用户名: 密码: 验证码:
铁酸锌型含银低品位氧化锌矿处理新工艺与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在资源紧张和金属价格上涨的情况下,低品位、难处理矿的开发成为我国有色金属工业资源战略的一个重要方向。本文以含银的铁酸锌型低品位氧化锌矿为研究对象,采用现代测试技术,结合机理分析和实验研究,系统深入地研究了锌、铅和银综合提取的工艺和理论。
     本论文提出了低温焙烧-水浸提锌,浸出液除铁后返锌冶炼系统净化工序,水浸渣再氯盐一步浸出铅银的新工艺。论文首先研究了焙烧过程的热力学,对含锌化合物与硫酸反应进行热力学分析,主要涉及铁酸锌、氧化锌、硅酸锌与硫酸反应的可能性,为低品位氧化锌矿焙烧-水浸提锌工艺的提出及研究提供理论依据;在锌提取阶段,比较直接酸浸和焙烧-水浸两种方案发现,采用焙烧-水浸提锌效果最好。通过XRD、 SEM-EDS等测试分析,明确焙烧前后、水浸后主要元素的物相变化;实验研究了焙烧温度、焙烧时间、硫酸用量、水浸液固比、水浸时间、水浸温度和搅拌速度对锌浸出率的影响及该过程中其它金属元素的行为。结果表明,焙烧参数对锌浸出率影响较大,水浸参数影响较小。在下列条件下锌的浸出率达到80%以上:硫酸用量为矿质量的70%,焙烧时间和温度分别为2.5h和523K;焙砂在室温和液固比为4时浸出0.5h。对锌浸出液采用双氧水氧化中和除铁,除铁效果较好。
     对体系中银和铅的相关固相化合物在氯盐体系的溶解特性进行了研究。运用双平衡原理,确定了体系中各种离子的平衡浓度,绘制了浓度关系图。这为铅银的氯盐一步浸出工艺提供了理论依据。
     研究了铅银的氯盐一步浸出动力学机理,该浸出过程是典型的液固多相反应,通过试验发现其符合未反应核收缩模型,当搅拌速率大于400r/min时,排除了外扩散对浸出过程的控制;采用化学反应控制和内扩散控制模型对浸出反应进行拟合,确定了速率控制步骤为内扩散控制;在实验基础上,通过计算得到铅、银浸出的表观反应活化能分别为26.8kJ·mol-1和26.5kJ·mol-1,浸出过程受温度影响较大。铅银浸出的动力学半经验方程为:
     根据动力学分析可知,铅、银浸出反应的速率和粒径成反比,与氯盐浓度成正比。
     研究了水浸渣中铅银的氯盐一步浸出工艺。考察了NaCl浓度、添加剂用量、液固比、酸度和浸出时间对浸出率的影响。结果表明:加入添加剂对铅浸出率没有影响,但可以提高银的浸出率。铅、银的浸出率随氯盐浓度、液固比的增加而增加;盐酸加入量对铅的浸出影响较小,对银的浸出影响较大。温度在60℃以下时,铅、银的浸出率较低。铅银氯盐一步浸出的最佳工艺条件为:反应温度90℃,NaCl浓度390g/L,添加剂用量15mL/10g渣,液固比7:1,HC1加入量3mL/10g渣,浸出时间3h。该条件下铅的浸出率达到95%,银的浸出率达到90%。
With the depletion of ores and rapid rising of the metal price, the processing of low grade, difficult processing ore becomes an important strategic aspect of the nonferrous metal industry. Theoretical and technical studies on the extraction of the valuable metals from low grade zinc ores in details were carried out with the modern testing technology and some meaningful conclusions were obtained.
     A new process of "low temperature roasting-water leaching, leaching solution returned to purifying process in zinc smelting system after removal of iron, chloride leaching of silver and lead from slags after water-leaching" was proposed. The thermodynamics was studied which was mainly related to the possibility of reactions about franklinite, zinc oxide, zinc silicate and sulfuric acid. This will provide the theoretical basis for the research on the processing of low grade zinc oxide ore by roasting-water leaching. At the stage of zinc extraction, according to mineral analysis by XRD、EDS and SEM, the phasa transitions were determined before and after roasting and water-leaching; the effects of various parameters, such as roasting temperature, roasting time, the amount of sulfuric acid, leaching time, leaching temperature, and liquid/solid ratio on zinc leaching rate were studied. Systematic studies indicate that high zinc leaching rate can be achieved under the following conditions:sulfuric acid addition,70%weight of zinc oxide ore; duration,2h; temperature,250℃at roasting stage; and room temperature, liquid/solid ratio4, and duration time0.5h at leaching.
     In this work, the dissolving characteristic and the condition converting to another phase of each phase in the systerm were studied; the equilibrium concentrations of various ions were determined based on simultaneous balance principle and charge muutrality in Ag2SO4-PbSO4-HCl-NaCl-H2O system. These provide theoretical basis for chloride leaching of silver and lead simultaneously.
     The dissolution kinetics of silver and lead by chloride simultaneously from residues after zinc extraction have been investigated.The dissolution kinetics followed a shrinking core model, with inter-diffusion through gangue layer as the rate determining step. This finding is in accordance with the apparent activation energy (Ea) of26.8kJ/mol (Ag) and26.5kJ/mol (Pb), and a linear relationshipbetween the rate constant and the reciprocal of squared particle size. The order of reaction with respect to sodium chloride concentration, temperature andparticle size were also achieved. The rate of reaction based on diffusion-controlled processcan be expressed by semi-empirical equations.
     The process of treating the residue after zinc extraction by chloride leaching was developed. The effects of experimental conditions, such as reaction temperature, sodium chloride concentration, liquid-solid ratio, acidity as well as reaction duration, were investigated. The results show that the additive does not affect leaching rate of lead while it can increase leaching rate of silver significantly. The leaching rate of silver and lead were augmented with increasing the concentration of sodium chloride and liquid-solid ratio; the amount of hydrochloric acid has little influence on the lead extraction, but has more effect on that of the silver. The optimum process conditions are obtained, which are leaching temperature90℃, sodium chloride concentration390g/l, additive amount15ml/10g residue, liquid-solid ratio7:1, acidity3ml/10g residue, time3h. Under these conditions leaching rates of lead and silver can reach about95%and90%.
引文
[1]U S Geological Survey. Mineral Commodity Summaries [M]. Washington: Government Printing Office,2010:184-185.
    [2]戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005,3:15-23.
    [3]U S Geological Survey. Mineral Commodity Summaries [M]. Washington: Government Printing Office,2010:88-89.
    [4]雷力,周兴龙,文书明等.我国铅锌矿资源特点及开发利用现状[J].矿业快报,2007,9:22-23.
    [5]U S Geological Survey. Mineral Commodity Summaries[M]. Washington: Government Printing Office,2010:146-148.
    [6]邓听.全球铅锌资源现状[J].中国铅锌锡锑,2008,11:41-46.
    [7]葛振华.我国铅锌资源现状及未来的供需形势[J].世界有色金属,2003,9:15-19.
    [8]李盛霖.中国的资源形势和发展政策[J].中国高新技术企业,2005,5:10-12.
    [9]戴自希,张家睿.世界铅锌资源和开发利用现状[J].世界有色金属,2004,3:22-29.
    [10]Noorton G A, Groat C G. Mineral Commodity Summaries 2004[M]. Washington:U. S. Government Printing Offices,2004,188-189.
    [11]谭铁军,肖功明.中国铅锌原料供应战略探讨[J].世界有色金属.2000,7:14-16.
    [12]肖松文,肖骁,刘建辉,等.二次锌资源回收利用现状及发展对策[J].中国资源综合利用,2004,2:19-23.
    [13]任巍,高帆,王殿茹.矿产资源紧缺与我国矿产资源战略体系的构建[J].中国国土资源经济,2005,5:4-16.
    [14]左仁广.解决资源危机矿山的策略与方法[J].中国矿业,2005,14(7):44-47.
    [15]罗大锋.当代中国矿产资源开发存在的问题及对策[J]中国工程科学,2005,7(增刊):49-53.
    [16]马永刚.铅锌精矿短缺制约我国铅锌工业长足发展[J].世界有色金属,2002,2:14-15.
    [17]李晓敏,彭晓蕾.元素赋存状态研究对于矿产资源勘探开发之重要意义[J].吉林地质,2001,20(3)B:46-48.
    [18]陈代雄.复杂多金属硫化矿中铜铅浮选分离工艺研究[J].有色金属(矿冶部分)1997,2:8-12.
    [19]丘光玫.铅锌多金属硫化矿选矿工艺流程研究[J].矿产保护和利用,1996,10(5): 25-28.
    [20]邱廷省,周源,罗先平.复杂难选高氧化率铅锌硫化矿石浮选工艺研究[J].有色金属(选矿部分),2003,2:37-41.
    [21]刘志斌,朱从杰,张旭东,等.提高云南某铅锌矿回收率的选矿工艺研究[J].有色金属(选矿部分).2004,3:5-9.
    [22]Massacci P. Factorial experiments for selective leaching of zinc sulphate in ferric sulphate media[J]. International Journal of Mineral Processing,1998(4):213-224.
    [23]Janusz M, Szymula M, Szczypa J. Flotation of synthetic zinc carbonate using potassium ethylxanthate[J]. International Journal of Mineral Processing,1983, 2(11):79-88.
    [24]Marabini A M, Cozza C, Castro V. D, Polzonetti G An X-ray photoelectron spectroscopy (XPS) study of the interaction of mercapto-benzo-thiazole with cerussite[J]. International Journal of Mineral Processing,1992,1(34):23-32.
    [25]谭欣,李长根.国内外氧化铅锌矿浮选研究进展[J].国外金属矿选矿,2000,37(4):7-14.
    [26]赵福刚.我国铅锌矿选矿技术现状[J].有色矿冶,2007,23(6):20-25.
    [27]吕金铃.矿友-321新型起泡剂的开发应用[J].有色金属(选矿部分),1999,(6),19-21.
    [28]张心平.氧化铅锌矿浮选工艺研究[J],矿冶,1996,(4):40-46.
    [29]汪伦.有机活化剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1998,(4):21-23.
    [30]陈晔.阳离子胺类捕收剂浮选异极矿氧化锌及其作用机理研究[D].南宁:广西大学,2006.
    [31]赵景云.水杨轻酸浮选菱锌矿和硫酸铅试验[J].有色金属,1991,(4):32-34.
    [32]杨晓铃.二烃基二硫代磷酸钱的捕收性能[J].山东冶金,1997,(4):32-34.
    [33]刘开宇,张平民.新型捕收剂CSFA的研究[J].矿冶,2001,10(1):31-35.
    [34]Barbaro M P. Comparison of Pb/Zn selective collectors using statistieal methods[J]. Minerals Engineering,1999,12(4):356-366.
    [35]Marabini A M,张心平.抑制剂对氧化锌的浮选的影响[J].国外金属选矿,1995,(8):16-24.
    [36]王资,杨敖.有机活化剂在菱锌矿浮选中的活化作用[J].有色金属(选矿部分)1996,3:13-18.
    [37]汪仑,冷娥,毕兆鸿,等.有机螯合剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1998,123(2):25-28.
    [38]段秀梅,罗琳.氧化锌矿浮选现状评述[J].矿冶,2000,9(4):47-51.
    [39]王淑秋,罗琳,张心平等.难选氧化铅锌矿浮选工艺研究[J].有色金属(选矿部分),1998,(3):17-20.
    [40]Marabini A M.氧化锌矿的浮选[J].国外金属矿选矿,1990,(7):1-11.
    [41]张建树.利用提高云南昭通地区锌矿回收率的工艺技术研究[J].矿产资源综合,1999,(2):1-4.
    [42]马忠臣.某氧化锌矿石选别工艺研究[J].有色金属矿冶,1998,(6):15-18.
    [43]杜强.某氧化锌矿选矿工艺研究[J].云南冶金,1998,27(2):24-29.
    [44]王淑秋.难选氧化锌矿浮选工艺研究[J].有色金属(选矿部分)1998,(3):17-20.
    [45]叶雪均.氧化锌矿石选矿工艺研究[J].南方冶金学院学报,1999,20(1):15-20.
    [46]李金荣.铅锌氧化矿浮选工艺研究述评[J].国外金属矿选矿,1981,(1):27-311.
    [47]邵明武.氧化锌矿的浮选试验研究[C].锌矿选冶学术会议论文集,1989.
    [48]吴晓清.电化学法分离多金属矿浮选混合精矿[J].国外选矿快报,1996,(23):1O-14.
    [49]胡岳华.菱锌矿/方解石胺浮选溶液化学研究[J].中南工业大学学报,1995,(5):590-594.
    [50]Bezuidenhout M, VanDeventer D W. The identification of Perturbations in abase metal flotation plant using computer vision of the forth Surface [J]. Minerals Engineering,1997,10(10):1057-1073.
    [51]石道民,杨敖,徐晓军,等.氧化铅锌矿的浮选[M].云南科技出版社,1996.
    [52]方启学.西部氧化铅锌资源提取基本思路探讨[J].矿冶,2002,11(增刊):75-79
    [53]熊文良,童雄.云南铅锌工业可持续发展面临的问题与对策[J].国外金属矿选矿2003,(7):23-26.
    [54]丁玉仙.兰坪铅锌矿南厂灰岩氧化矿选矿工艺研究[J].云南冶金,1990,(3):3-6.
    [55]邝镇国.铅锌矿选冶学术会议论文集[C].中国有色选矿学术委员会,1989:1-9.
    [56]徐晓军,周廷库.有色金属矿产资源的开发及加工技术[M].昆明:云南科技出版社,2000.
    [57]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌[M].实用技术:13-21.
    [58]谢大元.锌挥发窑渣选银试验研究[D].中南大学.2004:12-15.
    [59]王忠实.中国锌冶炼现状[J].有色冶炼,1996(6):1-5.
    [60]JIocKyTOB Φ M著.曾广诜,刘崇志,译.铅锌冶金学[M].北京,冶金工业出版社.1960.
    [61]赵天从.重金属冶金学[M].北京:冶金工业出版社,1981:99-105.
    [62]谭晓明.提高威尔兹法铟挥发率的生产实践[J].湿法冶金.2001(4):1O-11.
    [63]王洪江,沈立俊,李波,等.锌渣烟化炉连续吹炼的实验研究[J].中国有色冶金,2005,(3):37-39.
    [64]Nakamura T, Iton H, Takasu T. Fundamentals of the pyrometallurgical treatment of zinc leach residue[C]. Proc.2nd International Symposium of Quality in Noon-Ferrous Pyrometallurgy,1995:341-355.
    [65]赵敦富,潘国.旋涡炉熔炼蒸馏残渣的生产实践[J].有色冶炼,1991,5:21-25.
    [66]未立清.利用旋涡炉处理锌浸出渣的试验研究[J].有色矿冶,2004(6):16-19.
    [67]董铁红.利用旋涡炉工艺处理锌冶炼残渣[J].节能.2009,(6):37-39.
    [68]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分).2003,(2):20-23.
    [69]刘特明.电炉炼锌工艺实践与探讨[J].有色冶炼,1998,(5):11-15.
    [70]李龙生.电炉炼锌工艺及炉龄问题的探讨[J].有色金属(冶炼部分),2001,(1):14-15.
    [71]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003,2:20-23.
    [72]Takewaki M, Kubota H. Zinc-lead smelting and refining at Sumitomo Harima Works[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1995,12(1):77-95.
    [74]郭兴忠,张丙怀,阳海彬,等.氧化锌矿火法处理新工艺-铁浴熔融还原法[J].有色冶炼,2002(2):18-22.
    [75]郭兴忠,张丙怀,阳海彬,等.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程,2003,23(1):57-60.
    [76]Rankin W J, Wright S. The reduction of zinc from slags by an Iron-cabon melt[J]. Metallurgical and materials transactions B,1990,21B(10):885-897.
    [77]赵中伟,龙双,陈爱良,等.难选高硅型氧化锌矿机械活化减法浸出研究[J].中南大学学报:自然科学版,2010,41:1246-1251.
    [78]Zhao Y, Standforth R. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores[J]. Hydrometallurgy,2000,56:237-249.
    [79]Feng L, Yang X, Shen Q, etal. Palletizing and alkaline of powdery low grade zinc oxide ores[J]. Hydrometallurgy,2007,89:305-310.
    [80]Yang Sheng-hai, Tang Mo-tang. Thermodynamics of Zn(II)-NH3-NH4Cl-H2O system[J]. Trans Nonferrous Met Soc China,2000,10(6):830-833.
    [81]魏国兴,尚殿辉.采用氨浸法从含锌废渣中提取高纯度氧化锌[J],环境科技,1994, 14(5):48-50.
    [82]刘健,苗则生.氨浸法从菱锌矿直接提取活性氧化锌[J].有色金属(冶炼部分),1993,(3):25-26,33.
    [83]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85.
    [84]李志,薛怀生,姚耀春.兰坪难选氧化锌矿氨浸动力学[J].云南冶金,2003,32(4):22-24.
    [85]张玉梅.氧化锌矿氨性强化浸出新方法的研究[D].中南大学,2009.
    [86]彭清静,段友构,杨朝霞.氨浸-碳化法制活性氧化锌矿[J].化工生产与技术,2001,8(6):15-17.
    [87]张荣良.锌焙砂氨浸法制活性氧化锌的研究[J].有色金属(冶炼部分),1998,(2):13-14.
    [88]Schnabel C. Die entsilberung des werkbleies durch zink und die neuesten fortschritte dieses entsilberungsmethode auf den fiskalischen huttenwerken des Oberharzes[M]. Zei. Ber. Hu"tt.,1880(28):26-30.
    [89]Harvey T G. The hydrometallurgical extraction of zinc by ammonium carbonate:A review of the Schnabel Process[J]. Mineral Processing and Extractive Metallurgy Review,2006,27(4):231-279.
    [90]王凤琴.国内外氧化锌矿处理方法[J].有色矿冶,1994,10(1):31-33.
    [91]张保平,唐漠堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南大学学报,2003,34(6):619-623.
    [92]刘晓丹,张元福.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报(自然科学版),2004,33(2):82-84.
    [93]Wang R X, Tang M T, Yang S H, et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system[J]. J. Cent. South Univ. Technol.2008,15(5):679-683.
    [94]杨声海.Zn(Ⅱ)-NH3-NH4Cl-H2O体系制备高纯锌理论及应用[D].长沙:中南大学,2003.
    [95]唐谟堂,鲁君乐,袁延胜,等Zn(Ⅱ)-NH3-(NH4)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [96]胡汉,朱云.难选氧化锌矿氨浸的热力学[J].云南冶金,2004,33(1):28-31.
    [97]唐谟堂,张鹏,何静,等Zn(Ⅱ)-(NH4)2SO4-H2O体系浸出锌烟尘[J].中南大学学报,2007,18(5):867-871.
    [98]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121.
    [99]Moustafa S A. Extraction of zinc from Egyptian zinc Ore with (NH4)2SO4 [J]. World of Metallurgy-ERZMETALL,2005,58(1):21-26.
    [100]Saleh H I, Hassan K M. Extraction of zinc from blast-furnace dust using ammonium sulfate[J]. Journal of Chemical Technology and Biotechnology,2004, 79(4):397-402.
    [101]杨声海,唐漠堂,邓昌雄,等.由氧化锌烟灰氨法制取高纯锌[J].中国有色金属学报,2001,11(6):1110-1113.
    [102]唐漠堂,欧阳民.硫氨法制取等级氧化锌[J].中国有色金属学,1998,8(1):118-121
    [103]唐漠堂,张鹏,何静,Zn(Ⅱ)(NH4)3SO4·H2O体系浸出锌烟尘[J].中南大学学报,2007,38(5):867-872.
    [104]邓奕小.氧化锌高酸浸出的研究[J].湖南有色金属,2000,11:3-4.
    [105]Seham N, Inoue K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy,2000,56:269-292.
    [106]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [107]Elgersman F. Acidic dissolution of zinc ferrite[J]. Hydrometallurgy,1992,29: 173-189.
    [108]Hua Y, Lin Z, Yan Z. Application o fmierowave irradiation to quick leach of zinc silicate ore[J]. Minerals Engineering,2002(15):451-456.
    [109]李韩璞.低品位氧化铜矿石的硫酸浸出试验研究高纯氧化锌[J].湿法冶金,2008(3):154-157.
    [11O]林祚彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,5:9-11.
    [111]张显生,石明忠,许永红.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分)2003,2:14-1.
    [112]刘红卫,蔡江松,王红军,等.低品位氧化锌矿湿法冶金新工艺研究[J].有色金属(冶炼部分),2005,5:29-31.
    [113]周德林,窦明民,陈世明.高硅氧化锌矿全湿法冶炼工艺的研究应用和发展[J].有色金属,1995,3:1-3.
    [114]杨大锦,谢刚,贾云芝,等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62.
    [115]Bartlet R W. Metal extraction from ores by heap leaching[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science. 1997,28(4):529-545.
    [116]Ulrich B, Andrade H, Gardner T. Lessons learnt from heap leaching operations in South Ameriea-An update. Journal of the South African Institute of Mining & Metallurgy[J].2003,103(1):23-28.
    [117]Orr S. Enhanced heap leaching[J]. Part 1:insights. Mining Engineering.2002,54(9): 49-56.
    [118]Orr S. Enhanced heap leaching[J]. Part 2:applications. Mining Engineering.2002, 54(10):33-38.
    [119]Xu H S, Wei C, Li C X, et al. Sulfuric acid leaching of zinc silicate ore under pressure[J]. Hydrometallurgy,2010,105:186-190.
    [120]李存兄,魏昶,樊刚,等.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,19:1678-1683.
    [121]Jankola W A. Zinc pressure leaching at Cominco[J]. Hydrometallurgy,1995, 39(1-3):63-70.
    [122]程华月.氧化锌矿氨法直接制取磷酸锌[D].硕十学位论文,长沙:中南工业大学,2000.
    [123]TungkaviveshkulT, Thiravetyan P, Tanticharoen M. Mechanism for bioleaching of zine silicate residue by organic acid-producing microorganisms[J].In:Vargas T. Jerezc, Wiertz JV eds. Biohydrometallurgical Processing Vol.1. Santiago: University of Chile,1995:385-393.
    [124]Castro I M J, Fietto L R, Viera R X, etal. Bioleaching of zinc and niekel from silicates using Aspergillus niger culture[J]. Hydrometallurgy,2000,57:39-49.
    [125]杨天足,宋庆双.铅阳极泥综合处理的研究[J].重有色冶炼,1994(5):1-5.
    [126]聂晓军.高锑低银铅阳极泥湿法提银及综合回收的研究[J].广东工学院学报,1996(4):51-53.
    [127]付绸林.铅阳极泥全湿法提取金银的研究[J].湿法冶金,1996(9):27-29.
    [128]黄开国,胡天觉.硫脲法从锌的酸浸渣中回收银[J].中南工业大学学报,1998,29(6):538-541.
    [129]游力辉译.用硫脲法从锌浸出渣中回收银[J].株冶科技,1990,18(3-4):29.
    [130]周国华,薛玉兰,蒋玉仁,等.湿法炼锌浸出渣中回收银的研究与实践[J].矿产综合利用,2001,1:24-28.
    [131]郑顺德,陈世民,林兴铭,等.从锌渣浸渣中综合回收铟锗铅银的试验研究[J].有色冶炼,2011,(2):34-39.
    [132]Vinals J在HCI-CaCl2介质中从含铅铁钡的赤铁矿尾矿中浸取金、银和铅[J]. 国外稀有金属,1991,(6):13-23.
    [133]王瑞祥,唐谟堂,唐朝波,等.从高酸浸出锌渣中回收银研究[J].黄金,2008,29:32-35.
    [134]谢颂明.氯盐溶液处理锌热酸浸出液回收铅银新工艺的研究[J].重有色冶炼,1994(1):5-9.
    [135]薛娟琴,王召启,董缘.氯盐法分离浸锰渣中银的研究[J].稀有金属,2005,29,(4):498-501.
    [136]车欣.浸锌渣氯化焙烧工艺实验研究[D].唐山:河北理工大学,2010.
    [137]马永涛,王凤朝.铅银渣综合利用探讨[J].中国有色冶金,2008,(3):44-48.
    [138]陆跃华.从锌浸出渣中回收银的方法[J].贵金属,1995,16(3):55-60.
    [139]姜涛,张亚平,黄柱成,等.从浸锌渣中综合回收有价金属的研究与实践[J].矿产综合利用,2002,6:32-36.
    [140]郑先君,周春山,吴鹏程,等.从锌浸出渣中回收银及有价金属的工艺研究[J].黄金,2002,1:23-26.
    [141]李黎婷.利用铅银渣综合提取锌铅银的试验研究[J].矿产综合利用,2010,3:15-20.
    [142]马永涛,王凤朝.铅银渣综合利用探讨[J].中国有色冶金,2008,3:43-47.
    [143]谢大元.锌挥发窑渣选银试验研究[D].长沙:中南大学,2004,12-15.
    [144]张家芸.冶金物理化学[M].北京:冶金工业出版社,2004.
    [145]叶大伦著.冶金热力学[M].长沙:中南工业大学出版社,1987.
    [146]Kubaschewski O, Alcock C B. Metallurgical thermochemistry[M]. Oxford: Pergamon Press Ltd,1979.
    [147]布拉赫(A.l-.5ynax)著,夏林圻译.矿物学中热力学方法[M].北京:地质出版社,1982.
    [148]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,2004.
    [149]温元凯,邵俊,陈德伟.含氧酸盐矿物生成自由能的计算[J].地质科学,1978(4):348-357.
    [150]温元凯,邵俊,王三山.含氧酸盐及矿物生成热的简单计算法[J].金属学报,1979,15(3):98-108.
    [151][苏]巴不什金B H,马特维耶夫Γ M.硅酸盐热力学[M].北京:中国建筑工业出版社,1983.
    [152]陈家铺,于淑秋,伍志春.湿法冶金中铁的分离与利用[M].北京,冶金工业出版社.1999.
    [153]Ismael M R C, Carvalho J M R. Iron recovery from sulphateleach liquors in zinc hydrometallurgy[J]. Minerals Engineering.2003,16(1):31-39.
    [154]Claassen J O E, Meyer H O, Rennie J. Iron precipitation from zinc-rich solutions: Optimizing the zinc or process[J]. Journal of the South African Institute of Mining & Metallurgy.2003,103(4):253-263.
    [155]Swarnkar S R,Guta B L, Sekharan R D. Iron control in zinc plant residue leach solution[J]. Hydrometallurgy.1996,42(1):21-26.
    [156]油效曾.配位化合物的结构和性质[M]. New York:Preztice Hall,1952.
    [157]傅崇说,邓蒂基.关于Cu-Cl-H2O系热力学分析及电位-pH图[J].中南矿冶学院学报,1980(3):12-20.
    [158]钟竹前,梅光贵.电位pH图在湿法冶金中的应用[J].有色金属(冶炼部分.1979(3):28-29.
    [159]钟竹前,梅光贵,蔡传算.Ag-Cl-H2O系热力学分析.有色冶炼[J].1982(9):33-36.
    [160]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1996.
    [161]唐谟堂,杨天足.配合物冶金理论与技术[M].长沙:中南大学出版社.2011,1O:12-15.
    [162]郑蒂基,傅崇说.关于铅-氯离子-水系在高离子强度及升温条件下的平衡研究[J].中南矿冶学院学报,1981,4:1-9.
    [163]杨显万,何蔼平.高温水溶液热力学数据计算手册[M].北京:科学出版社.1985:19-21.
    [164]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [165]Sun H L, Yu H Y, Wang B, et al. Leaching dynamics of 12CaO·7Al2O3[J]. The Chinese Journal Nonferrous Metals,2008,18 (10):1920-1925.
    [166]Li H Y, Feng Y L, Luo X B. Leaching kinetics of extraction of vanadium pent oxide from clay mineral[J]. Journal of Central South University (Science and Technology) 2008,39(6):1181-1184.
    [167]Mu W N, Zhai Y C. Desiliconization kinetics of nickeliferous laetrile ores inmolten sodium hydroxide system[J]. Transactions of Nonferrous Metals Society of China, 2010,20:330-335.
    [168]Fu X C, Shen W X, Yao T Y. Physical chemistry[M]. Beijing:Higher Education Press,2005.
    [169]Abdelaal E A. Kinetics of sulfuric acid leaching of low grade zinc silicate ore[J]. Hydrometallurgy,2000,55 (3):247-254.
    [170]Fan X X, Peng J H, Hang M Y, et al. Study on kinetics of oxidative leaching of chalcopyrite in the presence of silver ion[J]. Precious Metals,2005,26 (3):15-20.
    [171]Mohammad S S, Davood M, Mehdio I. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues[J]. Journal of Hazardous Materials,2009,163 (2): 880-890.
    [172]陆跃华,水承静.氯盐溶液中铅置换银的动力学[J].贵金属,1996,17(6):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700