用户名: 密码: 验证码:
碳链在Ni(111)表面初期生长机制的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电子器件的高度集成化和微尺度化的发展趋势下,低维碳纳米材料以不同于传统材料的独特结构和奇特性质,将在制备纳米电子器件所涉及的新型纳米材料中扮演非常重要的角色。作为极其理想的一维共价体系,由碳单原子严格排列组成的碳链,拥有独特的物理和化学性质,被认为是构造分子和原子器件的理想功能材料。然而,一维碳链的性质非常活泼,实验上依然缺乏可信有效的制备方法和工艺。近年来通过科学家们的不懈努力,在制备方面虽然已经取得了显著的进展。但是这些实验制备碳链的方法,花费比较昂贵且难以控制生长进程,对于大规模工业生产碳链是不大可能的。因此,对于一维碳链制备和生长机理上的研究,很有可能带来物理学和材料学研究的突破,对它走上实际应用舞台也会有非常重大的意义。
     一直以来,在工业生产中,碳纳米材料通常都在过渡金属表面上运用化学沉积法生长制备。本文中,我们运用基于密度泛函理论的自旋极化第一性原理计算方法,尝试开展一维碳链在Ni(111)表面上的初期生长机制工作的研究。碳原子被逐个吸附到Ni(111)表面,我们观察到从吸附第三个碳原子形成碳链开始,碳结构的最低能量位置都在碳链的两个链尖端。随着碳原子数目的增多,一条包含越来越多原子数目的碳链生长在Ni(111)表面。在碳链整个生长过程中,碳原子在配位数为3的hcp和fcc位点表现最为活跃,吸附最为稳定。计算得到的碳链其键长很相近,差距在2%以内。根据前人的理论,类似累积双键型碳链中的碳键键长一致。因此,我们在金属表面生长得到的碳链与类似累积双键型碳链的结构相似。除此之外,我们还计算了碳六元环在Ni(111)表面的稳定性,发现当它平放且碳原子对应在金属表面的hcp和fcc位置时最为稳定。通过比较C6链与碳六元环在Ni (111)表面的形成能,发现碳链比碳六元环更容易在Ni(111)表面的生长。我们所计算出来的结果,对于进一步了解碳结构在金属表面的初期生长机制的研究会有一定的帮助。
Because of the motivation for the miniaturation of electronics,low-dimensional carbon nano materials will play an important role in preparing nanometer materials of electronic devices, due to their special structures and wonderful properties. As an ideal covalent system, carbon chain, a rigid linear chain of monatomic carbon atoms, is expected to function as the component of molecular devices due to their exceptional physical and chemical properties. However, the 1D carbon chain is very active and it is still lacking of reliable and effective way to produce in experiments. The researchers have done much effort for their preparation and obtain some progress in the recent years. But it is cost much and difficult to control the grow progress with these methods. It is still a big challenge to prepare in the industry. Therefore, the study of carbon chain’s growth mechanism is very important for its practical application.
     Carbonnano materials are usually prepared on the transition metal in industry all the time. In this paper, using spin-polarized density-functional theory calculation, we focus on the studies of carbon chain’s growth on Ni (111) surface. C atoms are added“by hand”one by one to the surface. Combined with the results for these C adsorptions, a surface C structure is observed to develop in the form of chain creeping on the surface as the number of C atoms increases. The linear chain eventually joins to form a first threefold coordination site. Carbon chain is probably of cumulene type with nearly equivalent bond lengths according the previous studies. The bond lengths of carbon chain we obtain are in 2% difference, we consider their structures are similar with the cumulene type. We also have calculated the stabilities of a six-member carbon ring on the Ni (111) surface. The results show that the model whose carbon atoms are on the top of fcc and hcp sites is most stable. We also obtain that it is more favorable than a six-member carbon ring to grow on metal surface with a comparison of their formation energies. Our results will contribute to the studies of initial stages of carbon structures on metal surface.
引文
[1]徐亚伯.表面物理导论[M].杭州;浙江大学出版社1992: 110.
    [2] Mokrousov Y., Bihlmayer G., Heinze S., et al. Giant Magnetocrystalline Anisotropies of 4d Transition-Metal Monowires [J]. Phys Rev B, 2006, 96(14): 147201.
    [3] Kioto H., Heath J., O'Brien S., et al. C60: Buckminsterfullerene [J]. Nature, 1985, 318(6042): 162-163.
    [4] Lijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
    [5] Novoselov K., Geim A., Morozov S., et al. Electric field effect in atomically thin carbon films [M]. American Association for the Advancement of Science. 2004: 666-669.
    [6] Son Y.-W., Cohen M. L., Louie S. G. Half-metallic graphene nanoribbons [J]. Nature Letter, 2006, 444(3): 05180-051804.
    [7] Son Y.-W., Cohen M. L., Louie S. G. Energy Gaps in Graphene Nanoribbons [J]. Phys Rev Lett, 2006, 97(13): 216803-216807.
    [8] Han M. Y., zyilmaz B. O., Zhang Y., et al. Energy Band-Gap Engineering of Graphene Nanoribbons [J]. Phys Rev Lett, 2007, 98(7): 206805-206808.
    [9] Abild-Pedersen F., N rskov J., Rostrup-Nielsen J., et al. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J]. Phys Rev B, 2006, 73(11): 115419-115423.
    [10] Hofmann S., Csanyi G., Ferrari A., et al. Surface diffusion: the low activation energy path for nanotube growth [J]. Phys Rev Lett, 2005, 95(3): 36101-36105.
    [11] Hata K., Futaba D., Mizuno K., et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes [J]. Science, 2004, 306(5700): 1362.
    [12] Helveg S., López-Cartes C., Sehested J., et al. Atomic-scale imaging of carbon nanofibre growth [J]. Nature, 2004, 427(6973): 426-429.
    [13] Gavillet J., Loiseau A., Journet C., et al. Root-growth mechanism for single-wall carbon nanotubes [J]. Phys Rev Lett, 2001, 87(27): 275504.
    [14] Terborg R., Hoeft J. T., Polcik M., et al. Structural precursor to adsorbate-induced reconstruction: C on Ni(100) [J]. Phys Rev B, 1999, 60(15): 10715.
    [15] Amara H., Bichara C., Ducastelle F. Formation of carbon nanostructures on nickel surfaces: A tight-binding grand canonical Monte Carlo study [J]. Phys Rev B, 2006, 73(11): 113404-113408.
    [16] Amara H., Roussel J.-M., Bichara C., et al. Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system [J]. Phys Rev B, 2009, 79(1): 014109-014117.
    [17] Van Orden A., Saykally R. Small carbon clusters: spectroscopy, structure, and energetics [J]. Chem Rev, 1998, 98(9): 2313-2358.
    [18] Kroto H., Walton D., Jones D., et al. Polyynes and the Formation of Fullerenes [J]. Philos Trans R Soc London A 1993, 343(1667): 103-112.
    [19] Bell M., Feldman P., Travers M., et al. Detection of HC11N in the cold dust cloud TMC-1 [J]. Astrophys J Suppl, 1997, 20(12): 61-64.
    [20] McCarthy M., Travers M., Kovács A., et al. Eight new carbon chain molecules [J]. Astrophys J Suppl, 1997, 113(7): 105-120.
    [21] Fulara J., Lessen D., Freivogel P., et al. Laboratory evidence for highly unsaturated hydrocarbons as carriers of some of the diffuse interstellar bands [J]. Nature, 1993, 366(3): 439-441.
    [22] Freivogel P., Fulara J., Lessen D., et al. Absorption spectra of conjugated hydrocarbon cation chains in neon matrices [J]. Chemical Physics, 1994, 189(2): 335-341.
    [23] Zhao X., Ando Y., Liu Y., et al. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube [J]. Phys Rev Lett, 2003, 90(18): 187401.
    [24] Lang N., Avouris P. Oscillatory conductance of carbon-atom wires [J]. Phys Rev Lett, 1998, 81(16): 3515-3518.
    [25] Pitzer K. Inter-and intramolecular forces and molecular polarizability [J]. Adv Chem Phys, 1959, 2(5): 59-83.
    [26] Lang N., Avouris P. Carbon-atom wires: charge-transfer doping, voltage drop, and the effect of distortions [J]. Phys Rev Lett, 2000, 84(2): 358-361.
    [27] Larade B., Taylor J., Mehrez H., et al. Conductance, IV curves, and negative differential resistance of carbon atomic wires [J]. Phys Rev B, 2001, 64(7): 75420.
    [28] Crljen, Baranovi G. Unusual conductance of polyyne-based molecular wires [J]. Phys Rev Lett, 2007, 98(11): 116801.
    [29] Khoo K., Neaton J., Son Y., et al. Negative differential resistance in carbon atomic wire-carbon nanotube junctions [J]. Nano Lett, 2008, 8(9): 2900-2905.
    [30] Lagow R., Kampa J., Wei H., et al. Synthesis of linear acetylenic carbon: the" sp" carbon allotrope [J]. Science, 1995, 267(5196): 362.
    [31] Troiani H., Miki-Yoshida M., Camacho-Bragado G., et al. Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level [J]. Nano Lett, 2003, 3(6): 751-755.
    [32] Yuzvinsky T., Mickelson W., Aloni S., et al. Shrinking a carbon nanotube [J]. Nano Lett, 2006, 6(12): 2718-2722.
    [33] Zhang P., Lammert P. E., Crespi V. H. Plastic Deformations of Carbon Nanotubes [J]. Phys Rev Lett, 1998, 81(24): 5346.
    [34] Srivastava D., Menon M., Cho K. Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression [J]. Phys Rev Lett, 1999, 83(15): 2973-2977.
    [35] Novoselov K., Geim A., Morozov S., et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
    [36] Jin C., Lan H., Peng L., et al. Deriving Carbon Atomic Chains from Graphene [J]. Phys Rev Lett, 2009, 102(20): 205501.
    [37] Chuvilin A., Meyer J., Algara-Siller G., et al. From graphene constrictions to single carbon chains [J]. New J Phys, 2009, 11(8): 083019.
    [38] Raty J.-Y., Gygi F., Galli1 G. Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic Mechanism from Ab Initio Molecular Dynamics Simulations [J]. Phys Rev Lett, 2005, 95(9): 096103-096107.
    [39] Amara H., Roussel J., Bichara C., et al. Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system [J]. Phys Rev B, 2009, 79(1): 14109.
    [40] A G. W., B. H. L. The description of chemical bonding from ab initio calculations [J]. Ann Rev Phys Chem, 1978, 29(8): 363-385.
    [41] Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects [J]. Phys Rev, 1965, 140(4): 1133-1138.
    [42] Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys Rev, 1964, 136(3): B864-B871.
    [43] A P. J., S. G. M. Molecular orbital theory of the electronic structure of organic compounds. I.Substituent effects and dipole moments [J]. J Am Chem Soc, 1967, 89(13): 4253-4260.
    [44]谢希德,陆栋.固体能带结构[M].上海;复旦大学出版社. 1998.
    [45] Kohn W., Sham L. Quantum density oscillations in an inhomogeneous electron gas [J]. Phys Rev, 1965, 137(6A): 1697-1705.
    [46] Slater J. C. A Simplification of the Hartree-Fock Method [J]. Phys Rev, 1951, 81(3): 385-390.
    [47] Perdew J. P. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys Rev B, 1992, 46(3): 6671-6687.
    [48] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77(12): 3865-3868.
    [49] Hamann D., Schlüter M., Chiang C. Norm-conserving pseudopotentials [J]. Phys Rev Lett, 1979, 43(20): 1494-1497.
    [50] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys Rev B, 1990, 41(11): 7892-7895.
    [51] Bl chl P. Projector augmented-wave method [J]. Phys Rev B, 1994, 50(24): 17953-17979.
    [52] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys Rev B, 1999, 59(3): 1758-1775.
    [53] G.Kresse, J.Furthmülle. The guide of vienna ab-initio simulation package [M]. Austria; Universit?t Wien. 2007.
    [54] Yang S., Garrison K., Bartynski R. A. Image-potential states on Ni (111) measured by inverse-photoemission spectroscopy [J]. Phys Rev B, 1991, 43(3): 2025.
    [55] Tersoff J., Falicov L. M. Magnetic and electronic properties of Ni films, surfaces, and interfaces [J]. Phys Rev B, 1982, 26(11): 6186-6190.
    [56] Bertoni G., Calmels L., Altibelli A., et al. First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface [J]. Phys Rev B, 2005, 71(7): 075402.
    [57]许振嘉.近代半导体材料的表面科学基础[M].北京:北京大学出版社. 2002.
    [58]赵新新,陶向明,陈文彬, et al. Ni(111)表面一氧化碳和氢共吸附的密度泛函理论研究[J].物理学报, 2006, 55(3629.
    [59] Shin Y.-H., Hong S. Carbon diffusion around the edge region of nickel nanoparticles [J]. Appl PhysLett, 2008, 92(9): 043103-04306.
    [60] Klinke D., Wilke S., Broadbelt L. A theoretical study of carbon chemisorption on Ni (111) and Co (0001) surfaces [J]. J Catal, 1998, 178(2): 540-554.
    [61] Burghgraef H., Jansen A. P. J., Van Santen R. A. Methane activation and dehydrogenation on nickel and cobalt: a computational study [J]. Surf Sci, 1995, 324(94): 345-356.
    [62] Zhang Q.-M., Wells J. C., Gong X. G., et al. Adsorption of a carbon atom on the Ni38 magic cluster and three low-index nickel surfaces: A comparative first-principles study [J]. Phys Rev B, 2004, 69(20): 205413.
    [63] Isett L., Blakely J. Segregation isosteres for carbon at the (100) surface of nickel [J]. Surf Sci, 1976, 58(2): 397-414.
    [64] Troiani H., Miki-Yoshida M., Camacho-Bragado G., et al. Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level [J]. Nano Lett, 2003, 3(6): 751-756.
    [65] Parasuk V., f. A. C20: the smallest fullerene? [J]. Chem Phys Lett, 1991, 184(1-3): 187-190.
    [66] Menon M., Subbaswamy K., Sawtarie M. Structure and properties of C60 dimers by generalized tight-binding molecular dynamics [J]. Phys Rev B, 1994, 49(19): 13966-13969.
    [67] Cheshnovsky O., Taylor K. J., Conceicao J., et al. Ultraviolet photoelectron spectra of mass-selected copper clusters: Evolution of the 3d band [J]. Phys Rev Lett, 1990, 64(15): 1785-1788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700