用户名: 密码: 验证码:
A1型短指/趾症致病基因IHH的分子致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A1型短指/趾症(Brachydactyly type A1, BDA1)是世界上第一例被记载的孟德尔常染色体显性遗传病(1903年),曾被许多遗传学和生物学教科书所引用,患者以中间指/趾骨变短、并可能与远端指/趾骨融合为主要特征,患者不仅伸手难看,而且影响正常生活与工作。到目前为止,全世界范围大概有超过100例的家系患者或者散在患者在医学杂志中被报道,但是在过去的一个世纪里,人们仍然没有找到导致A1型短指/趾的致病原因。在前期疾病基因定位克隆工作中,我们一共收集了三个A1型短指/趾大家系,将致病基因定位到了2号染色体长臂35到37的区域。最终发现位于这个区域、编码Indian hedgehog蛋白的IHH基因的突变导致了A1型短指/趾。我们在这三个不相关大家系的所有患者中分别确定了三个杂合错义突变,G283A(E95K), C300A(D100E)和G391A(E131K),它们均位于编码蛋白氨基端信号域的区域内。本研究在以上工作基础上,对IHH基因在体外功能方面进行了一系列的深入研究,并对其在A1型短指(趾)症致病机理方面的作用进行了探讨。
     Ihh蛋白在翻译后早期是以一个全长的分子量约为46KD的前体蛋白形式存在,随后,在胆固醇脂的参与下,Ihh蛋白进行了自裂解,形成了一个20KD左右的C端有胆固醇修饰的IhhN信号活性蛋白和一个26KD左右的目前功能还不是很清楚的IhhC蛋白。信号活性蛋白IhhN在向细胞膜呈递过程中,又在N端进行了棕榈酸的修饰,在这两个脂修饰存在的情况下,并在dispatched蛋白的帮助下,IhhN蛋白以多聚体的形式从细胞膜脱离,向远端分泌到达靶细胞,并与其受体蛋白patched相结合,从而将信号进一步传递。本研究的重点就是探讨野生型和突变型Ihh蛋白在蛋白合成、加工、分泌运输以及与受体结合等方面的差别。
     首先构建野生型和突变型IHH基因的真核表达载体,将这些载体瞬时转染ECHO细胞,然后用western-blotting检测细胞裂解液里目的蛋白水平。结果表明,三个突变体的IhhC蛋白产物的水平与野生型没有差别,但是E95K和D100E这两个突变体的信号活性蛋白IhhN部分明显比野生型减少很多,我们推测,三个突变体的分子内自裂解进程没有被破坏,但是可能E95K和D100E这两个突变体的IhhN蛋白的稳定性下降,容易被胞内蛋白酶所降解。另外,从它们的IhhC蛋白的表达水平没有差别来分析,这些突变蛋白的胆固醇修饰应该都是正常的,因为胆固醇依赖的自裂解反应都是正常的。为了了解三个突变型蛋白与野生型蛋白在向细胞膜呈递过程中是否存在差别,我们利用免疫荧光和显微共聚焦的方法对其进行了检测,结果发现,突变型蛋白都能够正确地呈递到细胞膜上,这说明突变蛋白的细胞膜呈递这一环节是正常的。接下来,我们通过检测转染细胞的条件性培养上清来分析突变型蛋白与野生型蛋白在从细胞膜向胞外分泌过程中是否存在差别,结果发现,E95K和E131K突变蛋白均与野生型蛋白一样能够正常分泌并在上清中检测到,但是,D100E突变蛋白却不能从条件性培养上清中检测到。我们知道,通常蛋白在不同温度情况下会表现出不同的生化特性,包括蛋白构像的变化和与其它分子相互作用的能力的改变等。在随后的试验中,我们探讨了突变蛋白和野生型蛋白在不同温度不同时间情况下的稳定性变化。试验结果表明,在37℃情况下,野生型蛋白与三个突变蛋白都存在不同程度的降解趋势,但是其中E95K和D100E这两个突变蛋白的降解速度更快,尤其是D100E蛋白,在表达3小时左右就几乎完全降解。而在30℃的情况下,所有的蛋白均能稳定存在。同时,在30℃情况下来检测D100E突变蛋白的细胞培养上清,发现能够检测到大量的D100E蛋白的存在,这表明,极有可能是因为在37℃情况下D100E突变蛋白以极快的速度被降解,从而导致在条件性上清中检测不到,而不是因为D100E蛋白不能被分泌。
     从与IHH基因同源性极高的SHH (Sonic Hedgehog)基因蛋白的三维结构来分析,E95K和D100E这两个突变位点在空间位置上很接近,而且同属于一个位于蛋白分子表面的无规则卷曲结构域上,这个结构域由八个氨基酸(DEENTGAD)组成,根据突变点的位置,我们构建了几个截断体来验证这个区域对于整个Ihh蛋白的稳定性的影响。同时,从其他研究小组的报道中我们了解到还有两个突变也是位于这个区域的,有意思的是,这两个突变同样分别位于E95和D100的位置,不同的是,它们分别突变成了G和N,因此,我们同时也做了这两个突变体的表达分析。试验结果表明,这8个氨基酸的无规则卷曲区域对于IhhN蛋白的稳定性非常重要,如果将这八个氨基酸全部剔除,几乎检测不到IhhN蛋白的存在,而且,E95G和D100N这两个突变蛋白的表达情况与E95K和D100E这两个突变几乎相同,此结果提示这个区域内的几个突变所造成的BDA1的分子机制可能有相同之处。
     硫酸肝素蛋白聚糖(HSPG)是广泛存在于细胞膜和细胞间质中的一类生物活性分子,有大量研究表明它在hedgehog信号通路中扮演重要角色。其中一个作用就是与hedgehog蛋白结合并协助其向远处运输。我们用亲和层析的方法来检测突变蛋白和野生型蛋白与heparin的结合能力上的差别,结果表明,E95K突变蛋白有着更强的与heparin结合的能力。这一结果提示E95K蛋白可能会在体内运输和组织分布过程中表现出与野生型不同的表型。
     Hedgehog蛋白在组织间运输的过程还受到蛋白本身多聚体形式的影响,为此,我们利用分子筛层析的技术对突变型蛋白的多聚体形式进行了分析,结果发现E95K和E131K这两个突变蛋白的多聚体形成与野生型之间没有明显的差别。同时进行的棕榈酸修饰突变的蛋白没有多聚体形式存在,提示E95K和E131K这两个突变蛋白的棕榈酸修饰也是正常的。
     Hedgehog蛋白与其受体Patched的结合是启动hedgehog信号传递的非常重要的一个环节,原核蛋白体外诱导C3H10T1/2细胞的结果表明三个突变型蛋白在诱导该细胞系向骨细胞方向分化的能力均比野生型蛋白有不同程度的下降,造成这一结果的最直接的可能原因就是突变型蛋白与受体Patched蛋白的结合能力下降。我们进行了野生型蛋白与突变型蛋白竞争结合受体Patched的试验,结果表明,三个突变型蛋白与受体Patched的结合能力都有不同程度地降低,其中以D100E降低最为严重,E95K突变蛋白和E131K突变蛋白分别降低2倍和1.5倍,它们的结合效应常数分别为:KI(E95K) = 40.6 nM;KI(E131K) = 30.5 nM;KI(D100E) >> 100 nM。
     综上所述,本研究从Ihh蛋白的表达,加工修饰,分泌运输及受体结合等几个方面对三个突变蛋白的生化性质及体外功能与野生型蛋白进行了比较,发现了野生型与突变型蛋白之间的一些重要差异,并提出了突变型蛋白在体内异常传递运输的模型,这些新的发现为我们深入理解A1型短指(趾)症致病机理提供了重要线索,也为接下来的研究工作打下基础。
Brachydactyly type A-1 (BDA1) is the first recorded disorder of the autosomal dominant Mendelian trait (1903), which is cited in many genetic and biological textbooks. BDA1 is characterized by pronounced shortening or missing of the middle phalanges. Over 100 familial or sporadic cases from different ethnic groups have so far been reported. However, the real breakthrough in identifying the cause of BDA1 has not taken place until very late last century and early this century, when the Bio-X Center, Shanghai Jiao Tong University and Chinese Academy of Sciences, mapped and cloned the causative gene. We recruited three large families of BDA1 in the previous studies and mapped the locus for BDA1 on chromosome 2q35-q37 where we discovered mutations in Indian Hedgehog (IHH) was the cause for BDA1. In total we identified three heterozygous missense mutations (G283A (E95K), C300A (D100E) and G391A (E131K)) in the region encoding the amino-terminal signaling domain in all affected members of all three large, unrelated families. The three mutant amino acids, which are conserved across all vertebrates and invertebrates studied so far, are predicted to be adjacent on the surface of Ihh. In this work, we attempted to study the functional character of the mutants in order to understand the molecular basis of BDA1.
     Ihh protein is a secreted morphogen that is essential for endochondral bone development. Ihh is synthesized as a 46 kDa precursor that undergoes autocatalytic cleavage into an active 19 kDa N-terminal fragment (IhhN) which is subsequently modified by attachment of cholesterol and palmitic acid, and a more divergent C-terminal domain (IhhC). The long-range effects of Ihh during embryonic development are facilitated by heparan sulfate proteoglycans (HSPGs) in the surrounding intracellular matrix and a soluble multimeric form. The IhhN product triggers Hh pathway activation by binding to Patched (Ptc), the primary receptor for Hh signaling. The emphasis of this study is to explore the difference of the synthesis, processing, secretion and receptor binding between wild type and mutant Ihh.
     The eukaryotic constructs of wild type and mutant IHH gene were generated and transfected into ECHO cell line. Consequently, western-blotting analysis for the cell lysates indicated that the intermolecular cleavage and the cholesterol modification of three mutant Ihh were all normal and the IhhN fragment of E95K and D100E was unstable and degraded easily. In addition, the cell membrane location were all normal for three mutant proteins by immunofluorescence and confocal microscope. However, the assay of conditional culture medium implicated that the secretion of E95K and E131K mutants were normal but not D100E. Furthermore, temperature sensitivity analysis suggested that D100E protein was more unstable than E95K in 37℃and all proteins displayed the same stability in 30℃. Anyway, the secretion of D100E was normal in 30℃. Taken together, we speculated that D100E could't secrete because of its degradation in short time.
     3D structure of ShhN protein indicated that the position of E95K and D100E mutations is in an eight amino acid (8aa) conserved domain. Subsequently, we generated some truncation constructs and western-blotting analysis indicated that the 8aa domain is very important for Ihh protein because the IhhN fragment of T6 and T8 was degraded easily. Interestingly, we found that the IhhN fragment was unstable for E95G and D100N like E95K and D100E mutants and this implicated the mechanism of these two mutants associated with BDA1 may be consistent with E95K and D100E.
     Affinity chromatography assay implicated that the binding potency between E95K protein and heparin was enhanced and it is possible to result in the variety of the protein diffusion pattern. Gel chromatography assay indicated that the multimeric form of E95K and E131K were consistent with wild type. In addition, we suggested that the palmitoylation of E95K and E131K mutant proteins were normal because it could't form multimer for Hedgehog protein without palmitoylation.
     The IhhN product triggers Hh pathway activation by binding to Ptc receptor. The induction assay in C3H10T1/2 cell line by Prokaryotic IhhN proteins implicated that the ability of three mutant proteins to induce Hedgehog signaling was significantly impaired compared with wild type, suggesting these mutants may affect interaction with the receptor Ptc either directly or indirectly. Subsequently, the binding assay indicated that the interaction potency of three mutant proteins to Ptc were significantly reduced compared with wild type, their KI value were listed below: E95K = 40.6nM; E131K = 30.5nM; D100E >> 100nM, whereas KD of wild type was 20.6nM.
     Taken together, the present study analyzed the functional character including protein expression, modification, secretion and receptor binding of three mutants compared with wild type Ihh, and found some differences among them. Thereby, we could understand well the molecular mechanism of BDA1 from these findings.
引文
1. Farabee WC. Hereditary and Sexual Influence in Meristic Variation: A Study of Digital Malformations in Man. Dissertation, 1903. Harvard University.
    2. Drinkwater H. An account of a brachydactylous family. Proc Royal Soc Edin. 1908; 28: 35-57.
    3. Drinkwater H. Account of a family showing minor brachydactyly. J Genet. 1912; 2: 21-40.
    4. Drinkwater H. A second brachydactylous family. J Genet. 1915; 4: 323-339.
    5. Bell J. On brachydactyly and symphalangism. Treasury of Human Inheritance. 1951; Cambridge University Press.
    6. McKusick V. Mendelian Inheritance in Man. 1975; Johns Hopkins University Press.
    7. Fitch N. Classification and identification of inherited brachydactylies. J Med Genet. 1979; 16: 36-44.
    8. Temtamy SA, McKusick VA. The genetics of hand malformations. Birth Defects Orig Artic Ser. 1978; 14: i-619.
    9. Laporte G, Serville F, Peant J. Type A1 branchydactyly. Study of one family (author's transl). Nouv Presse Med. 1979; 8: 4095-4097.
    10. Piussan C, Lenaerts C, Mathieu M et al. Regular dominance of thumb ankylosis with mental retardation transmitted over 3 generations. J Genet Hum. 1983; 31: 107-114.
    11. Tsukahara M, Azuno Y, Kajii T. Type A1 brachydactyly, dwarfism, ptosis, mixed partial hearing loss, microcephaly, and mental retardation. Am J Med Genet. 1989; 33: 7-9.
    12. Fukushima Y, Ohashi H, Wakui K et al. De novo apparently balanced reciprocal translocation between 5q11.2 and 17q23 associated with Klippel-Feil anomaly and type A1 brachydactyly. Am J Med Genet. 1995; 57: 447-449.
    13. Mastrobattista JM, Dolle P, Blanton SH et al. Evaluation of candidate genes for familialbrachydactyly. J Med Genet. 1995; 32: 851-854.
    14. Raff ML, Leppig KA, Rutledge JC et al. Brachydactyly type A1 with abnormal menisci and scoliosis in three generations. Clin Dysmorphol. 1998; 7: 29-34.
    15. den Hollander NS, Hoogeboom AJ, Niermeijer MF et al. Prenatal diagnosis of type A1 brachydactyly. Ultrasound Obstet Gynecol. 2001; 17: 529-530.
    16. Giordano N, Gennari L, Bruttini M et al. Mild brachydactyly type A1 maps to chromosome 2q35-q36 and is caused by a novel IHH mutation in a three generation family. J Med Genet. 2003; 40: 132-135.
    17. Yang X, She C, Guo J et al. A locus for brachydactyly type A-1 maps to chromosome 2q35-q36. Am J Hum Genet. 2000; 66: 892-903.
    18. Gao B, Guo J, She C et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat Genet. 2001; 28: 386-388.
    19. Mortier GR, Kramer PP, Giedion A et al. Acrocapitofemoral dysplasia: an autosomal recessive skeletal dysplasia with cone shaped epiphyses in the hands and hips. J Med Genet. 2003; 40: 201-207.
    20. Mastrobattista JM, Dolle P, Blanton SH et al. Evaluation of candidate genes for familial brachydactyly. J Med Genet. 1995; 32: 851-854.
    21. M. Elizabeth McCready, Allison Grimsey, Timothy Styer et al. A century later Farabee has his mutation. Hum Genet 2005; 117: 285–287
    22. KirKpatrick TJ, Au KS, Mastrobattista JM, et al, Identification of a mutation in the Indian hedgehog (IHH) gene causing brachydactyly type A1 and evidence for a third locus. J Med Genet.2003; 40(1): 42-44
    23. McCready ME, Sweeney E, Fryer AE et al. A novel mutation in the IHH gene causes brachydactyly type A1: a 95-year-old mystery resolved. Hum Genet. 2002; 111: 368-375.
    24. Hellemans J, Coucke PJ, Giedion A et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am J Hum Genet. 2003; 72: 1040-1046.
    25. Mugen Liu, Xu Wang, Zhou Cai et al. A novel heterozygous mutation in the Indian hedgehog gene (IHH) is associated with brachydactyly type A1 in a Chinese family. J Hum Genet 2006; 51: 727–731
    26. Nusslein-Volhard C, E Wieschaus, H Kluding. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux's Arch. Dev. Biol. 1984;193: 267-282
    27. Jurgens G, E Wieschaus, C Nusslein-Volhard, H Kluding. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Wilhelm Roux's Arch. Dev. Biol. 1984;193: 283-295.
    28. Wieschaus E, C Nusslein-Volhard, H Kluding. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X chromosome and the fourth chromosome. Wilhelm Roux's Arch. Dev. Biol. 1984;193: 296-307.
    29. Peifer M, Bejsovec A. Knowing your neighbors: cell interactions determine intrasegmental patterning in drosophila. Trends Genet, 1992; 8:243–48
    30. Allen E. Bale. Hedgehog signaling and human disease. Annu. Rev. Genom. Human. Genet. 2002; 3: 47-65.
    31. McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol, 2003; 53: 1–114.
    32. Bitgood, M.J., McMahon, A.P., Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interactio in the mouse embyo. Dev. Biol. 1995;172: 126-138.
    33. Philip W. Ingham and Andrew P. McMahon. Hedgehog signaling in animal development: paradigms and principles, Genes & Development 2001; 14: 3059-3087.
    34. Naoyuki F., Iapan M., Baolin, W., et al., Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc. Nat. Acad. Sci. 1999; 96: 10992-10999
    35. Cobourne, M.T., Sharpe, P.T., Sonic hedghog signaling and the developing tooth. Curr Top Dev Biol. 2005;65: 255-287.
    36. Berman, D. M.,Karhadkar, S. S.,Maitra, A. et al., Widespread requirement for Hedgehog ligandstimulation in growth of digestive tract tumours. Nature , 2003, 425(6960): 846-851.
    37. Thayer, S. P., di Magliano, M. P., Heiser, P. W. et al., Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425(6960): 851-856.
    38. Watkins, D. N.,Berman, D. M.,Burkholder, S. G. et al., Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 2003, 422(6929): 313-317.
    39. Chiang C, LitingtungY, Lee E, et al., Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 1996, 383:407–13
    40. Lanske B, Karaplis AC, Lee K, et al., PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Genes Dev., 1996, 13: 2072–86
    41. Mirsky R, Parmantier E, McMahon AP, et al., Schwann cell-derived desert hedgehog signals nerve sheath formation. Ann. NY Acad. Sci., 1999, 883:196–202
    42. Bitgood MJ, Shen L, McMahon AP., Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol., 1996, 6: 298–30.
    43. Lee, J.J., et al., Autoproteolysis in hedgehog protein biogenesis. Science, 1994, 266: 1528 –1537.
    44. Bumcrot, D.A., Takata, R., and McMahon, A.P.. Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol. Cell. Biol.1995, 15:2294–2303.
    45. Guy RK. Inhibition of sonic hedgehog autoprocessing in cultured mammalian cells by sterol deprivation. Proc Natl Acad Sci USA 2000; 97: 7307-7312.
    46. Porter, J.A., et al. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature. 1995; 374: 363–366.
    47. Hall, T.M.T., et al. Crystal structure of a Hedgehog autoprocessing domain: homology between hedgehog and self-splicing proteins. Cell. 1997; 91: 85–97.
    48. Porter, J.A., Young, K.E., and Beachy, P. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996; 274: 255–259.
    49. Porter, J.A., et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell. 1996; 86: 21–34.
    50. Roelink, H., et al. Floor plate and motor neuron induction by different concentrations of theamino terminal cleavage product of Sonic hedgehog autoproteolysis. Cell. 1995; 81: 445–455.
    51. Marti E, Bumcrot DA, Takada R, McMahon AP. Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 1995; 375: 322-325.
    52. Fietz MJ, Jacinto A, Taylor AM, Alexandre C, Ingham PW. Secretion of the amino-terminal fragment of the hedgehog protein is necessary and sufficient for hedgheog signaling in Drosophila. Curr Biol 1995; 5: 643-650
    53. Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 1995; 81: 457-465.
    54. Lai CJ, Ekker SC, Beachy PA, Moon RT. Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage. Development 1995; 121: 2349-2360.
    55. Therond PP, Knight JD, Komberg TB, Bishop JM. Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc Natl Acad Sci USA 1996; 93: 4224-4228.
    56. Burke R., et al. Dispatched, a novel sterol-sensing domain protein dedicated to the ralease of cholesterol-modified Hedgehog from signaling cells. Cell. 1999; 99: 803-815
    57. Lewis P., et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell. 2001; 105: 599-612
    58. Pepinsky RB, Zeng C, Wen D, Rayhom P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 1998; 273: 14037-14045.
    59. Chamoun Z, Mann RK, Nellen D, Von Kessler DP, Bellotto M, Beachy PA, Basler K. Skinny Hedgehog, an Acyltransferase Required for Palmitoylation and Activity of the Hedgehog signal. Science 2001; 2: 2.
    60. Taylor FR, Wen D, Garber EA, Carmillo AN, Baker DP, Arduini RM, Williams KP, Weinreb PH, Rayhom P, Hronowski X, et al. Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 2001; 40: 4359-4371.
    61. Lee JD, Kraus P, Gaiano N, Nery S, Kohtz J, Fishell G, Loomis CA, Treisman JE. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev Biol 2001; 233: 122-136.
    62. Lee JD, Treisman JE, Kraus P, Gaiano N, Nery S, Kohtz J, Fishell G, Loomis CA. Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Current Biology 2001; 11: 1147-1152.
    63. Bellaiche, Y., The, I., and Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature. 1998; 394: 85–88.
    64. Zeng, X., et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature. 2001; 411: 716–720.
    65. Yang Y, Drossopoulou G, Chuang PT, Duprez D, Marti E, Bumcrot D, Vargesson N,Clarke J, Niswander L, McMahon A, et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 1997; 124: 4393-4404.
    66. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 1969; 25: 1-47.
    67. Lee JJ, Von Kessler DP, Parks S, Beachy PA. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 1992; 71: 33-50.
    68. Basler K, Struhl G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 1994; 368: 208-214.
    69. Capdevila J, Guerrero I. Targeted expression of the signaling molecule decapentaplegic induces pattern duplication and growth alterations in Drosophila wings. EMBO J 1994; 13: 4459-4468.
    70. Ingham PW, Fietz MJ. Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr Biol 1995; 5: 432-440
    71. Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 1994; 371: 609-612.
    72. Zuniga A, Haramis AP, McMahon AP, Zeller R, Signal relay by BMP antagonism controls theSHH/FGF4 feedback loop in vertebrate limb buds. Nature 1999; 401: 598-602.
    73. Strigini M, Cohen SM. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 1997; 124: 4697-4705.
    74. Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H. Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 2000; 97: 12044-12049.
    75. Briscoe J, Chen Y, Jessell TM, Struhl G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell 2001; 7: 1279-1291.
    76. Wang B, Fallon JF, Beachy PA, Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100: 423-434.
    77. Traci M. Tanaka Hall, Jeffery A. Porter, Philip A. Beachy, Daniel J. Leahy. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signaling domain of sonic hedgehog. Nature 1995; 378: 212-216
    78. Daniela Panakova, Hein Sprong, Eric Marois, Christoph Thiele, Suzanne Eaton. Lipoprotein particles are required for Hedgehog and Wingless signaling. Nature 2005; 435: 58-65
    79. Kramer KL, Yost HJ. Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 2003; 37: 461–484.
    80. Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71: 435–471.
    81. Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004; 131: 6009–6021.
    82. Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M, Welsh CJ, McDermott S, Datta S. Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 2003; 253: 247–257.
    83. Tabata T, Takei Y. Morphogens, their identification and regulation. Development 2004; 131: 703–712.
    84. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 2004; 131: 73–82.
    85. Bellaiche Y, The I, Perrimon N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 1998; 394: 85–88.
    86. Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 2004; 131: 1927–1938.
    87. Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 2004; 131: 1563–1575.
    88. Han C, Belenkaya TY, Wang B, Lin X. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 2004; 131: 601–611.
    89. Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 2003; 299: 2039–2045.
    90. Desbordes SC, Sanson B. The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development 2003; 130: 6245–6255.
    91. Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000; 22: 108–112.
    92. Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 2004; 6: 801–813.
    93. Gorfinkiel N, Sierra J, Callejo A, Ibanez C, Guerrero I. The Drosophila ortholog of human Wnt inhibitory factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev Cell 2005; 8: 241–253.
    94. Hector Carrasco, Gonzalo H. Olivares, Fernando Faunes, Carlos Oliva, Juan Larra?n. Heparan Sulfate Proteoglycans Exert Positive and Negative Effects in Shh Activity. Journal of Cellular Biochemistry 2005; 96: 831–838
    95. Joshua B. Rubin, Yoojin Choi, Rosalind A. Segal. Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 2002; 129: 2223-2232
    96. Cardin, A. D. and Weintraub, H. J. Molecular modeling of protein glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21-32.
    97. Zako M, Dong J, Goldberger O, Bernfield M, Gallagher JT, Deakin JA. Syndecan-1 and -4 synthesized simultaneously by mouse mammary gland epithelial cells bear heparan sulfate chains that are apparently structurally indistinguishable. J Biol Chem 2003; 278: 13561–13569.
    98. Siekmann AF, Brand M. Distinct tissue-specificity of three zebrafish ext1 genes encoding proteoglycan modifying enzymes and their relationship to somitic Sonic hedgehog signaling. Dev Dyn 2004; 232: 498–505.
    99. Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, Humphrey M, Olson S, Futch T, Kaluza V, Siegfried E, Stam L, Selleck SB. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 1999; 400: 276–280.
    100. Khare N, Baumgartner S. Dally-like protein, a new Drosophila glypican with expression overlapping with wingless. Mech Dev 2000; 99: 199–202.
    101. Ahn J, Ludecke HJ, Lindow S, Horton WA, Lee B, Wagner MJ, Horsthemke B, Wells DE. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 1995; 11: 137–143.
    102. Stickens, D., Clines, G., Burbee, D., Ramos, P., Thomas, S., Hogue, D., Hecht, J.T., Lovett, M., and Evans, G.A. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat. Genet 1996; 14: 25–32.
    103. Mitchell KJ, Pinson KI, Kelly OG, Brennan J, Zupicich J, Scherz P, Leighton PA, Goodrich LV, Lu X, Avery BJ, Tate P, Dill K, Pangilinan E, Wakenight P, Tessier-Lavigne M, Skarnes WC. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 2001; 28: 241–249.
    104. Carlos Torroja, Nicole Gorfinkiel, Isabel Guerrero. Mechanisms of Hedgehog Gradient Formation and Interpretation. J Neurobiol 2005; 64: 334–356
    105. Glise B, Miller CA, Crotazier M, Halbisen MA, Wise S, Olson DJ, Vincent A, Blair SS. Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog. Dev Cell 2005; 8: 255–266.
    106. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999; 398: 431–436.
    107. Chen W, Burgess S, Hopkins N. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development 2001; 128: 2385–2396.
    108. Hooper JE. Distinct pathways for autocrine and paracrine Wingless signalling in Drosophila embryos. Nature 1994; 372: 461–464.
    109. Hooper JE, Scott MP. The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 1989; 59: 751–765.
    110. Ingham PW, Taylor AM, Nakano Y. Role of the Drosophila patched gene in positional signalling. Nature 1991; 353: 184–187.
    111. Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JR, Ingham PW. A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 1989; 341: 508–513.
    112. van den Heuvel M, Ingham PW. Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 1996; 382: 547–551.
    113. Varga ZM, Amores A, Lewis KE, Yan YL, Postlethwait JH, Eisen JS, Westerfield M. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development 2001; 128: 3497–3509.
    114. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001; 105: 781–792.
    115. Alcedo J, Ayzenzon M, Von OT, Noll M, Hooper JE. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 1996; 86: 221–232.
    116. Chen Y, Struhl G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 1996; 87: 553–563.
    117. Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H. Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 2000; 97: 12044–12049.
    118. Chen Y, Struhl G. In vivo evidence that patched and smoothened constitute distinct binding and transducing components of a hedgehog receptor complex [In Process Citation]. Development 1998; 125: 4943–4948.
    119. Martin V, Carrillo G, Torroja C, Guerrero I. The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr Biol 2001; 11: 601–607.
    120. Johnson RL, Milenkovic L, Scott MP. In vivo functions of the patched protein: requirement of the C terminus for target gene inactivation but not Hedgehog sequestration. Mol Cell 2000; 6: 467–478.
    121. Strutt H, Thomas C, Nakano Y, Stark D, Neave B, Taylor AM, Ingham PW. Mutations in the sterolsensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr Biol 2001; 11: 608–613.
    122. Torroja C, Gorfinkiel N, Guerrero I. Patched controls the Hedgehog gradient by endocytosis in a dynamindependent manner, but this internalization does not play a major role in signal transduction. Development 2004; 131: 2395–2408.
    123. Capdevila J, Estrada MP, Sanchez-Herrero E et al. The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J 1994; 13: 71–82.
    124. Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 1996; 10: 301–312.
    125. Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ. Biochemical evidence that patched is the Hedgehog receptor. Nature 1996; 384: 176–179.
    126. Tabata T, Kornberg TB. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 1994; 76: 89–102.
    127. Eldar A, Rosin D, Shilo BZ, Barkai N. Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev Cell 2003; 5: 635–646.
    128. Torroja C. Papel del trafico intracelular en la via desenalizacion de Hedgehog. PhD thesis. 2003; Universidad Autonoma de Madrid.
    129. Xingwu Lu, Songmei Liu and Thomas B. Kornberg. The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover. Genes & Dev. 2006 20: 2539-2551
    130. Fuse, N., Maiti, T., Wang, B., Porter, J.A., Hall, T.M., Leahy, D.J., and Beachy, P.A. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc. Natl. Acad. Sci. 1999; 96: 10992–10999.
    131. Chuang PT, McMahon AP. Vertebrate Hedgehog signaling modulated by induction of a Hedgehog- binding protein. Nature 1999; 397: 617–621.
    132. Coulombe J, Traiffort E, Loulier K et al. Hedgehog interacting protein in the mature brain: membrane-associated and soluble forms. Mol Cell Neurosci 2004; 25: 323–333.
    133. Jeong J, McMahon AP. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development 2005; 132: 143–154.
    134. Olsen CL, Hsu PP, Glienke J, Rubanyi GM, Brooks AR. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer 2004; 4: 43.
    135. Yao, S., Lum, L., and Beachy, P.A. The Ihog Cell-Surface Proteins Bind Hedgehog andMediate PathwayActivation. Cell 2006; 125: 343–357.
    136. Tenzen, T., Allen, B.L., Cole, F. et al. The Cell Surface Membrane Proteins Cdo and Boc Are Components and Targets of the Hedgehog Signaling Pathway and Feedback Network in Mice. Developmental Cell 2006; 10: 647–656.
    137. Zhang, W., Kang, J.S., Cole, F., Yi, M.J., and Krauss, Cdo Functions at Multiple Points ShortArticle in the Sonic Hedgehog Pathway, and Cdo-Deficient Mice Accurately Model Human Holoprosencephaly. Developmental Cell 2006; 10: 657–665,
    138. Jason S. McLellan, Shenqin Yao, Xiaoyan Zheng, Brian V. Geisbrecht, Rodolfo Ghirlando, Philip A. Beachy, and Daniel J. Leahy Structure of a heparin-dependent complex of Hedgehog and Ihog. PNAS 2006; 103: 17208–17213
    139. Denef N., Neubuser D., Perez L. and Cohen S. M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 2000; 102: 521–531
    140. Jia J., Tong C., Wang B., Luo L. and Jiang J. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 2004; 432: 1045–1050
    141. Apionishev S., Katanayeva N. M., Marks S. A., Kalderon D. and Tomlinson A. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat. Cell Biol. 2005; 7: 86–92
    142. Zhang C., Williams E. H., Guo Y., Lum L. and Beachy P. A. Extensive hosphorylation of Smoothened in Hedgehog pathway activation. Proc. Natl. Acad. Sci. USA 2004; 101: 17900 –17907
    143. Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002, 16:2743-2748.
    144. Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP: Repression of Smoothened by patcheddependent (pro-)vitamin D3 secretion. PLoS Biol 2006, 4: e232.
    145. Corcoran RB, Scott MP: Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 2006, 103: 8408-8413.
    146. Incardona, J. P., Gruenberg, J. and Roelink, H. Sonic hedgehog induces the segregation of patched and smoothened in endosomes. Curr. Biol. 2002; 12: 983-995.
    147. Lum, L., Zhang, C., Oh, S., Mann, R. K., von Kessler, D. P., Taipale, J., Weis-Garcia, F., Gong, R., Wang, B. Beachy, P. A. Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol. Cell 2003b; 12, 1261-1274.
    148. Varjosalo, M., Li, S. P. and Taipale, J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev. Cell 2006; 10: 177-186.
    149. Hooper, J. E. and Scott, M. P. Communicating with Hedgehogs. Nat. Rev Mol. Cell. Biol. 2005; 6: 306-317.
    150. Jia, J., Tong, C. and Jiang, J. Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes Dev. 2003; 17: 2709 - 2720.
    151. Ruel, L., Rodriguez, R., Gallet, A., Lavenant-Staccini, L. and Therond, P. P. Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat. Cell. Biol. 2003; 5: 907-913.
    152. Lum, L. and Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 2004; 304: 1755-1759.
    153. Chen, M. H., Gao, N., Kawakami, T. and Chuang, P. T. Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol. Cell. Biol. 2005; 25: 7042-7053.
    154. Merchant, M., Evangelista, M., Luoh, S. M., Frantz, G. D., Chalasani, S., Carano, R. A., van Hoy, M., Ramirez, J., Ogasawara, A. K., McFarland, L. M. et al. Loss of the serine/ threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol. Cell. Biol. 2005; 25: 7054-7068.
    155. Pan, Y., Bai, C. B., Joyner, A. L. and Wang, B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol. 2006; 26: 3365-3377.
    156. Svard, J., Heby-Henricson, K., Persson-Lek, M., Rozell, B., Lauth, M., Bergstrom, A., Ericson, J., Toftgard, R. and Teglund, S. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell 2006; 10: 187-197.
    157. Ohlmeyer, J. T. and Kalderon, D. Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 1998; 396, 749-753.
    158. Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. and Anderson, K. V.Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426, 83-87.
    159. Liu, A., Wang, B. and Niswander, L. A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005; 132, 3103-3111.
    160. Nybakken, K., Vokes, S. A., Lin, T. Y., McMahon, A. P. and Perrimon, N. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat. Genet. 2005; 37, 1323-1332.
    161. Sun, Z., Amsterdam, A., Pazour, G. J., Cole, D. G., Miller, M. S. and Hopkins, N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 2004; 131, 4085-4093.
    162. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000; 16: 191-220.
    163. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003; 423: 332-336.
    164. St Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999; 13: 2072-2086.
    165. Karp SJ, Schipani E, St Jacques B et al. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000; 127: 543-548.
    166. Chung UI, Schipani E, McMahon AP et al. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest. 2001; 107: 295-304.
    167. Long F, Zhang XM, Karp S et al. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001; 128: 5099-5108.
    168. Vortkamp A, Lee K, Lanske B et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996; 273: 613-622.
    169. Lanske B, Karaplis AC, Lee K et al. PTH/PTHrP receptor in early development and Indianhedgehog-regulated bone growth. Science. 1996; 273: 663-666.
    170. Chung UI, Lanske B, Lee K et al. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci U S A. 1998; 95: 13030-13035.
    171. Alvarez J, Sohn P, Zeng X et al. TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development. 2002;129: 1913-1924.
    172. Kobayashi T, Chung UI, et.al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development, 2002, 129: 2977–2986.
    173. Methot N, Basler K.. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell, 1999, 96: 819–31.
    174. Pathi S, Rutenberg JB, Johnson RL, Vortkamp A..Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol, 1999, 209: 239–253.
    175. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002; 3: 439–449.
    176. Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 1998; 280: 1455–1457.
    177. Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365) thinsp;Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet. 2001; 10: 457–465.
    178. 金冬雁等译 分子克隆试验指南 第三版 科学出版社 2000
    179. Bylund and Toews. Radioligand binding methods: practical guide and tips. Am.J.Physiol. 1993; 265L: 421.
    180. Roessler, E., Belloni, E., Gaudenz, K. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 1996; 14: 357–360.
    181. Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H., Donis-Keller, H., Helms, C., Hing, A., et al. Identification of Sonic hedgehog as a candidate generesponsible for holoprosencephaly. Nat. Genet. 1996; 14: 353–356.
    182. Elisabeth Traiffort, Christele Dubourg, He lene Faure, et al. Functional Characterization of Sonic Hedgehog Mutations Associated with Holoprosencephaly. The Journal Of Biological Chemistry 2004; 279: 42889-42897
    183. Tapan Maity, Naoyuki Fuse, and Philip A. Beachy. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. PNAS 2005; 102: 17026–17031 _
    184. Jianchi Feng, Bryan White, Jhumku D. Kohtz, et al. Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids. Development 2004; 131: 4357-4370
    185. Miao-Hsueh Chen, Ya-Jun Li, Takatoshi Kawakami, Shan-Mei Xu, and Pao-Tien Chuang Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes&Development 2004; 18: 641-659
    186. John A. Goetz, Samer Singh, Liza M. Suber et al. A Highly Conserved Amino-terminal Region of Sonic Hedgehog Is Required for the Formation of Its Freely Diffusible Multimeric Form. The Journal Of Biological Chemistry 2006; 281: 4087– 4093
    187. Sylvie Vincent, Abraham Thomas, Bradley Brasher & John D Benson. Targeting of proteins to membranes through hedgehog auto-processing. Nature Biotechnology 2003; 21: 936-940
    188. Benjamin L. Allen, Toyoaki Tenzen and Andrew P. McMahon. The Hedgehog binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes & Dev. 2007; 21: 1244-1257
    189. David C. Martinelli and Chen-Ming Fan. Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes & Dev. 2007; 21: 1231-1243
    190. Donna M. Stone, Mary Hynes, Arnon Rosenthal et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384: 129-133
    191. Randall K. Mann and Philip A. Beachy. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 2004; 73: 891–923
    192. John A. Goetz, Liza M. Suber, Xin Zeng et al. Sonic Hedgehog as a mediator of long-range signaling. BioEssays 2002; 24: 157-165
    193. Scott B. Selleck. Overgrowth Syndromes and the Regulation of Signaling Complexes by Proteoglycans. Am. J. Hum. Genet. 1999; 64: 372–377
    194. Norbert Perrimon & Merton Bernfield. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404: 725-728
    195. Christopher W. Wilson and Pao-Tien Chuang. New “Hogs” in Hedgehog Transport and Signal Reception. Cell 2006; 125: 435-438
    196. Nybakken, K., Perrimon, N., Hedgehog signal transduction: recent findings. Curr Opin Genet Dev. 2002; 12: 503-511
    197. Shengzhen Guo. In vitro Functional Study of IHH Mutations Causing BDA1 & Association Studies with Schizophrenia. Dissertation 2006; SIBS
    198. Yina Li, Huimin Zhang, Ying Litingtung, and Chin Chiang. Cholesterol modification restricts the spread of Shh gradient in the limb bud. PNAS, 2006; 103: 6548–6553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700