用户名: 密码: 验证码:
氧化锌矿物碱法提取新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着硫化锌矿资源的日趋紧缺,氧化锌矿资源正逐步得到开发和利用。针对氧化锌矿物中异极矿难于处理的现状,提出了碱法处理异极矿的新工艺,并对其做了系统的条件和理论研究。其具体研究内容如下:
     (一)通过绘制Zn-Si-H2O系的lgC-pH图,分析了苛性钠处理异极矿的热力学条件,得知,异极矿在碱浸出过程中,锌、硅分别以Zn(OH)42-和H2SiO42-的形式进入溶液。苛性钠处理异极矿的动力学研究表明,浸出过程受化学反应控制,其反应活化能E=45.7 kJ/mol,反应级数n=1.4。
     (二)设计了碱法处理低硅型异极矿的工艺流程。首先在热球磨中对低硅型异极矿进行苛性钠浸出,并在浸出的同时加CaO抑制矿物中硅的浸出,在CaO用量为理论用量的1倍、NaOH浓度为4.5mol/L、浸出温度为110℃、L:S=10:1、浸出时间1h的条件下,锌的浸出率可达到93%,而只有7%左右的Si02被浸出。然后在浸出液中添加Na2S固体,使S2-与溶液中的ZnO22-反应生成ZnS沉淀,而Na+将与溶液中的OH-结合生成NaOH,在反应温度为60℃、S/Zn摩尔比为0.95:1、时间为15分钟的条件下,沉锌率为93%,沉锌母液返回再次浸矿,在NaOH浓度为5 mol/L、CaO用量为理论用量的1.25倍、浸出温度为110℃、L:S=10:1、浸出时间1h的条件下,锌的浸出率维持在91%左右,而其它元素在循环浸出过程中不会积累。
     (三)设计了碱法处理高硅型异极矿的工艺流程。首先在热球磨中对高硅型异极矿进行苛性钠浸出,在NaOH浓度为8mol/L、浸出温度为130℃、L:S=8:1、浸出时间1h的条件下,锌的浸出率为95%,Si02的浸出率为64%。然后在浸出液中添加Na2S固体,在反应温度为60℃、S/Zn摩尔比为0.98、时间为15分钟的条件下,沉锌率可达到95%。接着在沉锌母液中添加CaO固体,在反应温度为75℃、CaO用量为理论量的1.5倍、时间0.5h的条件下,沉硅率达到96%。沉硅母液返回再次浸矿,在氢氧化钠浓度为8.5mol/L、浸出温度为130℃、L:S=8:1、浸出时间1h的条件下,锌的浸出率维持在93%左右,未发现其它元素在循环浸出过程中积累。
With the increasing shortage of Zinc sulfide ore, Zinc oxide resources are gradually developed and utilized. Aiming at the status that hemimorphite in Zinc oxide mine is difficult to deal with, we proposed a new alkaline process to treat hemimorphite, and carried out systematic conditions and theoretical studies. The specific contents are as follows:
     1). Drawed the lgC-pH diagram of Zn-Si-H2O system, and analized the thermodynamic conditions with caustic soda to treat hemimorphite. We can learn that in alkaline leaching process of hemimorphite, Zn and silicon entered into solution with Zn (OH)42- and H2SiO42- respectively. We also studied its dynamics mechanism, and determined its activation energy E= 45.7 kJ/mol, the reaction order n= 1.4, which showed that the leaching process was controlled by chemical reaction.
     2). Designed the process flow with Alkaline to treat low-silicon hemimorphite. First of all, extract Zn in alkali solution from low-silicon hemimorphite in a hot ball mill reactor. In order to control the leaching of SiO2, CaO was added into NaOH solution during the leaching process. When CaO dosage is 1 time of the theoretical quantity, temperature is 110℃, NaOH concentration is 4.5 mol/L, liquid-solid ratio (L/S) is 10:1 and leaching time is 1h, the recovery of Zn is 93%, but the decomposition rate of SiO2 is only 7.3%. And then, add the solid Na2S into leaching solution, in which the ion of S2- and ZnO22- will be formed as the precipitation ZnS, and the ion of Na+ will be formed as NaOH combined with OH-. When the reaction temperature is 60℃, the molar ratio of S to Zn is 0.95:1 and the reaction time is 15 minutes, the precipitation rate of Zn is 93%.The mother liquor after Zn precipitation will be sent to leach Zn again. When the CaO dosage is 1.25 times of the theoretical quantity, temperature is 110℃, NaOH concentration is 5 mol/L, liquid-solid ratio (L/S) is 10:1 and leaching time is 1h, the recovery of Zn remains around 91%, but other elements are not accumulated during the leaching process.
     3). Planed the process of Zn alkali extraction from high-silicon hemimorphite. Firstly, extract Zn in alkali solution from high-silicon hemimorphite in a hot ball mill reactor. When the reaction temperature is 130℃, NaOH concentration is 8 mol/L, liquid-solid ratio (L/S) is 8:1 and leaching time is 1h, the recovery of Zn is 95% and the decomposition rate of SiO2 is 64%. Then add the solid Na2S into leaching solution. When the reaction temperature is 60℃, the molar ratio of S to Zn is 0.98:1 and the reaction time is 15 minutes, the precipitation rate of Zn is 95%. After that, add the solid CaO into the mother liquor. When the reaction temperature is 60℃, CaO dosage is 1.5 times of the theoretical quantity and the reaction time is 1 h, the desilication rate is 96% The desilicated mother liquor will be sent to leach Zn again. When the reaction temperature is 130℃, NaOH concentration is 8.5mol/L, liquid-solid ratio (L/S) is 8:1 and leaching time is 1h, the recovery of Zn remains about 93%, but other elements are not accumulated during the leaching process.
引文
[1]刘琰,邓军.表生异极矿成因研究及其找矿意义[J].矿物岩石,2005,25(2):1-6
    [2]G.A.Norton, C.G.Groat. Mineral Commodity Summaries 2004[M]. Washington: U.S. Government Printing Office,2004.188-189
    [3]戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005(3):15-23
    [4]王军.锌市场评述[J].矿冶工程,2007,16(3):55-57
    [5]贾艺锡等.矿产资源经济区划研究[M].北京:地质出版社,1999
    [6]雷桂萍.锌工业近十年的统计与发展趋势分析[J].上海有色金属,2001,22(4):175-180
    [7]冯君从.今后五年中国的锌工业及市场前景[J].世界有色金属,2000,(5):4-8
    [8]段秀梅,罗琳.氧化锌矿浮选现状评述[J].矿冶,2000,9(4):47-51
    [9]张覃,唐云.氧化锌矿石活化浮选行为的观察[J].贵州工业大学学报,1998,19(2):89-91
    [10]张心平.氧化铅锌矿石浮选新药剂的应用研究[J].矿冶工程,1996,5(3):40-45
    [11]朱建光.浮选药剂的进展[J].国外金属矿选矿,1999,(4):30-36
    [12]汪伦.有机鳌合剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1999,23(2):25-28
    [13]汪伦.有机活化剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1998,(4):21-23
    [14]王资.有机活化剂在菱锌矿浮选中的活化作用[A].铅锌矿选冶学术会议论文集[C].1989.
    [15]赵景云.水杨羟肟酸浮选菱锌矿和硫酸铅试验[J].有色金属,1991,(4):27-32
    [16]杨晓铃.二烃基二硫代磷酸按的捕收性能[J].山东冶金,1997,(4):32-34
    [17]刘开宇,张平民.新型捕收剂CSFA的研究[J].矿冶工程,2001,10(1):31-35
    [18]M. P.Barbaro. Comparison of Pb/Zn selective collectors using statistical methods[J].Minerals Engineering,1999,12 (4):356-366
    [19]A. M.Marabini.优先浮选氧化铅锌矿的新型合成捕收剂[A].肖致培译.第16届国际选矿会议论文集[C].1988
    [20]羊依金,刘邦瑞,冷娥.羟肟酸活化异极矿浮选的研究[J].有色金属(选矿部 分),1992(2):5-8
    [21]A. M. Marabini,张心平.抑制剂对氧化锌的浮选的影响[J].国外金属选矿1995,(8):16-24
    [22]吕金铃.矿友-321新型起泡剂的开发应用[J].有色金属(选矿部分),1999,(6):19-21
    [23]王湘英.复合新型起泡剂24号油的开发利用[J].广东有色金属,1998,(3):54-57
    [24]A. M. Marabini.氧化铅锌矿的浮选[J].国外金属矿选矿,1990,(7):1-11
    [25]张建树.提高云南昭通地区铅锌矿回收率的工艺技术研究[J].矿产资源综合利用,1999,(2):1-4
    [26]马忠臣.某氧化铅锌矿石选别工艺研究[J].有色金属矿冶,1998,(6):15-18
    [27]杜强.某氧化铅锌矿选矿工艺研究[J].云南冶金,1998,27(2):24-29
    [28]王淑秋.难选氧化铅锌矿浮选工艺研究[J].有色金属(选矿部分),1998,(3):17-20
    [29]叶雪均.氧化铅锌矿石选矿工艺研究[J].南方冶金学院学报,1999,20(1):15-20
    [30]黄廷选.铅锌混合矿浮-重工艺研究[J].有色金属,1994,(03):10-11
    [31]李金荣.铅锌氧化矿浮选工艺研究述评[J].国外金属矿选矿,1981,(1):27-31
    [32]召明武.氧化铅锌矿的浮选试验研究[A].铅锌矿选冶学术会议论文集[C].1989
    [33]吴晓清.电化学法分离多金属矿浮选混合精矿[J].国外选矿快报,1996,(23):10-14
    [34]胡岳华.菱锌矿/方解石胺浮选溶液化学研究[J].中南工业大学学报,1995,(5): 590-594
    [35]M.Bezuidenhout, Van Deventer, D.W.Moolman. The identification of perturbations in a base metal flotation plant using computer vision of the froth surface [J].Minerals Engineering,1997,10(10):1057-1073
    [36]王凤琴.国内外氧化锌矿的处理方法[J].有色矿冶,1994,10(1):31-35
    [37]韩昭炎.氧化锌矿生产氧化锌的实践[J].有色金属(冶炼部分),1988,(4):7-10
    [38]李时辰.回转窑高温还原挥发处理难选低品位氧化锌矿.云南冶金(县乡矿业版),1992(4):13-21
    [39]杜挺,邓开文.钢铁冶炼新工艺[M].北京:北京大学出版社,1994
    [40]伊藤聪,阿座上竹四.资源素材[J].1988,104(5):297-402
    [41]W. J.Rankin, S.Wright. The reduction of Zn from slaps by an Iron carbon melt[J].Metallurgical and materials transaction,1990,21(10):885-897
    [42]J. R. Donald, C.A.Pickles. A kinetic study of the reaction of Zn oxide with iron powder[J]. Metallurgical and Materials Txai saction,1996,27 (6):363-373
    [43]张丙怀,郭兴忠.冶金含锌铅粉尘中锌铅分离理论及实验工艺研究.有色金属(冶炼),2002(1):7-12
    [44]梅光贵,王德润,周敬元等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [45]李军旗.湿法处理高硅氧化锌矿的工艺研究[J].湿法冶金,1999,60(4):32-35
    [46]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,27(5):31-35
    [47]刘石秀.低品位矿石堆浸机理及絮状物成因的探讨[J].金属矿山,1999,274(4):52-55
    [48]刘凤林,金作美,王励生.高硅硫化锌精矿氧化焙烧中硅酸锌生成反应的动力学[J].中国有色金属学报,2001,11(3):514-517
    [49]憔宁,秦念华.电锌生产中锌焙砂浸出工艺研究[J].湿法冶金,2001,77(1):22-24
    [50]Julio Cezar Balarini, Ludmila de Oliveira Polli, Tania Lucia Santos Miranda, Roberto Machado Zica de Castro, Adriane Salum. Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of Zn [J]. Minerals Engineering,2008(21):100-110
    [51]R.Dehghan, M.Noaparast, M.Kolahdoozan. Leaching and kinetic modelling of low-grade calcareous sphalerite in acidic ferric chloride solution[J]. Hydrometallurgy,2009 (96):275-282
    [52]S.Aydogan, A.Aras, M.Canbazoglu. Dissolution kinetics of sphalerite in acidic ferric chloride leaching [J]. Chemical Engineering Journal,2005 (114):67-72
    [53]莫鼎成,关影莲.高硅硫酸锌溶液脱硅的方法[J].中国有色金属学报,1994,4(4):38-40
    [54]E.A.Abdel-Aal. Kinetics of Sulfuric acid leaching of low-grade Zn silicate ore[J]. Hydrometallurgy,2000,55(3):247-254
    [55]C.Caiqiao, W.U.Xiangrui.Recovery of Zn from oxidized ore by direct leaching with sulfuric acid[J]. Proceedings of the First International Conference on Hydrometallurgy, Beijing, China.1998,12-25:155-159
    [56]E.A.Abdel-Aal.Direct leaching of oxidized Zn ore [J]. in:The Institution of Engineers(India),IE(Ⅰ)Journal-MM.1997,78:25-29
    [57]M.G.Bodas.Hydrometallurgical treatment of Zn silicate ore from Thailand[J]. Hydrometallurgy,1996,40:37-40
    [58]丘泰球,胡松青,谢雄飞等.超声促进胶体聚沉作用的研究[J].应用声学,1998,17(6):32-34
    [59]江锋,周中平,王焕福.地下水与脱盐水中胶体硅的性状研究[J].工业水处理,1996,16(1):28-29
    [60]刘昌玉.对工业用水降硅处理的探讨[J].工业水处理,1999,19(1):37-38
    [61]倪健.高浊度尾矿水处理的探讨[J].有色矿山,1998(4):48-50
    [62]郑若锋.浓硫酸熟化水浸法由硅锌矿制硫酸锌[J].四川化工,1997,(3):22-24
    [63]贾艺锡,陈磊.矿产资源经济区划研究[M].北京:地质出版社,1999
    [64]刘三军等.低品位氧化锌矿石的碱法浸出[J].湿法冶金,2005,24(1):23-25
    [65]彭清静,黄诚.氨浸菱锌矿制取活性氧化锌[J].化学世界,1996(4):294-296
    [66]J.W. Keck, D.H. Carlson, et al. Leaching composites of five plating wastes with ammonium carbonate[J]. In:Warrendale, eds. Proc. Conf. EPD Congress'90, Anaheim:The Minerals, Metals and Materials Society,1990.529-537
    [67]W.Perry. Refining of Zn silicate ores by special leaching techniques [J]. Chem. Eng,1966(73):182-184
    [68]S.S.Anderson, M.J. Meixner. The ammoniacal MAR process:recovery of copper, nickel and Zn from neutralisation residues by ammoniacal leaching [J]. AUFBEREIT-TECH,1979,20(5):26-48
    [69]彭清静.氨浸-碳化法制活性氧化锌[J].化工生产与技术,2001(6):15-17
    [70]J.L.Limpo, A.Luis, C.Gomez. Reactions during the oxygen leaching of metallic sulphides in theCENIM-LNETI process [J]. Hydrometallurgy,1993(28):163-78
    [71]M.Olper, M.Maccagni. Electrolytic Zn production from crude Zn oxides with the EZnx Process[J].2000 TMS Fall Extraction & Processing.2000,23(4):230
    [72]M.Olper. EZINEX process:A new and advanced way for electrowinning Zn from a chloride solution [J]. Proceedings of the International Symposium on Zn. Australasian Inst of Mining & Metallurgy.1993(17):491-500
    [73]唐谟堂,欧阳明.硫氨法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121
    [74]W.W.Anderson, Rajcevic HP, W.R.Opie. Pilot plant operation of the caustic leach-electrowin Zn process [J]. TMS-AIME,1981(1):81-52
    [75]J.G. Eacott, M.C. Robinson, E.Busse, et al.Techno-economic feasibility of Zn and lead recovery from electric arc furnace baghouse dust [J]. Can Min Metall Bull.1984,77(869):75-81
    [76]J.Frenay, S. Ferlay, J.Hissel. Zn and lead recovery from EAF dusts by caustic soda process [J]. In:Disposal, Recycling and Recovery of Electric Furnace Exhaust Dust, Iron and Steel Society, AIME,Warrendale,1987:171-175
    [77]M. Stamatovic, S. Milosevic, N. Canic, et al. Recovery of Zn from blast furnace dust of metallurgical company in Yugoslavia [J]. In:Proc. Conf. Productivity and Technology in the Metallurgical Industries, Sept.17-22, The Minerals, Metals and Materials Society, Warrendale,1989:651-658
    [78]M.L.Stamatovic, N.J. Themelis. Recovery of Zn from Ironmaking dusts by NaOH leaching [J]. In:Proc. Conf. Extraction and Processing for the Treatment and Minimization of Wastes, California,27 February-3 March, The Minerals, Metals and Materials Society, Warrendale,1994:533-542
    [79]F.J. Dudek, E.J. Daniels, Morgan WA. Recycling Zn by deZning steel scrap [J]. In:Proc. Conf. Zn and Lead'95,22-24 May 1995, Sendai, Japan, Mining and Minerals Processing Institute of Japan,1995.557-565
    [80]ZHAO youcai, Robert Stanforth. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores [J]. Hydrometallurgy,2000(56):237-249
    [81]张承龙.含锌危险废物碱法浸出处理研究[J].铀冶炼,2008,27(1):53-56
    [82]Jean Frenay. Leaching of oxided Zn ores in various media[J]. Hydrometallurgy, 1985(15):243-253
    [83]A.L.Chen, Z.W.Zhao, S.Long, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite Zn oxide ore [J]. Hydrometallurgy, 2009(97):228-232
    [84]S.Gurmen, M.Emre.A laboratory-scale investigation of alkaline zinc electro winning[J]. Minerals Engineering 2003(16):559-562
    [85]S.Pierre, J. Piron.Electrowinning of zinc from alkaline solutions [J]. Journal of Applied Electrochemistry 1986(16):447-456
    [86]孙培梅,李洪桂,李运姣等.机械活化苛性钠分解柿竹园白钨矿的研究[J].中南工业大学学报,1999,30(3):248
    [87]李洪桂,刘茂盛,孙培梅等.机械活化碱法处理黑白钨混合矿及低品位白钨矿的研究[J].见:中国有色金属学会主编.中国有色金属学会第二届学会论文集.北京:中国有色金属学会,1991.240-260
    [88]孙培梅,李洪桂,刘茂盛等.碱法热球磨分解白钨细泥的研究[J].稀有金属,1990(2):85-87
    [89]温元凯, 邵俊.离子极化导论[M].合肥:安徽教育出版社,1985:262-267
    [90]伊赫桑·巴伦.纯物质热化学手册[M].程乃良译.北京:科学出版社,2003
    [91]迪安JA.兰氏化学手册[M].尚久方等译.北京:科学出版社,1991
    [92]林传仙, 白正华, 张哲儒.矿物及有关化合物热力学数据手册[M].北京:科技出版社,1985
    [93]G.S. James. Lange's Handbook of Chemistry [M]. New York:McGraw-Hill, 1999
    [94]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987,93
    [95]陈爱良,赵中伟,贾希俊等.氧化锌矿综合利用现状与展望[J].矿冶工程,2008,28(6):62-66
    [96]李小斌,徐华军,刘桂华等.氧化铝熟料溶出过程中Si02的行为[J].过程工程学报,2006,6(3):431-434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700