用户名: 密码: 验证码:
三元层状碳化物Ti_3SiC_2的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元层状碳化物Ti_3SiC_2由于其优异的性能而受到材料科学工作者的广泛重视。Ti_3SiC_2综合了金属和陶瓷的诸多优良性能,它同金属一样,在常温下,有很好的导热性能和导电性能,相对较低的Vickers硬度和较高的弹性模量,在常温下有延展性。同时,它具有陶瓷材料的性能,有高的屈服强度、高熔点、高热稳定性和良好的抗氧化性能,在高温下能保持高强度。而更为重要的是,它不同于传统碳化物陶瓷,可以象金属一样,用传统的加工方式进行加工,并具有比二硫化钼和石墨更低的超低磨擦系数和优良的自润滑性能。这些优异性能使其具有广阔的应用前景,并成为新材料研究中重要对象。迄今为止,人们采用各种方法如化学气相沉积法(CVD)、自蔓延高温反应合成(SHS)、热压(HP)、热等静压(HIP)和放电等离子烧结(SPS)来制备Ti_3SiC_2,但往往难以得到单相Ti_3SiC_2材料,产物中经常伴随着大量的不希望存在的杂质相TiC和硅化物(Ti_xSi_y)。由于Ti_3AlC_2与Ti_3SiC_2具有相同的结构和相似的性能,同时考虑铝具有较低的熔点,在本论文中,提出了在起始原料中掺加铝作为Ti_3SiC_2合成的反应助剂;并分别研究了放电等离子烧结和热压烧结两种工艺合成单相、致密Ti_3SiC_2材料的制备过程;研究了合成材料的显微结构特征、物理性能和高温氧化性能。
     应用放电等离子烧结工艺研究了两组不同起始粉料Ti/Si/C和Ti/SiC/C的反应合成结果。还特别研究了添加铝作为反应合成助剂对Ti_3SiC_2反应合成的影响规律。应用X-射线衍射、扫描电镜结合能谱仪研究不同起始组成粉料在不同烧结温度下烧结所得产物的相组成及显微结构特征;通过分析放电等离子烧结的过程参数特点研究了Ti_3SiC_2的反应合成机理,探讨了两组不同起始原料具有不同反应活性的原因。结果表明,当以元素单质粉为原料时,在起始原料组成中掺加适量的铝能加快Ti_3SiC_2的反应合成、Ti_3SiC_2晶体的生长速度,和材料的致密化过程,最重要的是显著提高了制备产物中Ti_3SiC_2含量。在1250℃温度下放电等离子烧结3Ti/Si/0.2Al/2C粉料能制备出不含TiC和硅化物等杂质相,相对密度达99%以上的纯净Ti_3SiC_2材料。Ti_3SiC_2晶体发育良好,Ti_3SiC_2颗粒的厚度和长度方向上的尺寸分别达到5μm和25μm。
     开展了热压法制备致密单相Ti_3SiC_2和Ti_3AlC_2材料的研究。在Ti_3SiC_2的制备过程中,分别探索了两种不同起始原料组成Ti/Si/C和TiC/Ti/Si,以及铝用作合成助剂,对Ti_3SiC_2的反应合成影响规律。在Ti_3AlC_2的制备过程中,
    
    武汉理工大学博士学位论文
    重点研究了硅用作合成助剂对Ti3AICZ反应合成的影响。经X一射线衍射、扫描
    电镜、能谱仪等表征方法对烧结产物的相组成和显微结构进行了研究.结果表
    明:在起始原料中掺加适量的铝能显著促进Ti3SICZ的反应合成;同样,在起
    始原料中掺加适量的硅亦明显促进Ti3Alc:的反应合成。14000c和30 MPa条
    件下热压ZTIC爪/S湘.2AI可得到Ti3SICZ相含量为98.2%,相对密度达98.8%
    的高纯致密Ti3SICZ块体材料;相同条件下热压ZTIC厂ri/A如251可制备出理论
    密度达98.6%的单相Ti3AICZ块体材料。
     研究了放电等离子烧结和热压烧结所制备的肠3SIC:材料和热压烧结制备
    的Ti3AIC:材料的显微结构特征。采用硅作为内标物,应用形etveld方法计算
    研究了两种工艺所制备Ti3siCZ的晶格参数;应用二次电子象观察了材料断面
    的形貌特征:运用能谱仪及电子探针(波谱仪)分析了矿物相的化学成分和微
    区中Ti、si及Al的分布特点;并采用光电子能谱研究了Ti3siCZ晶体结构中
    的化学键特征。结果表明:含铝Ti3siC:相的晶格参数与其他学者所报道Ti3SICZ
    的晶格参数非常接近:Ti、si和Al在试样中均匀分布;而由于铝在高温下
    比硅具有更强的挥发能力,使烧结产物中的S妙Al原子比值要明显高于起始原
    料组成中的S认1原子比值。由于Ti3SIC:中的si平面层内si一si间弱键结合和
    五·si间强键结合使SiZp结合能在图谱上呈现两个特征峰,分别位于 99.Oev和
    102.3eV处。
     研究了热压烧结Ti3siC:和Ti3AIC:的物理性能。包括抗压强度、三点抗
    弯强度、断裂韧性、弹性模量和Vickers显微硬度等力学性能;室温至SO0oC
    范围内材料的电阻率;空气中室温至IOO0oC的线膨胀系数,并应用激光导热
    仪分别研究了合成材料从室温至12O0oC间的热容及导热系数。结果表明所制
    备的Ti3SIC:和Ti3AIC:材料具有良好的导热和导电性能,较低的巧ckers硬度
    和优良的力学性能。
     研究T含铝Ti3SICZ相分别于900oC、1000OC、1 100OC、1200OC和1300oC
    温度下空气中的持续高温氧化行为;研究了含铝Ti3SIC:相在1 100oC和
    12O0oC温度下的热循环氧化行为,并通过理论计算研究了氧化层中的热应力:
    应用X.射线衍射和扫描电镜研究了氧化产物中相组成及形貌特征。结果表明:
    含铝Ti3SIC:相的氧化增重符合抛物线规律,900OC、1000OC、1 100oC、1200oC
    和1300oC的氧化抛物线常数分别为2.45xlo·,”、2.46、10·,0、5.21、10·,0、
    s.osx一。·,”和5.7lxlo一K扩耐s·’。氧化反应活化能为101.43幻·mol’‘;由于铝
    的存在,固溶体Ti3(
(Titanium silicon carbide) attracts increasing interest owing to their unique properties. Ti3SiC2 combines unusual properties of both metals and ceramics. Like metals, it is a good thermal and electrical conductor, relatively soft. Like ceramics, it is elastically stiff; exhibit excellent high temperature mechanical properties. It is resistant to thermal shock and unusually damage tolerant, and exhibit excellent corrosion resistance. Above all, unlike conventional carbides, they can be machined by using conventional tools without lubricant, which is of great technological importance for their application. Additionally, Ti3SiC_(2) is an exceptional solid lubricant with an ultra-friction. These excellent properties mentioned above make them another family of technically important materials. To date, many methods such as chemical-vapor deposit (CVD), self-propagating high temperature reaction synthesis (SHS), hot pressing (HP), hot-isostatic pressing (HIP) and spark plasma sintering (SPS) have been used for the synthesis of Ti3SiC_(2)
    Unfortunately, it is difficult to be synthesized as a pure phase, being often accompanied by unacceptably large amounts of TiC and titanium silicides (TixSiy). Because aluminum has a low melting point, and Ti3SiC_(2) has the same structure and similar properties as those of Ti3SiC_(2), the idea that addition of aluminum is used as an additive for the synthesis of Ti3SiC_(2) has been proposed. Both spark plasma sintering and hot pressing were utilized for the synthesis of single-phase dense Ti3SiC_(2). Also, the microstructures, the physical properties as well as oxidation behavior of the obtained materials were investigated, respectively.
    SPS was used to synthesize Ti3SiC_(2) from the mixtures of both Ti/Si/C and Ti/SiC/C. Also, effect of aluminum on the synthesis of Ti3SiC_(2) was especially investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) coupled with energy-dispersive spectroscopy (EDS) were utilized to investigate the phase composition and the morphology characteristics of the products. In addition, the SPS process parameters were also analyzed to study the reaction characteristics. The results indicated that appropriate addition of Al accelerates the reaction synthesis, and favors the crystal growth of Ti3SiC_(2), as well as considerably improves Ti3SiC_(2) content. Fully dense, essentially single-phase Ti3SiC_(2) is fabricated by spark plasma sintering (SPS) 3Ti/lSi/0.2Al/2C at 1250℃ under 30 MPa for 10 minutes. The obtained Ti3SiC_(2) grains are well developed and plate-shape with a size of 5m and 25m, in thickness and elongated dimension,
    
    
    
    respectively.
    In chapter 3, the synthesis of single-phase materials of both Ti3AlC_(2) and Ti3AlC_(2) was conducted by HP method. For the synthesis of Ti3AlC_(2), two kinds of powder mixtures Ti/Si/C and TiC/Ti/Si were used and the effect of aluminum on the synthesis of Ti3AlC_(2) were together investigated. Also, for the synthesis of Ti3AlC_(2), silicon was chosen as the synthesis additive. Characterized by XRD, SEM and EDS, the results indicated that addition of aluminum and silicon in the starting mixtures improves the reaction synthesis of Ti3AlC_(2), and Ti3AlC_(2), respectively. Ti3AlC_(2) with 98.2% purity and 98.8% theoretic density was fabricated by hot pressing 2TiC/Ti/Si/0.2Al at the temperature of 1400℃, and under the pressure of 30 MPa for 2 hours, and essentially single-phase Ti3AlC2 with 98.6% density was prepared from the starting mixture of HP the 2TiC/Ti/Al/0.2Si under the same condition.
    Chapter 4 deals with the microstructures of SPS Ti3SiC2, HP Ti3SiC2, and HP Ti3AlC_(2) The lattice parameters of Ti3AlC_(2) were calculated by Rietveld analysis and measured using silicon as a standard additive. The morphology characteristics of the grains were investigated by the secondary electron images of fracture surfaces of sintered products. Energy-dispersive spectroscopy and electron-probe microanalysis (EPMA) were used to study the chemical composition of minerals, and the distribution of
引文
1. Barsoum M W, The MN+1 AXN Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates. Prog Solid St Chem., 2000, 28: 201-281
    2. Barsoum M W, Brodkio D, EI-Ranghy T. Layered machinable ceramies for high temperature application. Scripta Materiatia, 1997, 36 (5) : 535-541
    3. Jeitschko W, and Nowotny H. Die Kristallstructur von Ti3SiC2-Ein Neuer Komplxcarbid-Typ. Monatsh. Fur Chem., 1967,98: 329-37
    4. Kisi E K, Crossley J A A, Myhra S, et al. Structure and Crystal-chemistry of Ti3SiC2. J. Phys. Chem. Sol., 1998, 59:1437-1443
    5. Zhou Y C, and Sun Z M. Electronic structure and bonding properties in layered ternary carbide Ti3SiC2. Journal of Physics: Condensed Matter, 2000,12 (28) : 457
    6. Zhou Y C, and Sun Z M, Sun J H, Zhang Y and Zhou J. Titanium Silicon Carbide: a Ceramie or a Metal? Z. Metallkd., 2000,91: 329-334
    7. Sun Z M, Zhou Y C. Abinitio calculation of Ti3SiC2. Phys Review B, 1999, 60: 1441
    8. Sun Z M and Zhou Y C. Ab initio calculation of titanium silicon carbide (Ti3SiC2) . Phys. Rev., 1999, B, 60: 1441-1443
    9. Amer M, Barsoum M W, El-Raghy T, Wiess I, et al. Raman Spectrum of Ti3SiC2. J. Appl. Phys., 1998,84:5817-5819
    10. Arunajatesan S, Carim A. Synthesis of Ti3SiC2. J. Amer. Cer. Soc., 1995, 78:667
    11. Niekl J J, Schweitzer K K, Luxenberg P. Gasphasenabscheidung im Systeme Ti-C-Si. J Less Common Metals, 1972, 26: 283
    12. Goto T, Hirai T. Chemically Vapor Deposited Ti3SiC2. Mat. Res. Bull., 1987,22:1195
    13. Racault C, Langlais F, Bernard C. On the Chemical Vapor Deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 Gas Mixtures: Part Ⅱ an experimentai approach. J. Mater. Sci., 1994, 29:5023
    14. Pampuch R, Lis J, Stobierski L, et al. Solid Combustion Synthesis of Ti3SiC2. J Eur Ceram Soc, 1989, 5:283
    15. Lis J, Pampuch R. Sinterable Ceramie Powders Prepared by SHS, Their Densifications and Final Products. Trans. Mater. Res. Soc. Jpn.-1994,14A: 603-608
    16. Lis, J., Miyamoto, Y, Pampuch, R. and Tanihata, K. Ti3SiC2-based materials prepared by HIP-SHS technique. Mater. Lett, 1995, 22,163-168
    
    
    17. Pampuch R, Lis J, Piekarczyk J, et al. Ti_3SiC_2-Based Materials Produced by Self-Propagating High Temperature Synthesis and Ceramic Processing, J. Mater. Synth. Process., 1993, 1:93
    18. Sun Z M, Zhou Y C. Synthesis of Ti_3SiC_2 Powders by a Solid-Liquid Reaction process. Scripts Materialia, 1999, 41: 61
    19. Zhou Y C, Sun Z M, Chen S Q and Zhang Y. In-situ hot pressing/solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramics. Mat. Res. Innovat., 1998, 30(2):142-146
    20. Zhou Y C, Sun Z M and Yu B H. Microstructure of Ti_3SiC_2 prepared by the in-situ hot pressing/solid-liquid reaction process. Z. Metallkd. 2000, 91(11): 937-941
    21. Li J F, Matsuli T, Watanabe R. Mechanical-Alloying-Assisted Synthesis of Ti_3SiC_2 Powder. J. Am. Ceram. Soc., 2002, 85(4), 1004-1006
    22. Okano T, Tong X H, Yano T. Synthesis and High-Temperature mechanical-Properties of Ti_3SiC_2. J. Mater. Sci., 1995, 98(2): 988-01007
    23. Tang K, Wang C A, Huang Y et al. Growth model and morphology of Ti_3SiC_2 grains. J Crystal Growth, 2001, 222:130
    24. Tang K, Wang C A, Huang Y et al. An X-ray diffraction study of the texture of Ti3SiC2 fabricated by hot pressing. J Europ Ceram Soc, 2001, 21:617
    25. Barsoum M W, El-Raghy T. Synthesis Characterization of a Remarkable CeramicTi_3SiC_2. J. Amer. Cer. Soc., 1996,79 (7):1953-1956
    26. Elraghy T, barsoum M W. Processing and Mechanical-Properties of Ti3SiC2-I, Reaction-Path and Microstructure Evolution. J. Amer. Cer. Soc., 1999, 82(10): 2849-2854
    27. Gao N F, Miyamoto Y, Zhang D. Dense Ti_3SiC_2 Prepared by Reactive HIP. J. Mater. Sci.,1999, 34 (18): 4385-4392
    28. Li J F, Sato F, Wantanabe R. Synthesis of Ti_3SiC_2 Polycrys-tals by Hot-lsostatic Pressing of the Elemental Powders. J. Mater. Sci. Lett., 1999, 18 (19): 1595-1597
    29. Radhakrishnan, R., Williams, J. J. and Akinc, M., Synthesis and high-temperature stability of Ti_3SiC_2. J. Alloys and Compd, 1999, 285, 85-88
    30.甘国友,陈敬超等.Ti-Si-C三元系化学势稳定性相图及其应用.昆明理工大学学报,2002,1(27)
    31.陈秀华,甘国友等.Ti-Si-C三元系组元化学位稳定相图.无机材料学报,2001,3(16)
    32.陈秀华,陈敬超,甘国友等.制备Ti_3SiC_2/SiC复合材料的动力学研究。云南大学学报(自然科学版),2002,24(1A)
    
    
    33. Gao N F, Lib J T, Zhange D, Miyamoto Y. Rapid synthesis of dense Ti3SiC2 by spark plasma sintering. J.Eur. Ceram. Soc., 2002, 22: 2365-2370
    34. Zhang Z F, Sun Z M, Hashimoto, and Abe T. A new synthesis reaction of Ti3SiC2 through pulse discharge sintering Ti/SiC/TiC powder. Scripta Materialia, 2001,45: 1461-1467
    35. Zhu J Q, and Mei B C. Effect of aluminum on the synthesis of Ti3SiC2 by by spark plasma sintering (SPS) from the elemental powders. J. Mater. Synth. Process., 2002, 10 (6) : 353
    36. Barsoum M W, El-Raghy T, Rawn C J, et al. Thermal Properties of Ti3SiC2. J. Phys. Chem. Solids, 1999,60:429-439
    37. EI-Raghy T, Barsoum M W, Zavaliangos A and Kalidindi S. Processing and Mechanical Properties of Ti3SiC2, Part Ⅱ: Effect of Grain Size and Deformation Temperature. J.Amer.Cer.Soc.,82, 1999,2855-2859
    38. Barsoum M W, El-Raghy T and Ogbuji L. Oxidation of Ti3SiC2 in Air. J. Eletrochem.Soc., 144, 1997: 2508
    39. Crossley A, Kisi E, Summers J W B and Mybra S. Ultra-low Friction for a Layered Carbide Derived Ceramies, Ti3SiC2, Investigated by Lateral Force Microscopy. J. Phys.D: Appl.Phys., 1999,32:632
    40. Barsoum M W, El-Raghy T. Synthesis Characterization of a Remarkable Ceramie-Ti3SiC2. J. Amer. Cer. Soc., 1996, 79: 1953-1956
    41. Finkel P, Barsoum M W, El-Raghy T. Low Temperature Dependencies of the Elastic Properties of Ti3Al11C18, Ti4AIN3 and Ti3SiC2. J.Appl.Phys., 2000, 87,1701-3
    42. Gilbert C J, Bloyer D R, Barsoum M W, El-Raghy T, et al. Fatigue-Crack Growth and Fracture Properties of Coarse and fine-Grained Ti3SiC2. ScriptaMater, 42,761-767(2000)
    43. El-Raghy T, Zavaliangos A, Barsoum M W, et al. Damage Mechanisms Around Hardness Indentations in Ti3SiC2. J.Amer, Cer. Soc, 80,513-516(1997)
    44. Farber L, Barsoum M W, Zavaliangos A, El-Raghy T. J. Am. Crram. Soc., 1997:78:1677
    45. Gilbert C J, Bloyer D R, Barsoum M W, et al. Fatigue-Crack Growth and Fracture Properties of Coarse and Fine-Grained Ti3SiC2. Scripta Materialia, 2000,42:761-767
    46. Low I M, Lee S K, Lawn B R, Barsoum M W. Contact Damage Accumulation in Ti3SiC2. J.Amer.Cer.Soc.,81, 1 ,225-228(1998)
    47. Yoo H-I, M. W. Barsoum and T. El-Raghy. T53SiC2 has negligibie thermopower. Nature, 2000, 407:581-582
    48. Radovic M, Barsoum M W, EI-Raghy T, et al. Tensile properties of Ti3SiC2 in the 25-1300℃ temperature range. Acta Materialia, 2000,48:453-459.
    
    
    49. Tznov N V, Barsoum M W. Synthesis and Characterization of Ti_3AlC_2. J Am Ceram Soc, 2000, 83:825
    50.孙晓冬,梅炳初,袁润章.Al含量对TiC自蔓延高温合成过程的影响.硅酸盐学报,1997,25(5):579
    51.刘金水,肖汉宁,舒震等.Ti-Al-C系热爆反应制备TiC/Al复合材料的研究.材料科学与工程,1998,16(3):64
    52.高濂,官本大树.放电等离子烧结技术.无机材料学报,1997,12(2):129-132.
    53. Sato F, Li J F and Watanabe R. Reaction synthesis of from mixture of elemental powders. Mater. Trans, JIM. 2000, 41: 605-609
    54.张东明,傅正义等.放电等离子烧结TiB_2过程中Pa第二峰研究.无机材料学报,2001,16(5):872-876
    55.张东明,傅正义.放电等离子加压烧结(SPS)技术特点及应用.武汉工业大学学报,1999,21(6),15-17.
    56.王玉成.TiB2-BN复相陶瓷的制备及性能研究.武汉理工大学博士论文,2002:12-42.
    57.刘大成,赵东旭.固溶体及其应用.中国陶瓷,1996,32(2):34-36
    58. Viala J C, Peillon N, Bosselet F, Bouix J. Phase equilibria at 1000℃ in the Al-C-Si-Ti quaternary system an experimental approach. Mater. Sci. Eng., 1997, A229:95-113
    59. Zhang Z F, Sun Z M, Hashimoto, and Abe T. Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti_3SiC_2 from Ti/Si/C powders. J Europ Ceram Soc,2002, 2957-2961.
    60.刘康时,黄励知,吴柏源等编.陶瓷工艺学,北京:中国建筑工业出版社,1980:193-195
    61. M. A. Pietzka, J. C. Schuster. Journal Phase Equilibration, 1994, 15:392
    62. Tzenov NV, Barsoum MW. Synthesis and characterization of Ti_3AlC_2. Journal of the America Ceramic Society, 2000, 83(4): 825-832
    63. Ivanovskii A L, Medvedeva N I. Electronic structure of hexagonal Ti_3AlC_2 and Ti3AlN2. Mendeleev Communications, 1999, (1): 36-38
    64. Myhra S, Crossley JAA, Barsoum MW. Crystal-chemistry of the Ti_3AlC_2 and Ti4AlN3 layered carbide/nitride phase's characterization by XPS. Journal of Physics and Chemistry of Solids, 2001, 62 (4): 811-817
    65. Zhou YC, Wang XH, Sun ZM, Chen SQ. Electronic and structural properties of the layered ternary carbide Ti3AlC2. Journal of Materials Chemistry, 2001, 11(9): 2335-2339
    
    
    66. HONG Xiaolin, MEI Bingchu, ZHU Jiaoqun, ZHOU Weibing. Effect of Silicon on the Fabrication of Ti2AlC Material by Spark Plasma Sintering Elemental Powders. Scripta Materialia (submited)
    67. Ke Tang, Chang-an Wang, Yong Huang, Qingfeng Zan. Growth model and morphology of Ti3SiC2 grains. Journal of Crystal Growth, 2001,222, 130-134
    68. 金志浩,高积强,乔冠军.工程陶瓷材料.西安交通大学出版社,2000,9:183-227
    69. W. D. Kingery, H. K. Bowen, D. R. Uhlmann. Introdation to ceramies. John. Wiley & Sons Inc., 1976
    70. M. W. Barsoum, M. Ali, T. El-Raghy. Processing and Characterization of Ti2AlC, Ti2AlN and Ti2AlC0. 5N0. 5. Met Mater. Trans., 2000,31A, 1857-1865
    71. N.V. Tzenov, M.W. Barsoum. J. Am. Ceram. Soc. 2000, 83,825
    72. X. H. Wang, Y. C. Zhou. Acta. Mater, 2002, 50,3143
    73. C. Racault, F. Langlais, R. Naslain. J. Mater. Sci, 1994,29, 3384
    74. Li SB, Cheng LF, Zhang LT. Oxidation behavior of Ti3SiC2 at high temperature in air. Materials Science and Engineering A-structure Materials Properties Microstructure and Processing, 2003,341 (1-2) : 112-120
    75. X. Tong, T. Okano, T. Iseki, T. Yano. J. Mater. Sci., 1995, 30,3087
    76. Zhimei Sun, Yanchun Zhou, Meishuan Li. Oxidation behavior of Ti3SiC2-based ceramie at 900-1300℃ in air. Corrosion Science, 2001,43, 1095-1109
    77. Z. Sun, Y. Zhou and M. Li. Cyclic-Oxidation Behavior of Ti3SiC2-Base Material at 1100℃. Oxidation of Metals, 2002, 57, 379-394
    78. 宋世谟,庄公惠,王正烈等编.物理化学,北京:高等教育出版社,1992,5
    79. X. H. Wang, Y. C. Zhou. Oxidation behavior of Ti3AlC2 at 1000-1400℃ in air. Corrosion Science, 2003,45, 891-907
    80. Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2 powders in flowing air. Journal of Materials Chemistry, 2002,12 (9) : 2781-2785
    81. U. R. Evans, in Internai Stresses in Metals and Alloys. London: Institute of Metals, 1948: 291-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700