用户名: 密码: 验证码:
D201离子交换树脂分离钒、磷、硅的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是一种稀有高熔点金属,溶于酸或碱。浸出液中的钒常以五价的钒酸根阴离子形式存在,可与树脂上的阴离子交换基团相互交换,而与其它杂质分离。本文采用D201树脂吸附钒、磷、硅,并对其吸附性能和机理进行了研究。研究内容与研究结果如下:
     单一元素水溶液体系中,D201树脂对钒、磷、硅的交换吸附受pH值、树脂用量、时间、温度因素的影响。pH=1.9-2.1时,树脂对钒的吸附最好,与其在溶液中的赋存状态有关,吸附平衡时间为11h;磷在pH=6.9-7.1时,吸附最好,吸附平衡时间30min;硅则是在pH=11.4-11.6时吸附最好,吸附平衡时间40min。升温对树脂吸附钒、磷有利,低温对吸附硅有利。
     多元素混合模拟水溶液体系中,磷和硅对树脂吸附钒的影响不大,因此不需要预先除杂。在pH=1.9-2.1时,钒磷和钒硅的分离系数分别为48.33和106.77。
     实际体系中动态吸附解吸试验表明,吸附时料液流速应≤2BV/h,解吸时流速应控制在2-3BV/h之间,5%NaOH+10%NaCl做解吸剂,能将D201树脂上的钒、磷、硅基本完全解吸。
     热力学研究表明D201树脂对钒、磷、硅的吸附行为可用Langmuir或Freundlich等温方程描述。D201树脂对钒、磷、硅的吸附过程是自发过程(△G<0),熵变为正值(△S>0)。D201树脂吸附钒、磷是吸热过程(△H>0),吸附硅是放热过程(△H<0)。
     动力学研究表明D201树脂对钒、磷、硅的吸附交换过程符合二级吸附交换动力学过程。动边界模型模拟及搅拌速度、树脂粒径试验表明D201树脂对钒、磷的吸附受微球扩散控制,对硅的吸附受微球扩散和大孔扩散联合控制。
Vanadium is a kind of rare and high melting point metal which can be dissolved in sour or alkali solution. In lixivium, vanadium is the form of vanadium radical which can be adsorbed and exchanged by the anion group in the resin and be separated with impurities. The paper was studied the adsorption behavior and mechanism of D201 resin for vanadium (V), phosphorus, silicon. Main conclusions were obtained as following:
     In singular element system, effects of pH, resin amount, temperature and time on adsorption behavior were investigated. The best adsorption effect on vanadium could be obtained when pH was 1.9-2.1, since it's related with the condition of vanadium in solution. The best adsorption effect on phosphorus could be obtained when pH was 6.9-7.1 while silicon was pH11.4-11.6. The equilibrium time of vanadium was about 11h, phosphorus was 30min and silicon was 40min. Higher temperature were beneficial for the adsorption of vanadium and phosphorus while lower temperature was good for silicon.
     There was little effect of phosphorus or silicon on the adsorption of vanadium in multi element system. The separation coefficient of vanadium and phosphorus was 48.33 and the separation coefficient of vanadium and silicon was 106.77 when pH was 1.9-2.1.
     The results of the column dynamic adsorption experiments showed that the flow rate should be lower than 2BV/h. The suitable conditions for the desorption were 5%NaOH+10%NaCl as the eluent and 2-3BV/h flow rate.
     Langmuir and Freundlich isotherms were both suitable for describing the adsorption process. The thermodynamic study showed that the adsorption of vanadium, phosphorus and silicon was spontaneous and the entropy was positive. The adsorption of vanadium, phosphorus was endothermal but silicon was exothermic.
     A sencond-order adsorption-ion exchange kinetic equation was developed for the process, and the equation parameters were estimated, results indicated that the adsorption of vanadium and phosphorus were controlled by the diffusion through micro ball of macroporous resin and silicon was controlled by the diffusion through micro ball and macropore of macroporous resin.
引文
[1]《有色金属提取冶金手册》编辑委员会.稀有高熔点金属(下)[M].北京:冶金工业出版社,1999.276-350
    [2]Clark R.J.H.,Brown D.The Chemistry of Vanadium,Niobium and Tantalum[M].London:Oxford Pergamon Press,1975.261-302
    [3]Bert M.Weckhuysen,Oaphne E.Keller.Chemistry,spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis[J].Catalysis Today,2003,78:25-46
    [4]R.G.伯恩斯.晶体场理论的矿物学应用[M].北京:科学出版社,1977
    [5]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985.20-35
    [6]刘世森.石煤提钒工艺评述[J].工程设计与研究,1995,(90):12-16
    [7]任学佑.稀有金属钒的应用现状及市场前景[J].稀有金属,2003,(6):809-812
    [8]刘世友.钒的应用与展望[J].稀有金属与硬质合金,2000,(141):58-61
    [9]刘早春,于志勇,林治穆,等.石煤的综合利用[J].化学世界,1994,(4):213-314
    [10]宾智勇.石煤提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属,2006,22(1):16-17
    [11]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999,(72):1-10
    [12]蔡晋强,巴陵.石煤提钒的几种新工艺[J].矿产保护与利用.1993,(5):5-30
    [13]锡淦,雷鹰,胡克俊,等.国外钒的应用概况[J].世界有色金属,2000,(2):13-21
    [14]谭若斌.国内外钒资源的开发利用[J].钒钛,1994,(5,6):4-11
    [15]陈镇源.世界钒工业的发展现状及前景[J].稀有金属,1991,15(2):128-131
    [16]赵红杰.美国的钒工业[J].稀有金属,1994,18(3):220-224
    [17]谭若斌.钒合金的开发应用[J].钒钛,1995,(1):1-16
    [18]Krzanowski,J E.Chemical,mechanical and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide[J].J of American Ceramic Society,1997,80(5):1277-1280
    [19]C.K.Gupta,N.Krishnamurthy.Extractive Metallurgy of Vanadium[M],Amsterdam:Elsevier Science Publishers B.V.,1992
    [20]许国钲.煤中钒价态的研究意义及测定方法概述[J].煤矸石石煤综合利用,1981,(3):33
    [21]蔡晋强.石煤提钒在湖南的发展[J].稀有金属与硬质合金,2001,(144):42-46
    [22]蔡晋强,巴陵.石煤提钒新工艺及市场动向[J].钒钛,1993,(5):5-31
    [23]宾智勇.无污染提钒新工艺研究[J].湖南有色金属,2003,19(3),19-20
    [24]戴文灿,朱柒金,陈庆邦,等.石煤提钒综合利用新工艺的研究[J].有色金属(选矿),2000,(3):14-17
    [25]邹晓勇,彭清静,欧阳玉祝,等.高硅低钙钒矿的钙化焙烧过程[J].过程工程学报,2001,1(2):189-192
    [26]易健民,阎建辉,高迪群,等.钒冶炼焙烧添加剂选择研究[J].稀有金属与硬质合金,1994,(116):5-8
    [27]李中军,庞锡涛,刘长让.淅川钒矿以NaCl和MnO_2为添加剂的钠化焙烧过程研究[J].稀有金属,1994,18(5):328-332
    [28]陆芝华,周邦娜,余仲兴,等.石煤氧化焙烧-稀碱溶液浸出提钒工艺研究[J].稀有金属,1994,18(5):322-326
    [29]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金,2002,21(4):176-182
    [30]张云,范必威,彭达平,等.从石煤酸浸液中萃取钒的工艺研究[J].成都理工学院学报,2001,28(1):107-110
    [31]李晓健.酸浸-萃取工艺在石煤提钒工业中的设计与应用[J].湖南有色金属,2000,16(3):21-23
    [32]Deleon A.Proceeding of the Second International Symposium of ICSOBA[M].Moscow:Russian,1971,3:359
    [33]刘玉国,安悦,付晓东,等.P538萃取钒(Ⅳ)的研究[J].光谱实验室,1998,15(5):32-34
    [34]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛,2006,27(1):22-26
    [35]钱庭宝.离子交换剂应用技术[M].天津科学技术出版社,1984.1-88
    [36]姜志新,谌竟清,宋正孝.离子交换分离工程[M].天津:天津大学出版社,1992.1-23
    [37]王方.当代离子交换技术[M].北京:化学工业出版社,1993.3
    [38]陈和德,陆乾生,杨辉荣,等.现在离子交换专论[M].广州:广东科技 出版社,1982.7
    [39]朱秀昌.离子交换树脂[M].北京:科学出版社,1960
    [40]陆九芳,李总成,包铁竹.分离过程化学[M].北京:清华大学出版社,1993.158-161
    [41]柴丽敏.大孔弱碱性阴离子交换树脂D301R处理DSD酸还原废水的研究:[硕士学位论文].天津:天津大学,2005
    [42]夏笃伟.离子交换树脂[M].北京:化学工业出版社,1983
    [43]钱庭宝,刘维琳,李金和.吸附树脂及其应用[M].北京:化学工业出版社,10-16
    [44]马弘.D113离子交换树脂吸附钯的基础研究:[硕士学位论文].天津:河北工业大学,2007
    [45]马荣骏.离子交换在湿法冶金中的应用[M].北京:冶金工业出版社,1992
    [46]M.Streat,D.Naden.Ion Exchange and Sorption Process in Hydrometallurgy[M].New York:Wiley,1987
    [47]王德义,堪竟清,赵淑良,等.铀的提取与精制工艺学[M].北京:原子能出版社,1982.167-185
    [48]黎鼎鑫.贵金属提取与精炼[M].长沙:中南工业大学出版社,1991.184-186
    [49]郭炳昆,蔡艳荣.离子交换树脂在提金中的应用[J].湖南有色金属.1997(2):30
    [50]王雪琴,汤福隆.D290大孔阴离子交换树脂吸附金的机理和应用[J].黄金.1992,13(2):46-50
    [51]Carmen P.Gromes,Manuel F.Almeida.Gold Recovery with ion exchange used resin Separation and Purification Technology[J].2000,24:35-37
    [52]肖连生,龚柏凡,黄芍英,等.离子交换一步法制高纯仲钨酸铵的扩大试验[J].中国有色金属学报,1996(3):53-56
    [53]徐铜文,王绍亭.离子交换法从冶炼废液中回收铼[J].天津大学学报,1994,27(2):232-237
    [54]A.G.Kholmogorov,O.N.Kononova,S.V.Kachin.Ion Exchange Recovery and Concentration of Rhenium from salt solutions[J].Hydrometallurgy,1999,51:19-35
    [55]蒋馥华,蒋国礼.水法提钒中离子交换的应用[J].钢铁钒钛,1992,13(6):24-27
    [56]倪起峰.离子交换法在稀土分离中的地位[J].稀有金属与硬质合金.1990(1):32-34
    [57]张贵清.连续离子交换除镍电解液中微量铅锌的研究:[博士学位论文].长沙:中南大学,2003
    [58]蒋馥华,张萍,申照全.从含钒废水中回收V_2O_5[J].环境保护.1994(1):36-38
    [59]蒋馥华,张萍,申照全.从废催化剂中回收V_2O_5[J].环境保护.1994(7):41-44
    [60]蒋馥华,张萍.用天然碱浸法从废钒催化剂中回收五氧化二钒的试验[J].硫酸工业,2000,4:28-30
    [61]张萍,蒋馥华.苛化泥为焙烧添加剂从石煤提取五氧化二钒[J].稀有金属,2000,24(2):115-118
    [62]罗彩英.石煤提钒新工艺研究[J].湖南冶金,1995,(4):5-8
    [63]陈勇,娜孜拉·扎曼别克,潘丽英,等.从湿冶钒渣中回收V_2O_5的试验研究[J].干旱环境检测,2001,15(1):6-8
    [64]张云,范必威,林海玲,等.D290树脂从石煤酸浸液中吸附钒的工艺[J].矿物岩石,2000,20(4):95-98
    [65]曾理,李青刚,肖连生.离子交换法从石煤含钒浸出液中提钒的研究[J].稀有金属,2007,31(3):362-365
    [66]李青刚,曾理,艾馨鹏,等.一种弱碱性阴离子树脂对石煤酸浸液中钒的吸附形态研究[J].稀有金属,2007,31:64-68
    [67]曾添文,戴文灿,张志,等.离子交换树脂对钒(Ⅴ)交换性能的研究.离子交换与吸附[J],2002,18(5):453-458
    [68]T.Soldi,M.Pesavwnto,G.Alberti.Seoaration of vanadium(Ⅴ)and (Ⅳ)by sorption on an iminodiacetic chelating resin[J].Analytica Chimica Acta,1996(323):27-37
    [69]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,1990,103-118
    [70]丁云,廖学品,石碧.胶原纤维固载Fe(Ⅲ)对磷酸根的吸附特性[J].化工学报.2007,58(5):1225-1230
    [71]张国范.铝土矿浮选脱硅基础理论及工艺研究:[博士学位论文].长沙:中南大学,2001
    [72]赵振国.Langmuir方程在稀溶液吸附中的应用[J].大学化学,1999,14(5):7
    [73]耿信笃,工彦,虞启明.液-固吸附体系中扩展的Langmuir方程的推导和检验[J].化学学报,2001,59(11):18-47
    [74]Chuncai Yao.Extended and improved Langmuir equation for correlating adsorption equilibrium data[J].Separation and Purification Technology,2000,19:237-242
    [75]北川浩,铃木谦一郎.吸附的基础与设计(,鹿政理)[M].北京:化学工业出版社,1983.31-39
    [76]傅献彩,陈瑞华.物理化学(下册)[M].北京:人民教育出版社,1979.311-313
    [77]Ho Y.S.,Ng J.C.Y.,Mckay G.Kinetics of pollutant sorption by biosorbents[J].Separ.Purif.Methods,2000,29(2):189-232
    [78]F.G.Helfferich,Yng-Long Hwang.国际通用离子交换技术手册(,陶祖贻)[M].北京:科学技术文献出版社,2000.18-31
    [79]Schmuckler G,Nativ M,Goldstein S,Kinetics of Shell Progressive Reactions in Ion Exchange Resins on the Theory and Practice of Ion Exchange[J].Cambridge,1976.25-30
    [80]宋胤杰,赵爱民.用三种模型处理二元离子交换动力学对比研究[J].核化学与放射化学.1994,3:151-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700