系数增大。
     铜-镍扩散试验中发现,铜元素在镍镀层表面发生偏聚,离子辐照导致表面偏聚效应显著增强,偏聚深度达到约500nm,随样品厚度的降低,表面偏聚效应更加显著。结合离子辐照对单晶铜缺陷状态长程影响的试验结果,提出了离子辐照长程加速表面偏聚的机制。离子辐照诱发晶格振动孤子效应导致空位迁移能的降低,及空位迁移向表面方向的概率增大,导致空位向表面空位闾的流量增大;在铜-镍体系中,空位迁移与铜原子迁移耦合且方向相反,因而空位向表面的加速迁移,导致平衡偏聚在极表面的铜向次表面加速迁移。
The rapid development of non linear science make it one frontier field of many subjects. Soliton, an important branch of non linear science, pioneered the new ways of mathematical physics and is applicable in many fields of engineering. In crystal lattice, because of the coupling between non linear atomic force and the discreteness of the lattice, the vibrational mode may be localized and the energy transmission became soliton like. It can be predicted this effect will influence barious kinds of material behavior such as diffusion, phase transition and etc..
     Ion irradiation was employed in this work to excite the crystal lattice vibrational soliton, and the ion energy and current density were adjusted to control the strength of the crystal lattice vibrational soliton. The long range effect of crystal lattice vibrational soliton on the interstitial diffusion, substitutional diffusion and surface segregation were studied. The effects of temperature and grain boundaries in the irradiation-diffusion process were studied, too. The irradiation induced defects and crystal lattice vibrational soliton was separated by diffusion far away from the irradiated surface since crystal lattice vibrational soliton is long range effect while defect is short range effect.
     45 steel with 200?m columnar decarburized layer was heated at duplex zone with and without ion irradiation. The experiment result revealed carbon diffusion preferentially along the grain boundaries to the surface when the decarburized 45 steel was annealed at duplex temperature, which led to higher carbon concentration at the grain boundaries between columnar Ferrite crystals and then the nucleation of Austenite and their growth into the grain inner. The carbon diffusion was inhibited when ion irradiation was performed. Higher ion energy or ion current density led to stronger inhibition. The longer affected zone than that in classical theory of ion irradiation was explained by non linear crystal lattice excitation, which led to the stronger atomic force. The crystal lattice soliton deformed the shape of the octahedron interstitial in austenite, which led to the increasement of the diffusion activation energy, then the inhibition of carbon diffusion.
     Polycrystalline copper and directional solidificated single crystal and columnar crystal copper disks were employed as one side of the diffusion couple, the other side was nickel film by magnetron sputtering for its infinite solubility in copper. The diffusion couples were annealed with ion irradiation at the rare face of nickel films. Glow Discharge Optical Emission Spectroscope, Scanning Electron Microscope and Positron Annihilation were employed to analysis the element concentration depth distribution, the microstructure and the defect state of the diffusion couples, respectively.
     The experiment result revealed an acceleration of Ni diffusion in copper by ion irradiation in single and columnar copper substrate couples. The diffusion coefficient increased while the sample thickness decreased or the ion energy increased. There was no effect of ion current density on the diffusion coefficient. The diffusion activation energy was decreased from 1.01eV to 0.94eV and the frequency factor was decreased from 3.48×10~(-7)cm~2/s to 2.34×10~(-7)cm~2/s in single crystal copper substrate couples. Recrystallization acceleration of columnar crystal copper by ion irradiation led to the abnormal increasement of diffusion coefficient. No effect of ion irradiation on diffusion was found in polycrystalline copper substrate couples. Diffusion led to the disappearance of the interface between copper and nickel, and the appearance of holes in copper substrate, indicating faster copper diffusion into nickel. Slow positron Doppler Broadening Spectroscopy showed the decrease of vacancy like defects at the subsurface of the non irradiated surface. The mechanisms of acceleration of substitutional diffusion were proposed. The long range effect is due to the decrease of vacancy migration energy because of the non linear lattice excitation, but not the diffusion of irradiation damage induced defect to the backside of the samples.
     Copper segregation at the surface of nickel film were found in the copper-nickel diffusion experiments. Based on the changed surface defect state of single crystal copper after ion irradiation, the mechanism of copper surface segregation was proposed as, the lower vacancy migration energy and the higher probability of vacancy migrating to the surface led to the higher flux of vacancy to the surface vacancy sink. Particularly in copper-nickel system, there is coupling between vacancy flux and copper flux. The copper flux is opposite to the vacancy flux. As a result, the accelerated migration of vacancy to the surface led to the equilibrium segregated surface copper migrated to the subsurface layer.
引文
[1] Salik H. Ion-beam Nitriding of Steels[J]. J. Appl. Phys., 1985, 57(4): 1328.
    [2] Lei M K, Zhang Z L. Plasma Source Ion Nitriding: A New Low Temperature, Low Pressure Nitriding Approach[J]. J. Vac. Sci. Technol., 1995, A13(6): 2986.
    [3] Bell T. A Laboratory Investigation of Plasma Carburising in Hydrogen Methane Mixtures[C]. 2nd ICHTM, 1982: 323.
    [4]马欣新,夏立芳[J].离子轰击对钢中碳扩散系数的影响.科学通报, 1993, 38(8): 763-765.
    [5] Pranevicius L, Templier C, Rivere J P, et al. On the Mechanism of Ion Nitriding of an Austenitic Stainless Steel[J]. Surf. Coat. Technol., 2001, 135: 250.
    [6] Wierzchon T. Thermochemical Surface Treatment of Titanium and Titanium Alloy Ti-6Al-4V by Low Energy Nitrogen Ion Bombardment[J]. Mater. Sci. Eng., 1985, 69: 473-481.
    [7]马欣新.钢的离子渗碳层形成动力学及其数学模型的研究[D].哈尔滨工业大学博士论文, 1991: 53-61.
    [8] Wierzchon T, Pokrasen S, Karpinski T. Plasma Boriding - Factors Causing Nucleation of the Boride Layer on Steel[J]. Haerterei-Technische Mitteilungen, 1983, 38 (2): 57-62.
    [9] Casadesus P, Gantois M. Boriding with a Thermally Unstable Gas[J]. Metal. Mater. Trans. A., 1978, 33(4): 202-208.
    [10] Menthem E, Rie K -T, Schultze J W, et al. Structure and Properties of Plasma-nitrided Stainless Steel[J]. Surf. Coat. Technol., 1995, 74,75: 412-416.
    [11] Rie K–T, Stucky T, Silva R A, Bordij K, Jouzeau J -Y, Mainard D. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe Alloys according to Three Surface Treatments, Using Human Fibroblasts and Osteoblasts[J]. Surf. Coat. Technol., 1995,7475: 973-980.
    [12] Rie K -T, Stucky T, Silva R A, et al. Plasma Surface Treatment and PACVD on Ti Alloys for Surgical Implants[J]. Surf. Coat. Technol., 1995, 74,75: 973–980.
    [13] Rie. Recent Advances in Plasma Diffusion Processes[J]. Surf. Coat. Technol., 1999, 112: 56–62.
    [14] Tibbets G G. Role of Nitrogen Atoms in“Ion-nitriding”[J]. J. Appl. Phys., 1974, 45: 5072-5073.
    [15] Rodriguez Cabeo E, Laudin G, Rie K–T, et al[M]. DGM Hauptversammlung, Oberursel, 1997, Braunschweig, 20–23.
    [16] Dienes G J, Damask A C. Radiation Enhanced Diffusion in Solids[J]. J. Appl. Phys.,1958, 29: 12.
    [17] Lu M, Lupu C, Rabalais J W. Radiation-enhanced Diffusion Under Conditions of Non-steady State and Non-homogeneity of Excess Defects[J]. J. Phys: Condens. Matter., 2004, 16: R581-R602.
    [18]刘昌龙.离子辐照对单晶Si中预注入B原子扩散的影响[J].高能物理与核物理, 2001, 25(12): 1238 -1244.
    [19] Hayashi E, Kurikawa Y, Fukai Y. Hydrogen-induced Inhancement of Diffusion in Cu-Ni Diffusion Couples[J]. Phys. Rev. Lett., 1998, 80: 25.
    [20] Lu M, Lupu C, Rabalais J W. Effect of Postbombardment Annealing on Ti Diffusion in Ion Prebombarded MgO (100) [J]. J. Appl. Phys., 2002, 92: 3591-3598.
    [21] Van Sambeek A I, Averback R S. Radiation Enhanced Diffusion in MgO[J]. J. Appl. Phys., 1998, 83(12): 7576-7584.
    [22] Abrasonis G, Riviere J P, Templier C, et al. Flux Effect on the Ion-beam Nitriding of Austenitic Stainless-steel AISI 304L[J]. J. Appl. Phys., 2005, 97: 124906.
    [23] Ochoa E A, Figueroa C A, Czerwiec T, et al. Enhanced Nitrogen Diffusion Induced by Atomic Attrition[J]. Appl. Phys. Lett., 2006, 88: 254109.
    [24] Praneviciusa L, Templier C, Riviere J -P, et al. On the Mechanism of Ion Nitriding of an Austenitic Stainless Steel[J]. Surf. Coat. Technol., 2001, 135: 250-257.
    [25] Abrasonis G, Meheust P, Riviere J P et al. Tentative Modelling of Nitriding with Ion Beams, the Role of Surface Effects[J]. Surf. Coat. Technol., 2002, 151–152: 344–348.
    [26] Riviere J P, Meheust P, Villain J P, et al. High Current Density Nitrogen Implantation of an Austenitic Stainless steel[J]. Surf. Coat. Technol., 2002, 158–159: 99–104.
    [27] Abrasonis G, Moller W, Ma X X. Anomalous Ion Accelerated Bulk Diffusion of Interstitial Nitrogen[J]. Phys. Rev. Lett., 2006, 96: 065901.
    [28] Anwand W, Parascandola S, Richter E, et al. Slow Positron Implantation Spectroscopy of High Current Ion Nitride Austenitic Stainless Steel[J]. Nucl. Instru. Meth. in Phys. Res. B, 1998, 136-138: 768-772.
    [29] Bama A, Kotis L, Labar J L, et al. Ion Beam Mixing by Focused Ion Beam[J]. J. Appl. Phys., 2007, 102: 053513.
    [30] Sule P, Menyhard M, Kotis L, et al. Asymmetric Transient Enhanced Intermixing in Pt/Ti[J]. J. Appl. Phys., 2007, 101: 043502.
    [31] Russell F M, Collins D R. Lattice-solitons and Non-linear Phenomena in Track Formation[J]. Radiation Measurements., 1995, 25(B i-4): 67-70.
    [32]黄景宁,徐济仲,熊吟涛.孤子概念、原理和应用[M].高等教育出版社. 2004:1-17.
    [33] Fermi E, Pasta J, Ulam S. Studies of Non Linear Problems[J]. Document LA-1940, 1955:978-988.
    [34] Binder P, Abraimov D, Ustinov A V, et al. Observation of Breathers in Josephson Ladders[J]. Phys. Rev. Lett. 2000, 84: 745.
    [35] Trias E, Mazo J J, Orlando T P. Discrete Breathers in Nonlinear Lattices: Experimental Detection in a Josephson Array[J]. Phys. Rev. Lett., 2000, 84: 741.
    [36] Eisenberg H S, Silberberg Y, Morandotti R, et al. Discrete Spatial Optical Solitons in Waveguide Arrays[J]. Phys. Rev. Lett., 1998, 81: 3383.
    [37] Fleischer J W, Carmon T, Segev M, et al. Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays[J]. Phys. Rev. Lett., 2003, 90: 023902.
    [38] Swanson B I, Brozik J A, Love S P, et al. Observation of Intrinsically Localized Modes in a Discrete Low-dimensional Material[J]. Phys. Rev. Lett., 1999, 82: 3288-3291..
    [39] Hennig D, Nei?ner C, Velarde M G, et al. Effect of anharmonicity on charge transport in hydrogen-bonded systems[J]. Phys. Rev. B, 2006, 73:024306.
    [40] Sato M, Sievers A J. Direct Observation of The Discrete Character of Intrinsic Localized Modes in an Antiferromagnet[J]. Nature, 2004 , 432(7016): 486-488.
    [41] MacKay R S, Aubry S. Proof of Existence of Breathers for Timereversible or Hamiltonian Networks of Weakly Coupled Oscillators[J]. Nonlinearity 1994, 7: 1623.
    [42] Manley M E, Alatas A, Trouw F, et al. Intrinsic Nature of Thermally Activated Dynamical Modes in ?-U: Nonequilibrium Mode Creation by X-ray and Neutron Scattering[J]. Phys. Rev. B., 2008, 77: 214305.
    [43] Fillaux F, Kearley G J. Inelastic-neutron-scattering Study of the Sine-Gordon Breather Interactions in Isotopic Mixtures of 4-methyl-pyridine[J]. Phy. Rev. B., 1998, 58(17): 11416-11419.
    [44] Schwarz U T, English L Q, Sievers A J. Experimental Generation and Observation of Intrinsic Localized Spin Wave Modes in an Antiferromagnet[J]. Phys. Rev. Lett., 2006, 83(1): 223-226.
    [45] Markovich T, Polturak E, Bossy J, et al. Observation of a New Excitation in bcc 4He by Inelastic Neutron Scattering[J]. Phys. Rev. Lett., 2002,88(19): 195301.
    [46] Flach S, Willis C R. Discrete Breathers[J]. Phys. Rep., 1998, 295: 181.
    [47] Flach S, MacKay R S. Localization in Nonlinear Lattices[J]. PhysicaD, 1999, 119: 1–238.
    [48] Chen D, Aubry S, Tsironis G P. Breather Mobility in Discreteφ4 Lattices[J]. Phys.Rev. Lett., 1996, 77: 4776.
    [49] Braun O M, Kivshar Y S. Nonlinear Dynamics of the Frenkel–Kontorova Model[J]. Phys. Rep., 1998, 306: 1.
    [50] Bena I, Saxena A, Sancho J M. Interaction of a Discrete Breather with a Lattice Junction[J]. Phys. Rev. E, 2002, 65: 036617.
    [51] Russell F M, Collins D R. Anharmonic Excitations in High Tc Materials[J]. Physics Letters A, 1996, 216: 197-202.
    [52] Marín J L, Russell F M, Eilbeck J C. Breathers in Cuprate-like Lattices[J]. Physics Letters A 2001, 281: 21–25.
    [53] Marín J L, Eilbeck J C, Russell F M. Localized Moving Breathers in a 2D Hexagonal Lattice[J]. Physics Letters A, 1998, 248: 225-229.
    [54] Cuevas J, Katerji C, Archilla J F R, et al. Influence of Moving Breathers on Vacancies Migration[J]. Physic. Lett. A, 2003, 315: 364–371.
    [55] Cuevas J, Archilla J F R, Sanchez-Rey B, et al. Interaction of Moving Discrete Breathers with Vacancies[J]. Physica D, 2006, 216: 115–120.
    [56] Russell F M. The Observation in Mica of Tracks of Charged Particles from Neutrino Interactions[J]. Phys. Lett. B, 1967, 25(4): 298-300.
    [57] Schlosser D, Kroneberger Schosnig K M, Russell F M, et al. Search for Solitons in Solids[J]. Radiation measurements, 1994, 23(1): 209-213.
    [58] Russell F M, Eilbeck J C. Evidence for Moving Breathers in a Layered Crystal Insulator at 300 K[J]. Europhys. Lett., 2007, 78: 10004.
    [59] Sen P, Akhtar J, Russel F M. l MeV Ion-induced Movement of Lattice Disorder in Single Crystalline Silicon[J]. Europhys. Lett., 2000, 51(4): 401–406.
    [60]冯端,丘第荣.金属物理学[M].第一卷结构与缺陷.科学出版社, 2000: 475.
    [61]潘金生,仝健民,田民波[M].材料科学基础.清华大学出版社, 1998: 454-462.
    [62]夏立芳,张振信[M].金属中的扩散.哈尔滨工业大学出版社. 1989.
    [63] Meechan C J, Brinkman J A. Electrical Resistivity Study of Lattice Defects Introduced in Copper by 1.25-Mev Electron Irradiation at 80 K[J]. Phys. Rev., 1956, 103: 5.
    [64] González H C, Miralles M T. Annealing of Hardening in Copper after Neutron Irradiation Hardening at 77 K[J]. J. Nucle. Mater., 2010, 295: 157-166.
    [65] Chia S, Kim I. Thermal Recovery Characteristics of Neutron Irradiated High-copper Weld (Linde 80) [J]. J. Nucl. Mater., 1996, 230: 41-46.
    [66] Kolobov Y R, Grabovetskaya G P, Ivanov M B, et al. Grain Boundary Diffusion Characteristics of Nanostructured Nickel[J]. Scrip. Mater., 2001, 44: 873-878.
    [67] Iida T, Yamazaki Y, Kobayashi T, et al. Enhanced Diffusion of Nb in Nb-H Alloys by Hydrogen-induced Vacancies[J]. Acta. Mater., 2005, 53: 3083-3089.
    [68] Harada S, Yotoka S, Ishii Y, et al. A relation between the Vacancy Concentration and Hydrogen Concentration in the Ni-H, Co-H and Pd-H Systems[J]. J. Alloys Compd., 2005, 404-406: 347-251.
    [69] Ozturk O, Williamson D L. Phase and Composition Depth Distribution Analyses of Low Energy, High Flux Implanted Stainless Steel[J]. J. Appl. Phys., 1995, 77 (8): 3839-3850.
    [70] Huntington H B. Mechanism for Self-diffusion in Metallic Copper[J]. Phy. Rev., 1942, 61: 315.
    [71] Le Claire A D. Solute Diffusion in Dilute Alloys[J]. Acta Met., 1955, 1: 438.
    [72] Jiang D E, Carter E A. Carbon Dissolution and Diffusion in Ferrite and Austenite from First Principles[J]. Phys. Rev. B., 2003, 67: 214103.
    [73] Siegel D J, Hamilton J C. First-principles Study of the Solubility, Diffusion, and Clustering of C in Ni[J]. Phys. Rev. B., 2003, 68: 094105.
    [74] Han X L, Wang Q, Sun D L, et al. First-principles study of the effect of hydrogen on the Ti self-diffusion characteristics in the alpha Ti–H system[J]. Scripta Mater., 2007, 56: 77–80.
    [75] Whipple R T P. Concentration Contours in Grain Boundary Diffusion[J]. Phil. Mag., 1954, 45: 1225.
    [76] Fisher J C. Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion[J]. J. Appl. Phys., 1951, 22: 74.
    [77] Suzuoka T. Exact Solutions of Two Ideal Cases in Grain Boundary Diffusion Problem and the Application to Sectioning Method[J]. Jpn. Inst. Met., 1961, 2: 25.
    [78] Le Claire A D. The Analysis of Grain Boundary Diffusion Measurements[J]. Br. J. Appl. Phys., 1963, 14: 351.
    [79] Martinez W E, Gregori G, Mates T. Titanium Diffusion in Gold Thin Films[J]. Thin Solid Films, 2010, 518: 2585-2591.
    [80] Tokei Z S, Beke D L, Bernardini J, et al. Mass Transport of Nickel in Close Proximity of Ni/Cu (111) Interface: an AES study[J]. Scrip. Mater., 1998, 39: 1127-1132.
    [81] Hall P M, Morabito J M, Poate J M. Diffusion Mechanisms in the Pd/Au Thin Film System and the Correlation of Resistivity Changes with Auger Electron Spectroscopy and Rutherford Backscattering Profiles[J]. Thin Solid Films, 1976, 33: 107-134.
    [82] Grabke H J, Paulitschke W, Tauber G, et al. Equilibrium Surface Segregation of Dissolved Nonmetal Atoms on Iron(100) Faces[J]. Surf. Sci., 1977, 63: 377-389.
    [83] Ng Y S, Tsong T T, McLane Jr S B. Surface segregation of a Pt-Au alloy: An Atom-probe Field Ion Microscope Investigation[J]. Phys. Rev. Lett., 1979, 42:588-561.
    [84] Williams F L, Nason D. Binary Alloy Surface Compositions From Bulk Alloy Thermodynamic Data[J]. Surf. Sci., 1974, 45: 377.
    [85] Lagu?s M, Domange J L. Surface segregation: Comparison between Theory and Experiment[J]. Surf. Sci., 1975, 47: 77.
    [86] Donnelly R G, King T S. Surface Composition and Surface Cluster Size Distribution of Cu-Ni Alloys via a Monte Carlo Method[J]. Surf. Sci., 1978, 74: 89.
    [87] Hamilton J C. Prediction of Surface Segregation in Binary Alloys Using Bulk Alloy Variables[J]. Phys. Rev. Lett., 1979, 42: 989.
    [88] Harris L A. Angular Dependences in Electron-excited Auger Emission[J]. J. Appl. Phys., 1968, 39: 1419.
    [89] Watanabe K, Hashiba M, Yamashina T. A Quantitative Analysis of Surface Segregation and In-depth Profile of Copper-nickel Alloys[J]. Surf. Sci., 1976, 61: 483.
    [90] Ng Y S, Tsong T T, McLane Jr S B. Surface Segregation of a NiCu Alloy as Studied by a Computerized Atom‐probe FIM[J]. J Vac. Sci. Technol., 1980, 17: 154-158.
    [91] Wandelt K, Brundle C R. Evidence for Crystal-Face Specificity in Surface Segregation of CuNi Alloys[J]. Phys. Rev. Lett., 1981, 46: 1529.
    [92] Sakurai T, Hashizume T, Kobayashi A, et al. Surface Segregation of Ni-Cu Binary Alloys Studied by an Atom-probe[J]. Phys. Rev. B, 1986, 34: 8379.
    [93] Johnson A, Lam N Q. Effects of Solute Segregation and Precipitation on Void Swelling in Irradiated Alloys[J]. J. Nucl. Mater., 1978, 69&70: 424.
    [94] Wiedersich H, Okamoto P R, Lam N Q. A Theory of Radiation-induced Segregation in Concentrated Alloys[J]. J. Nucl. Mater., 1979, 83: 98.
    [95] Martin G. Contribution of Dissipative Processes to Radiation Induced Solid Solution Instability[J]. Phys.Rev. B, 1980, 21: 2122.
    [96] Cauvin R, Martin G. Solid Solutions under Irradiation. I. A model for Radiation-induced Metastability[J]. Phys. Rev. B, 1981,23: 3322.
    [97] Poerschke R, Wollenberger H. Interstitialcy Diffusion in Electron-irradiated Cu-Ni Alloys[J]. Thin Solid Films, 1975, 25: 167.
    [98] Poerschke R, Wollenberger H. Radiation-induced Diffusion in Cu--Ni Alloys below 200 K[J]. Radiat. Eff., 1975, 24: 217.
    [99] Wagner W, Poerschke R, Axmann A, et al.. Neutron-scattering Studies of an Electron-irradiated 62Ni-41.4-at.%-65Cu Alloy[J]. Phys. Rev. B., 1980, 21: 3087.
    [100]Wagner W, Rehn L E, Wiedersich H, et al. Radiation-induced Segregation inNi-Cu alloys[J]. Phys. Rev. B, 1983, 28: 6780.
    [101]Marwick A D. Mechanisms of Radiation-induced Segregation in Dilute Nickel Alloys[J]. J. Phys. F, 1978, 8: 1849.
    [102]Grandjean Y, Bellon P, Martin G. Kinetic Model for Equilibrium and Nonequilibrium Segregation in Concentrated Alloys under Irradiation[J]. Phys. Rev. B, 1994, 50: 4228.
    [103]Allen T R, Busby J T, Was G S, et al. On the Mechanism of Radiation-induced Segregation in Austenitic Fe-Cr-Ni Alloys[J]. J. Nucl. Mater., 1998, 255: 44.
    [104]Tsai W, Liang J H, Kai J J, et al. A Study of High Temperature Implantation of 72 keV Copper Ions into Nickel[J]. Nucl. Instr. and Meth. in Phys. Res. B, 2005, 228: 151-155.
    [105]Li M H, Cai J W, Yu G H, et al. Effect of Cu Surface Segregation on Properties of NiFe/FeMn Bilayers[J]. Mater. Sci. Eng. B, 2002, 90: 296.
    [106]Abdul-Lettif. A M. Investigation of Interdiffusion in Copper-nickel Bilayer Thin Films[J]. Physica B, 2007, 388: 107-111.
    [107]Abdul-Lettif A. M. A Study of Concentration Profiles of Heat Treated Cu/Ni Thin Films by Auger Electron Spectroscopy[J]. Physica B, 2002, 338: 107.
    [108]Martinez W E, Gregori G, Mates T. Titanium Diffusion in Gold Thin Films[J]. Thin Solid Films, 2009, 518: 2585.
    [109]Yu G H, Chai C L, Zhu F W, et al. Interface Reaction of NiO/NiFe and its Influence on Magnetic Properties[J]. Appl. Phys. Lett., 2001,78: 1706.
    [110]Erdélyi Z, Girardeaux C, Tokei Z, et al. Investigation of the Interplay of Nickel Dissolution and Copper Segregation in Ni/Cu (111) System[J]. Surf. Sci., 2002, 496: 129.
    [111]Saúl A, Lagrand B, Tréglia G. Equlibrium and Kinetics in the (111) Surface of Cu-Ag Alloys: Comparison between mean-field and Monte Carol calculations. [J] Phys. Rev. B, 1994, 50: 3.
    [112]Roussel J M, Saúl A, Tréglia G, et al. Linear Time Dependence of the Surfactant Effect: A Local Equilibrium under Flux[J]. Phys. Rev. B, 2004, 69: 115406.
    [113]Wang J Y. Equilibrium and Kinetic Surface Segregation in Binary Alloy Thin Films[J]. Appl. Surf. Sci., 2006, 252: 5347.
    [114]Erdélyi Z, Taranovskyy A, Beke D L. On the Determination of the Equilibrium Surface Segregation Isotherms Form Kinetic Measurements[J]. Surf. Sci., 2008, 602: 805-810.
    [115]Erdélyi Z, Beke D L, Nemes P, et al. On the Range of Validity of the Contimuum Approach for Nonlinear Diffusional Mixing of Multilayers[J]. Phil. Mag. A, 1999, 79: 1757-1768.
    [116]Meunier A, Gilles B, Verdier M. Interdiffusion and Magnetism in Ni/Cu Multilayers[J]. Appl. Surf. Sci., 2003, 212/213: 171.
    [117]Ahadian M M, Iraji zad A, Nouri E, et al. Diffusion and Segregation of Substrate Copper in Electrodeposited Ni-Fe Thin Films[J]. J. Alloys Comp., 2007, 443: 81.
    [118]Rasuli R, Iraji zad A, Ahadian M M. Cu Surface Segregation in Ni/Cu System[J]. Vacuum, 2010, 84: 469-473.
    [119]Hsiao R, Mauri D. Plasma-induced Surface Segregation and Oxidation in Nickel–Iron Thin Films[J]. Appl. Surf. Sci., 2000, 157: 185-190.
    [120]Shimizu T, Ishida K, Matsumura Y, et al. Ion Irradiation Effects on Magnetostriction of Tb–Fe Thin Film[J]. Surf. Coat. Technol., 2003, 169-170: 616-619.
    [121]潘金生,仝建民,田民波.材料科学基础[M].清华大学出版社, 1998: 381.
    [122]Payling R. Glow Discharge Optical Emission Spectrometry[J]. Materials Forum, 1994, 18: 195-213.
    [123]Oswald S, Baunack S. Comparison of Depth Profiling Techniques using Ion Sputtering from the Practical Point of View[J]. Thin Solid Film, 2003, 425: 9-19.
    [124]Payling R, Michler J, Aeberhard M, et al. New Aspects of Quantification in r.f. GDOES[J]. Surf. Interface Anal., 2003, 35: 583-589.
    [125]Hodoroaba V, Unger W E S, Jenett H, et al. Depth Profiling of Electrically Non-conductive Layered Samples by RF-GDOES and HFM Plasma SNMS[J]. Appl. Surf. Sci., 2001, 179: 30-37.
    [126]Pr??ler F, Hoffmann V, Schumann J, et al. Quantitative Depth Profiling in Glow Discharge Spectroscopies- A New Deconvolution Technique to Separate Effects of an Uneven Erosion Crater Shape[J]. Fresenius J. Anal. Chem., 1996, 355: 840-846.
    [127]Shimizu K, Habazaki H, Skeldon P, et al. Non Uniform Sputtering and Degradation of Depth Resolution during GDOES Depth Profiling Analysis of Thin Anodic Alumina Films Grown Over Rough Substrate[J]. Surf. Interface Anal., 1999, 27: 950-954.
    [128]滕敏康.正电子湮没谱学及其应用[M].原子能出版社, 2008: 4.
    [129]郁伟中.正电子物理及其应用[M].科学出版社, 2003:45.
    [130]ABAQUS Documentation[M], 2.11.4, Cavity Radiation.
    [131]张奕主编.传热学[M].东南大学出版社, 2004: 33.
    [132]潘金生,仝建民,田民波.材料科学基础[M].清华大学出版社, 1998: 475.
    [133]Yamamoto Y, Uemura S, Kajihara M. Observations on diffusion-induced recrystallization in binary Ni/Cu diffusion couples annealed at an intermediate temperature[J]. Mater. Sci. Eng. A, 2001, 312:176-181.
    [134]Schwarz S M, Kempshall B W, Giannuzzi L A. Effects of diffusion inducedrecrystallization on volume diffusion in the copper-nickel system[J]. Acta Meter., 2003, 51: 2765-2776.
    [135]Schilling W. The Physics of Radiation Damage in Metals[J]. Hyperfine Interactions, 1978, 4: 636-644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700