用户名: 密码: 验证码:
熔渗烧结制备Ti_3SiC_2及其摩擦磨损性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,三元层状化合物Ti3SiC2因兼备金属和陶瓷的一些物理化学性能,而引起了材料学研究者强烈的研究兴趣。
     本文分别以Ti/Si/C和Ti/Si/TiC粉末为原料,采用液态熔渗硅方法制备出纯度较高的Ti3SiC2材料,Ti3SiC2的相对含量分别达到93.6%和96.2%。研究表明,熔渗烧结制备Ti3SiC2的反应过程为:在1300℃以上,且未发生熔渗时,在Ti的富集区优先生成Ti5Si3,随着温度的升高,少部分Ti5Si3和β-Ti先熔合形成Ti-Si液相;在1500℃时,随着液态Si的渗入及流动扩散,液态的Si和剩余的Ti5Si3形成大量Ti-Si液相,将试样中的TiC包覆,通过液相反应生成大量的Ti3SiC2。其反应方程为:5Ti+3Si=Ti5Si3, Ti5Si3+2Si+10TiC=Ti3SiC2。
     本文还研究了保护气体、原料配比、熔渗保温时间等主要因素对熔渗烧结的影响。研究表明:1)在原料润湿性满足熔渗反应的条件下,保护气体决定着熔融态的Si是否能够大量渗入预制体中,进而决定熔渗反应能否充分进行。本实验中,Ar气不但不参与反应,而且Ar的分子量大,气体流动时,从预制体中带出的熔融态Si也少,使生成Ti3SiC2的反应得以充分进行。2)以TiC/Ti/Si/C(石油焦)、TiC/Ti/Si、Ti/Si/C三种原料配比都能熔渗烧结出高纯度的Ti3SiC2陶瓷材料,但其差别主要表现在改善材料的致密性方面上。以TiC/Ti/Si为原料制备的Ti3SiC2,其含量高达96.2%,气孔率仅为7.86%,致密性最好,是原料配比选取中的最佳方案。3)熔渗保温时间决定着熔渗反应的进行程度,时间太短,熔渗反应不能充分进行;时间太长,熔渗反应产物会分解。本研究所选取的试样尺寸所对应的最佳保温时间为30 min。
     本文还对熔渗烧结制备的Ti3SiC2块体材料的力学性能和摩擦磨损性能进行了研究。研究结果表明:以TiC/Ti/Si/C为原料和以Ti/Si/TiC为原料制备的Ti3SiC2材料,随着Ti3SiC2含量的增加,大量气孔被填满,材料的致密度增大,其抗弯强度和硬度都随Ti3SiC2含量的增加而增大。当Ti3SiC2的含量达到96.2%时,其抗弯强度为132.60 MPa,硬度也达到最大值156HB,力学性能得到很好的改善。
     以TiC/Ti/Si/C为原料和以Ti/Si/TiC为原料制备的Ti3SiC2材料,随着Ti3SiC2的含量增加,其摩擦系数和体积磨损率都降低,且纯度越高,其摩擦系数和体积磨损率越小,Ti3SiC2的含量为96.2%的试样,其摩擦系数仅为0.211,体积磨损率仅为1.8×10-6mm3N-1m-1,摩擦磨损性能很好。
In recent years, the ternary layered compounds Ti3SiC2 which has special physical and chemical properties of metal and ceramic has attracted materials science researchers to study.
     In this paper, the purer bulk Ti3SiC2 ceramic had been prepared from Ti/Si/C and Ti/Si/TiC mixed powders by use melt infiltrating method, respectively. The content of Ti3SiC2 in the two test samples can be up to 93.6% and 96.2%, respectively. The results showed that the reaction mechanism of Ti3SiC2 by melt infiltrating sintering method is that:above 1300℃and before the melting infiltrating takes place, the content of Ti is higher than that of Si in the sample and the Ti5Si3 is easier to form in the rich Ti areas. With the increase of temperature, few Ti5Si3 react withβ-Ti to become liquid mix phase of Ti-Si. With the liquid Si melting infiltrating, flowing and diffusing at 1500℃, great liquid Si will react with the rest Ti5Si3 to become liquid mix phase of Ti-Si. And then the liquid mix phase of Ti-Si will cover the TiC particle to take place liquid phase reaction. A great deal of Ti3SiC2 can be formed from this process. The reaction process is:
     5Ti+3Si=Ti5Si3, Ti5Si3+2Si+10TiC=Ti3SiC2
     The main influencing factors of infiltrating sinter such as protect gas, the ratio of raw materials and the infiltration holding time also were studied in this paper. Research shows that: 1) Under the condition that the wetting property of raw materials meet the infiltrate reaction, the protect gas determines whether a great deal of melted Si can be infiltrated into preformed sample, and affect the infiltration reaction can be fully carried out. In this experiment, Ar gas is not involved in reaction, and has large molecular weight, so when Ar gas flows from preformed sample to bring out the molten state Si less, and the generation of Ti3SiC2 reaction can be fully carried out.2) High purity Ti3SiC2 ceramic materials can be prepared by infiltration sintering with the three types of raw materials ratio of TiC/Ti/Si/C, TiC/Ti/Si and Ti/Si/C in this study, but the main difference is the improvement of the material compactness. Ti3SiC2 content in sample can be as higher as 96.2% in the preparation and the porosity is only 7.86% by use TiC/Ti/Si. It is the best raw materials selection.3) The holding time determines the degree of infiltrating reaction taking place. When the holding time is too little, the infiltrating reaction can not be fully carried out; but the holding time is too long, the production of melting infiltration will be decompose. The best holding time corresponded to the selected sample size in this study is 30 min.
     The mechanical properties and friction and wear properties of infiltration sintering Ti3SiC2 block were studied in this article. The results showed that with the increase of the content Ti3SiC2, a large number of pores in the bulk Ti3SiC2 ceramic materials will be filled and its soundness will be increased when the bulk Ti3SiC2 is prepared by infiltration sintering with the three types of raw materials ratio of TiC/Ti/Si/C (petroleum coke), TiC/Ti/Si and Ti/Si/C, and its bending strength and hardness are increased with the increase of content of Ti3SiC2. When the content of Ti3SiC2 is up to 96.2%, its flexural strength can be up to 132.60 MPa, and Brinell hardness will also reach the maximum 156 HB. The mechanical properties of Ti3SiC2 can be improved greatly.
     With the increase of content of Ti3SiC2, the friction coefficient and wear rate of bulk Ti3SiC2 ceramic materials prepared by infiltration sintering with the raw materials ratio of TiC/Ti/Si/C and Ti/Si/TiC will be decreased, and the higher purity of Ti3SiC2 is, the lower friction coefficient and wear rate of Ti3SiC2 is. When the content of Ti3SiC2 is 96.2%, its friction coefficient is just 0.211, its wear rate is 1.8×10-6mm3N-1m-1. This proves that the friction and wear properties of Ti3SiC2 have better.
引文
[1]M. W. Barsoum. The MN+1AXN phases:a new class of solids the Modynamic-ally stable nanolaminate [J]. Prog Solid St Chm,2000,28:201-281.
    [2]Myhra S., Summers J. W. B., Kisi E. H. Ti3SiC2-a layered ceramic exhibiting ultra-low friction[J]. Materials Letter,1999, (39):6-11.
    [3]Jeitschko W, Nowotny H. Die kristallstructur von Ti3SiC2-ein neuer komplxcar-bid type [J]. Monata-sh fur Chem,1967,98(2):329-337.
    [4]Kisi E K, Crossley J A A, Myhra S, et al. Structure and crystal chemistry of Ti3SiC2[J]. Phys. Chem. Solids,1998,59(9):1437-1443.
    [5]朱教群.三元层状碳合物Ti3SiC2的制备及性能的研究[D].武汉:武汉理工大学博士学位论文,2003.
    [6]刘继进,李松林.Ti3SiC2陶瓷材料的研究进展[J].粉末冶金材料科学与工程,2006,11(2):3-6.
    [7]Goto T, Hirai T. Chemically vapor deposited Ti3SiC2 [J]. Mater Res Bull,198.7,22:1195-1201.
    [8]Racault C, Langlais F, Naslain R, et al. On the chemical vapour deposition of Ti3SiC2 from gas mixtures [J].Mater Sci, 1994,29:3341-3348.
    [9]Pampuch R,Lis J,Piekarczyk J,et al. Ti3SiC2-based materials produced by self-propagating high temperature synthesis and ceramic processing[J]. J Mater Synth Process,1993,1(1):93-98.
    [10]Lis J, Miyamoto Y,Pampuch R, et al. Ti3SiC2-based materials prepared by HIP-SHS technique [J]. Mater Let,1995,22(3):163-168.
    [11]Racault C,Langlais F,Bemard C.On the chemical vapor deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 gas mixtures-Part Ⅱ an experimental approach [J].Mater Sci,1994,29:5023-5027.
    [12]朱教群,梅炳初,陈艳林.放电等离子烧结制备Ti3SiC2材料的研究[J].材料科学与工程,2002,4:564-567.
    [13]J.O. Zhu,B.C.Mei,X.W.Xu,J. Liu. Effect of aluminum on the reaction synthesis of ternary carbide Ti3SiC2[J].Scripta Materialia,2003,49:693-697.
    [14]朱教群,梅炳初,陈艳林.以铝为助剂结合放电等离子烧结制备Ti3SiC2[J].无机材料学报,2003,18(3):700-704.
    [15]Gao N F,Lib J,Zhang D,Miyamoto Y. Rapid synthesis of dense Ti3SiC2 by spark plasma sintering[J]. J Eur Ceram Soc,2002,22:2365-2370.
    [16]Li J F, Matsuli T, Wratanabe R, Meehanieal-Alloying-Assisted Synthesis of Ti3SiC2 Powder [J]. J Am. Ceram Soc, 2002,85(4),1004-1006.
    [17]Okano T, Tong X H. Synthesis and High-Temperature Mechanical-Properties of Ti3SiC2[J]. Mater Sci.,1995,98(2):988-1007.
    [18]Barsouma M W, EI-Raghy T. Synthesis characterization of a remarkable ceramic:Ti3SiC2 [J]. J Am Ceram Soc,1996.79(7):1953-1956.
    [19]李世波,成来飞,王东.层状Ti3SiC2陶瓷的组织结构及力学性能[J].复合材料学报,2002,19(6):20-24.
    [20]陈艳林.Ti3SiC2陶瓷的合成制备研究[D].武汉:武汉理工大学硕士学位论文,2002.
    [21]梅炳初,刘俊,朱教群,徐学文.热压TiC/Ti/Si/Al合成Ti3SiC2材料的研究[J].稀有金属材料与工程,2005,34(2):252-255.
    [22]陈艳林,梅炳初,朱教群.用热压法制备Ti3SiC2层状陶瓷的研究[J].陶瓷学报,2004,25(1):55-59.
    [23]Tang K, Wang C A, Huang Y et al. Growth model and morphology of Ti3SiC2 grains [J]. Crystal Growth,2001,222:130-135.
    [24]Tang K, Wang C A, Huang Y et al. An X-ray diffraction study of the texture of Ti3SiC2 fabricated by hot pressing [J]. Europ Ceram Soc,2001,21:617-621.
    [25]EI-Ragh Y T, Barsoum M W, Zaval Iangos A., et al. Processing and mechanical properties of Ti3SiC2:II Effect of grain size and formation temperature [J]. J Am Ceram Soc,1999,82(10): 2855-2860.
    [26]Gao N F, Miyamoto Y, Zhang D. Dense Ti3SiC2 prepared by reactive HIP [J]. J Mater Sci,1999, 34(18):4385-4392.
    [27]Sun Zhimei, Zhang Yi, Zhou Yanchun. Synthesis of Ti3SiC2 powers by solid-liquid reaction process [J]. Scaipta Materalia,1999,41(1):61-66.
    [28]王超,吕振林,张姗姗,周永欣.反应烧结制备Ti3SiC2材料的研究.机械工程材料,2008,32(5):38-44
    [29]朱教群,梅炳初,陈艳林.层状三元碳化物Ti3SiC2及其制备研究[J].武汉:武汉理工大学学报,2002,24(5):17-21.
    [30]Barsoum M. W, EI-Raghy T. A progress report on Ti3SiC2, Ti3GeC2 and the h-phases, M2BX[J]. Mater Synth & Process,1997, (5):197-216.
    [31]Low I M., Lee S K, Lawn B, and Barsoum M W. Contact damage accumlation in Ti3SiC2 [J]. J Am Cer. Soc,1998(81):225-228.
    [32]R Pampuch, J Lis, L Stobierski, M Tymkiewicz. Solid synthesis of Ti3SiC2[J]. J Eur Ceram Soc, 1989,21:124-128.
    [33]Tong X H, Okano T, Iseki T, et al. Synthesis and high temperature mechanical properties of Ti3SiC2 composites[J]. J Mater Sci,1995,30(12):3087-3090.
    [34]Gao N F, Miyamoto Y, Zhang D. Dense Ti3SiC2 prepared by reactive HIP [J]. J Mater Sci,1999, 34(18):4385-4392.
    [35]Racaul T C, Langlais F, Nashlain R. Solid state synthesis and characterization of the ternary phase Ti3SiC2[J]. J Mater Sci,1994,29(13):3384-3392.
    [36]Lis J, Miyamoto Y, Pampuch R, et al. Ti3SiC2-based materials prepared by HIP-SHS technique [J]. Mater Let,1995,22 (3):163-168.
    [37]Barsouma M W, EI-Ragh Y T. Synthesis and characterization of a remarkable ceramic:Ti3SiC2 [J]. J Am Ceram Soc,1996,79(7):1953-1956.
    [38]刘光明,李美栓,周延春,张亚明.Ti3SiC2氧化膜的抗循环氧化行为[J].材料研究学报,2002,16(3):263-267.
    [39]Racaul T C, Langlais F, Nashlain R. Solid state synthesis and characterization of the ternary phase Ti3SiC2[J]. J Mater Sci,1994,29(13):3384-3392.
    [40]王志钢,朱德贵.Ti3SiC2/SiC复相陶瓷的抗氧化性研究[J].硅酸盐通报,2006,25(4):6-10.
    [41]刘光明,李美栓,张亚明,周延春.Ti3SiC2表面渗硅涂层的抗高温氧化性能[J].中国有色金属学报,2002,12(4):629-633.
    [42]Shi-Bo Li, Jian-Xin Xie, Li-Tong Zhang, et al. Mechanical properities and oxidation resistance of Ti3SiC2/SiC composite synthesis by in situ displacement reaction of Si and TiC[J]. Material Letters, 2003,57(20):3048-3056.
    [43]向其军,刘咏,刘伯威.新型陶瓷材料Ti3SiC2制备技术的研究进展[J].粉末冶金技术,2005,23(4):301-305.
    [44]Barsouma M W, EI-Raghy T. Synthesis characterization of a remarkable ceramic:Ti3SiC2 [J]. J Am Ceram Soc,1996.79(7):1953-1956.
    [45]Myhra S., Summers J. W. B., Kisi E. H. Ti3SiC2-A layered ceramic exhibiting ultra-low friction[J]. Materials Letter,1999, (39):6-11.
    [46]王轶凡,翟洪祥,黄振莺.不同纯度Ti3SiC2的摩擦磨损行为[J].北京交通大学学报2005,29(5):95-97.
    [47]管明林,翟洪祥,黄振莺,周炜,艾明星.Ti3SiC2的高速摩擦特性及摩擦氧化行为[J].北京交通大学学报2005,29(5):95-97.
    [48]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学大学出版社,2007.
    [49]程兰征,章燕豪.物理化学[M].上海:上海科学技术出版社,2005.
    [50]张国军,金忠哲,岳雪梅.材料的原位合成技术.材料导报,1997,11(1):1-4.
    [51]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学大学出版社,2007.
    [52]沈一丁,李小瑞.陶瓷添加剂[M].北京:化学工业出版社,2004.
    [53]刘粤惠,刘平安.X-射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [54]谈国强,刘新年,宁青菊.硅酸盐工业产品性能及测试分析[M].北京:化学工业出版社,2004.
    [55]周惠久.材料强度研究及应用[M].无锡:江西人民出版社,1978.
    [56]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [57]代燕.布氏硬度实验误差分析及排除[J].武钢技术,2006,44(4),47-50.
    [58]梁宝岩,金松哲,刘鹤,周振华.粉末冶金制备Ti3SiC2的研究进展[J].长春工业大学学报(自然科学版),2006,27(1):52-55.
    [59]廖寄乔.粉末冶金实验技术[M].湖南:中南大学出版社,2003.
    [60]TU WC, LANGE F F. Liquid precursor infiltration processing of powder compacts:I kinetic studies and microstructure development[J].J Am Ceram Soc,1995,78:3277-3252.
    [61]Ke Tang, Chang-an Wang. A study on the reaction mechanism and growth of Ti3SiC2 synthesized by hot-pressing[J]. Materials Science and Engineering,2002,328:206-212.
    [62]陈秀华,项金钟,胡永茂,吴兴惠等.制备Ti3SiC2/SiC复合材料的动力学研究[J].云南大学学报(自然科学版),2002,24(1):203-205.
    [63]金松哲,梁宝岩,李敬锋.低温合成Ti3SiC2陶瓷[J].硅酸盐学报 2007,35(5):629-632.
    [64]梅炳初,徐学文,朱教群,刘俊.Ti3AlC2的制备与微观结构[J].硅酸盐学报 2004,32(7):897-900.
    [65]朱教群,梅炳初,陈艳林.放电等离子烧结工艺合成Ti3SiC2的研究[J].硅酸盐学报2002,30(5):649-652.
    [66]M. NaKa, J.C.Feng, and J.C. Schuster, Phase Reaction and Diffusion Path of the SiC/Ti System [J]. Met. Mater. Trans.,1997,28A,1385.
    [67]Yong Du and Julius C. Schuster, Experimental Investigation and Thermodynamic Calculation of the Titanium-Silicon-Carbon System[J]. J Am Ceram. Soc.,2000,83 (1):197-203.
    [68]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
    [69]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.
    [70]管明林,翟洪祥,黄振莺,周炜,艾明星.Ti3SiC2的高速摩擦特性及摩擦氧化行为[J].北京交通大学学报,2007,30(1)14-17.
    [71](美)B.布尚 著,葛世荣译.摩擦学导论[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700