用户名: 密码: 验证码:
非水溶液中表面活性剂热力学性质的量热法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是一类非常重要的精细化工产品,它具有润湿、分散、乳化、增溶、起泡、消泡、洗涤、匀染、润滑、渗透、抗静电、防腐蚀、杀菌等多方面的作用和功能,被形象地称为“工业味精”。
     对于表面活性剂在水溶液中的性质,国内外学者已做了大量的研究工作,对其性质的认识和了解已经比较深入。相对于表面活性剂的水溶液,表面活性剂非水溶液性质的研究还很少。
     表面活性剂在非水溶液中的临界胶束浓度(CMC)及热力学性质,是表面活性剂性质研究的新课题,随着生物工程的快速发展,以及反胶团萃取的广泛应用,非水介质的中胶束和微乳液,在实际应用越来越受到人们重视,研究表面活性剂在非水溶液中的性质可以为进一步研究这些反应奠定理论基础,有重要的理论意义和广阔的应用前景。
     本文用微量量热法分别测定了非离子表面活性剂表面活性剂Tween80和Span80在非水溶液中的临界胶束浓度,进而获得了表面活性剂的热力学函数及其规律。具体研究内容如下:
     1.临界胶束浓度的确定及其变化规律
     用微量量热法分别测定了非离子表面活性剂Tween80和Span80在不同温度,不同浓度以及不同醇存在条件下的非水溶液中的热功率-时间曲线,从曲线转折点分别获取了两种表面活性剂的临界胶束浓度(CMC),结果表明:
     表面活性剂临界胶束浓度(CMC)在相同浓度、相同的醇的DMF体系中,随着温度的升高而减小;在相同浓度的醇及相同温度的DMF体系中,随着醇中碳原子数目的增加而减小;在相同温度及相同的醇的DMF体系中,随着醇的浓度的增加而减小。
     2.热力学函数的获得及其规律性讨论
     根据测得的不同温度和不同醇的浓度时的热功率-时间曲线上的面积,求得非水溶液中胶束形成过程的热效应,从而得到ΔHθm,运用表面活性剂热力学理论,计算出反应的ΔGθm和ΔSθm。结果表明:
     在含有相同浓度、相同的醇的DMF体系中,ΔHθm、ΔSθm的值随着温度的升高而增加,ΔGθm的值随着温度的升高而降低;在相同温度及相同浓度的醇的DMF体系中,ΔHθm、ΔGθm、ΔSθm的值均随着醇中碳原子数目的增加而降低;在相同温度及相同的醇的DMF体系中,ΔHθm、ΔGθm、ΔSθm的值都随着醇的浓度的增加而减小。
     本文的创新之处
     1.非离子表面活性剂Tween80和Span80在助表面活性剂不同浓度的醇以及不同醇存在时的DMF体系中的临界胶束浓度(CMC)及热力学性质的获得及其规律的研究,是表面活性剂性质研究的新课题。
     2.利用微量量热法研究在非水溶液中表面活性剂,助表面活性剂及溶剂的相互作用,根据热功率-时间曲线获得CMC及胶束形成过程的热效应,得到胶束形成焓ΔHθm,进而计算出反应的ΔGθm、ΔSθm,这是获得CMC和热力学函数的新方法。
Surfactants are a class of very important fine chemical products which has wetting, dispersion, emulsification, solubilization, foaming, defoaming, washing, dyeing, lubrication, penetration, anti-static, anti-corrosion, disinfection and other aspects the function and role, is vividly called "the industry monosodium glutamate".
     A lot of effort has been put into research on the properties of Surfactants in aqueous solutions from home and abroad. However, such research in non-aqueous solvents has received only limited attention.
     critical micelle concentration and thermodynamic properties in non-aqueous solvents is a new topic on Surfactants' property research.With the rapid development of biotechnology and wider applications of the reverse micelle extraction technology, The micellar and microemulsion in non-aqueous mediums attract more attention.The research of surfactant in non-aqueous solution can provides theoretical foundations to further study of these reacts. This has important theoretical significance,and broad application prospects.
     This paper determined the CMC of non-ionic surfactants tween80 and span80 in nonaqueous solvents by microcalorimetric method, and then obtained its Thermodynamic functions with the power-time curves of the micelle formation process.The main contents are as follows:
     1. The determination and regularity of CMC and Thermodynamic functions
     The power-time curves of the micelle formation process were determined for non-ionic Surfactant (tween80 and span80) under different temperatures and different alcohols of different concentrations by microcalorimetric method, then the CMC values were obtained from the lowest point of the curves. The conclusions are as follows:
     Tween80 and span80 in DMF systems, Under the condition of same alcohol and same alcohol concentration, the CMC values decreased with the increment of temperature; under the condition of same temperature and same alcohol, the CMC values decreased with increasing concentration of alcohol. Under the condition of same temperature and same alcohol concentration, the CMC of surfactants decreased with an increase in the carbon number of the alcohol.
     2. Thermodynamic function acquisition and regularity discussion
     The area of the curve which represents the thermal effect was obtained. The standard enthalpy changes (ΔHθm) of the micellization process of tween80 and span 80 in DMF under different conditions were calculated.ΔGθm andΔSθm can also be obtained by thermodynamic theory. The conclusions are as follows:
     Tween80 and span80 in DMF systems, theΔHθm andΔSθm increased whileΔGθm decreased with the increment of temperature at the presence of same alcohol and same alcohol concentration; theΔHθmΔGθm andΔSθm all decreased with the increment of alcohol's carbon number at the presence of same temperature and same alcohol's concentration; theΔHθm、ΔGθm andΔSθm all decreased with the increment of alcohol's concentration at the presence of same temperature and same alcohol.
     The innovation of this paper
     1. The study on CMC and thermodynamic function acquisition and regularity of Non-ionic surfactant Tween80 and Span80 with cosurfactant that different alcohols and alcohols in different concentrations in the presence of DMF system is a new topic on surfactants research.
     2. Titration Microcalorimetry was used to study the interactivity of surfactants, cosurfactants and solvents in non-aqueous solution. The CMC andΔHθm were determined by power-time curve. TheΔGθm andΔSθm were calculated by thermodynamic equations. This is a new method to gain CMC and thermodynamic functions.
引文
[1]张连水.日常生活与表面活性剂[J].化学教育,1998,(3):1~31.
    [2]刘瞻.表面活性剂的结构特点与应用.怀化学院学报2004,23(5):33~37.
    [3]刘程.表面活性剂应用手册[Z].北京:化学工业出版社,1992.
    [4]崔元臣.表面活性剂的发展概况[J].河南化工,1994,12:2~4.
    [5]陈柏洲.表面活性剂发展概况及建议[J].湖北化工,1988,2:20~23.
    [6]赵国玺.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [7]Sisley J P. Encyclopedia of Surface-Active Agents. Chemical Publ,1964,1(4).
    [8]冯建国,路福绥,李伟,王秀秀.表面活性剂在农药水悬浮剂中的应用[J].中国农药,2009,3:38~43.
    [9]李伟娜,刘志红,谢皓雪.表面活性剂的结构特点及应用研究进展.长春医学2008,6(2):68~70.
    [10]纪卿,云喜玲.表面活性剂的分类、性能及其应用原理[J].集宁师专学报,2003,25(4):58~59.
    [11]谭中良,韩冬,杨普华.孪连表面活性剂的性质和三次采油中应用前景.2003,20(2):187~191.
    [12]四表面活性剂的性能.1994-2007, China Academic Journal Electronic Publishing House.All right reserved.2004,6:78~79.
    [13]Maria Victoria Flores, Epaminondas C. Voutsas, Nikolaos Spiliotis, Gill M. Eccleston, George Bell, Dimitrios P. Tassios, and Peter J. Halling.Critical Micelle Concentrations of Nonionic Surfactants in Organic Solvents:Approximate Prediction with UNIFAC, Journal of Colloid and Interface Science 2001,240(1) 277~283.
    [14]Yang Fangxiao, Alan J Russel. Two step bioeatalytic conversion of to an estert an aldehyde in reverse mieelles [J]. BioteehnolBioeng,1994,43 (3):232~241.
    [15]禹邦超,刘德立.应用酶学导论[M].武汉:华中师大出版社,1995:25~27.
    [16]刘程.表面活性剂应用大全(修订版)[M].北京:北京工业大学出版社,1997.
    [17]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2003.
    [18]Anderson K, KIZLING J, HOLMBERG. A ring-opening reaction performed in microemulsions Colloids and Surfaces A,1998,144(1),259~266.
    [19]李干佐,任学贞,刘燕.W/O型微乳液中糖化酶的研究[J].生物化学与生物物理进展,1995,22(1):50~53.
    [20]马建中等.表面活性剂在纳米材料领域中的应用[J].日用化学工业,2004,34(6): 374~376.
    [21]K. Holmberg. S.-G, Oh. J. Kizling. Microemulsions as reaction medium Colloids Surfaces A 1996(100):281~285.
    [22]陈秀燕.表面活性剂的应用[J].科技经济市场,2008,(11):4~5.
    [23]战佩英,娄琦,吴旻,周柏影.表面活性剂的应用.通化师范学院学报,2003(24):47~50.
    [24]赵福麟.表面活性剂在油田中的应用.日用化学品科学,环球科技,1999(S1):10~13.
    [25]陆蠡珠.有关助剂、添加剂及表面活性剂发展概况和投资热点分析.行业综论,化工中间体.2004(4):15~22.
    [26]赵国玺,程玉珍,欧进国等.正离子表面活性剂与负离子表面活性剂在水溶液中的相互作用.化学学报,1980,38(4):409~420.
    [27]吴敏,周朝森,龙然,郑恩志.电导法测定水溶性表面活性剂临界胶束浓度研究.中成药,2009(31):1440~1441.
    [28]邹耀洪,鱼维洁.温度、氯化钠及乙醇对离子型表面活性剂临界胶束浓度的影响[J].常熟高专学报,2003,17(4):45~49.
    [29]董姝丽,吴华双,刘德珍,郝京诚,汪汉卿.紫外吸收分光光度法测定表面活性剂的临界胶束浓度[J].分析测试技术与仪器,1996,2(4):33~37.
    [30]陈振江,王绍芬.表面活性剂CMC的测定及应[J].中国中药杂志,1994,19(12):728~731.
    [31]朱云云,周长山,林清枝.表面活性剂临界胶束浓度测定方法的研究[J].河北师范大学学报,1996,20(S1):141~142.
    [32]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度.石化技术与应用,2007,25(1):48~53.
    [33]Ekwall P, Sctala K, Sjoblom L. Further Investigations on the Solubilization of Carcinogenic Hydrocarbons by Association Collioids,1951(1):175~189.
    [34]任学贞,李干佐,王弘立等.荧光探针法测定甜菜碱CMC的研究[J].高等学校化学学报,1995,16(8):1295~1297.
    [35]J. Aguiar, P. Carpena, J.A. Molina-Bolivar, C. Carnero Ruiz. J. Colloid Interface Sci.2003, 258,(1):116~122.
    [36]张国林,马建标,王亦农,聚L-丙氨酸-聚乙二醇嵌段共聚物的胶束化行为研究.高等学校化学学报,2006,27(4):767~770.
    [37]Joon H K, Michael M D, Robert D T. Pyrene solubilization capacity in octaethylene glycol monododecyl ether (C_(12)E_8) micelles[J]. Colloids and Surfaces A 1999,150 (1):55~ 68.
    [38]刘华姬,于丽,张洪林.CTAB形成胶束的热力学性质的微量量热法研究[J].曲阜师范大学学报,2002,28(1):66~68.
    [39]张洪林,咏梅,孔哲.非水胶束溶液中醇对CMC和热力学性质影响的量热法[J].应用化学,2007,24(5):599~601.
    [40]张洪林,孔哲,闫咏梅,李干佐,于丽,李真.微量量热法研究阴离子表面活性剂在DMA/长链醇体系中CMC和热力学函数[J].化学学报,2007,65(10):906~912.
    [41]王毅琳,韩布兴,刘瑞麟,阎海科.微量量热法研究水溶液中表面活性剂与疏水改性聚合物之间的相互作用[J].化学世界,1996(S1):132~133.
    [42]Wang X, Li Y, Wang J, Wang Y, Ye J, Yan H, Zhang J, Thomas R K. Interactions of cationicgemini surfactants with hydrophobically modified poly (acrylamides) studied by fluorescence and microcalorimetry Phys. Chem. B 2005,109(26),12850~12855.
    [43]Li Y, Reeve. J, Wang Y, Thomas R.K, Wang J, Yan H. J. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains. The journal of physical chemistry. B.2005 Aug 25; 109(33):16070-4.
    [44]Ayao Kitahara, Tatsuo Ishikawa and Shuhei Tanimori. The study on solubilization of water from its vapor pressure over nonionic and ionic surfactant solutions in various nonpolar solvents1967(23):243~247.
    [45]C. Corno, E. Platone and S. Ghelli.13C-NMR analysis of polyoxyethylenated surfactants, Polymer Bulletin1984(11):69~73.
    [46]Luisi P L, Magid L J. Solubilization of enzymes and nucleic acids in hydrocarbon micellar Solutions [J]. CRC Crit Rev Biochem,1996,20(4):409~474.
    [47]XU Jian-he(许建和),ZHOU Jie((周洁),ZHAO Fa-xiang(赵发祥)et al. A spectroscopic study on the water in reverse micelles(反胶束中的波谱研究)[J]. Journal of East China University of Science and Technology(华东理工大学学报).1994,20(4):248~252.
    [48]李伟杰,高静,姜艳军等.AOT逆胶束体系脂肪酶催化合成油酸乙酯[J].过程工程学报,2008,8(6):173~178.
    [49]WANG Pu(王普),CHEN Xi-yang(陈希杨),YING Guo-qing(应国清)et al. Activity and stability of penicillin acylase in reversedmicelles((反胶束体系中青霉素酰化酶活性及稳定性研究)[J]. J Chem Eng of Chinese Univ(高校化学工程学报),2002,16(4):426~429.
    [50]Rao A M, Nguyen H, John V T. Modification of enzyme activity in reversed micellers through clathrate hydrate formation [J]. Biotechnol Prog,1990,6(6):465~471.
    [51]Nagahama K, Noritomi H, Koyama A. Enzyme recovery from reversed micellar solution through formation of gas hydrate [J]. FluidPhase Equilibria,1996,116(1-2):126~132.
    [52]Hu Zi-Yi, Gulari E. Extraction of aminoglycoside antibiotics with reverse micelles [J]. J Chem Tech Biotechnol,1996,65(1):45~48.
    [53]Dovyap Z, Bayraktar E, Mehmetoglu U. Amino acid extraction and mass transfer rate in the reverse micelle system [J]. Enzyme andMicrobial Technology,2006,38(3-4):557~562.
    [54]Liu Jun-guo, Xing Jian-min, Shen Rui. Reverse micelles extraction of nattokinase from fermentation broth [J]. BiochemicalEngineering Journal,2004,21(3):273~278.
    [55]JU Xing-song(琚行松),HUANG Pei(黄培),XU Nan-ping(徐南平)et al. Studies on preparation of ultrafiltration titania membraneby reversed micelle method(反胶团法制被氧化钛超滤膜的研究)[J]. J Chem Eng of Chinese Univ(高校化学工程学报),2002,16(2):119~124.
    [56]Yamaki T, Maeda H, Kusakabe K et al. Control of the pore characteristics of thin alumina membranes with ultrafine zirconiaparticles prepared by the reversed micelle method [J]. Journal of Membrane Science,1993,85(2):167~173.
    [57]王亮,关晋平,陈国强.蚕丝纤维在反胶束体系中的染色性[J].印染助剂,2006,23(4):34~39.
    [58]Hatton T. A. "Reversed micellar extraction of proteins".In:Surfactant-based separation processes, eds. Scamehorn,J. F., and Harwell, J. H., Marcel Dekker, New York,1989: 55~90.
    [59]Luisi P L, Giomini M, Pileni M P etal. Reverse micelles as hosts for protein and small molecules [J]. Biochimica Biophysica Acta,1988,947(1):209~246.
    [60]Paradkar VM and Dordick JS. Mechanism of extraction of chymotrypsin into isooctane at very low concentration of aerosol OT in the absence of reverse micelles. Biotechnol Bioeng1994,43(6):529~540.
    [61]Brochette.P, C. Petit & M. P. Pileni. Cytochrome C in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles:Structure and reactivity, Journal of Physical Chemistry, 1988,92(12),3505~3511.
    [62]Masahiro Goto, Yos, io Ishikawa, Tsutomu Ono, Fumiyuki Nakashio, and T. Alan Hatton. Extraction and Activity of Chymotrypsin Using AOT-DOLPA Mixed Reversed Micellar Systems, [J]. Biotechnol. Prog.1998,14(5):729~734.
    [63]Wen-Yih Chen, Ya-Wen Lee, Shin-Chun Lin, and Ching-Wen Ho. Renaturation and Interaction of Ribonuclease A with AOT Surfactant in Reverse Micelles, [J]. Biotechnol. Prog.2002,18(6):1443~1446.
    [64]陈海光,成坚.反胶束技术及其应用[J].仲恺农业技术学院学报,2000,13(4):52~57,.
    [65]赵国华,周文斌.反胶束萃取蛋白质的研究进展[J].食品与机械,1998(4):62~71.
    [66]徐宝财,王媛,肖阳,周雅文,胡燕霞,李建军.反胶团萃取分离技术研究进展,日用化学工业.专论与综述.2004,32(6):390~393.
    [67]Nan Chen, Jun-Bao Fan, Jin Xiang, Jie Chen, Yi Liang. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles. Biochim. Biophys. Acta 2006,1764(6), 1029~1035.
    [68]陈复生,赵俊廷,娄源功.利用反胶束萃取技术同时分离植物蛋白和油脂[J].食品科学,1997,18(8):43~46.
    [69]蔡宝玉,许林妹,彭远宝.反胶束萃取大豆蛋白的研究[J].中国油脂,2004,29(6):37~39
    [70]于秀芳,吴莉莉,张洪林.P_(204)Li在有机相形成反向胶束过程的微量量热法研究[J].应用化学,2002,19(3):263~266.
    [71]M. Salim Akhter. Effect of solubilization of alcohols on critical micelle concentration of non-aqueous micellar solutions.[J]. Colloids and SurfacesA:Physicochemical and Engineering Aspects 1999,157(1-3):203~210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700